Development of a Real-Time Recombinase-Aided Amplification Method for the Rapid Detection of Streptococcus equi subsp. equi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains of Pathogens, Samples, and Extraction of DNA
2.2. Plasmid
2.3. Real-Time RAA Primer and Probe
2.4. Real-Time RAA Assay
2.5. Real-Time PCR Assay
2.6. Analytical Specificity
2.7. Analytical Sensitivity
3. Results
3.1. Design of the eqbE Real-Time RAA Primers and Probe
3.2. Reaction Optimization for Real-Time RAA Assays
3.3. Analytical Sensitivity of the Real-Time RAA Assay
3.4. Analytical Specificity of the Real-Time RAA Assay
3.5. Diagnostic Performance of Real-Time RAA Using Clinical Nasal Swabs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newton, J.R.; Wood, J.L.N.; Dunn, K.A.; DeBrauwere, M.N.; Chanter, N. Naturally occurring persistent and asymptomatic infection of the guttural pouches of horses with Streptococcus equi. Vet. Rec. 1997, 140, 84–90. [Google Scholar] [CrossRef]
- Neamat-Allah, A.N.; Damaty, H.M. Strangles in Arabian horses in Egypt: Clinical, epidemiological, hematological, and biochemical aspects. Vet. World 2016, 9, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Waller, A. Streptococcus equi: Breaking its strangles-hold. Vet. Rec. 2018, 182, 316–318. [Google Scholar] [CrossRef] [PubMed]
- Ikhuoso, O.A.; Monroy, J.C.; Rivas-Caceres, R.R.; Cipriano-Salazar, M.; Barbabosa Pliego, A. Streptococcus equi in Equine: Diagnostic and Healthy Performance Impacts. J. Equine Vet. Sci. 2020, 85, 102870. [Google Scholar] [CrossRef] [PubMed]
- Rendle, D.; de Brauwere, N.; Hallowell, G.; Ivens, P.; McGlennon, A.; Newton, R.; White, J.; Waller, A. Streptococcus equi infections: Current best practice in the diagnosis and management of ‘strangles’. UK-Vet Equine 2021, 5, S3–S15. [Google Scholar] [CrossRef]
- Mallicote, M. Update on Streptococcus equi subsp equi infections. Vet. Clin. N. Am. Equine Pract. 2015, 31, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Seyum, F.; Mahendra, P. Clinical and microbiological observations on strangles in donkeys. Haryana Vet. 2015, 54, 64–66. [Google Scholar]
- Tonpitak, W.; Sornklien, C.; Wutthiwithayaphong, S. Characterization of a Streptococcus equi ssp. equi Isolate from a Strangles Outbreak in Thailand. J. Equine Vet. Sci. 2016, 38, 30–32. [Google Scholar] [CrossRef]
- Torpiano, P.; Nestorova, N.; Vella, C. Streptococcus equi subsp. equi meningitis, septicemia and subdural empyema in a child. IDCases 2020, 21, e00808. [Google Scholar] [CrossRef]
- Bohlman, T.; Waddell, H.; Schumaker, B. A case of bacteremia and pneumonia caused by Streptococcus equi subspecies equi infection in a 70-year-old female following horse exposure in rural Wyoming. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 65. [Google Scholar] [CrossRef]
- Judy, C.E.; Chaffin, M.K.; Cohen, N.D. Empyema of the guttural pouch (auditory tube diverticulum) in horses: 91 cases (1977–1997). J. Am. Vet. Med. Assoc. 1999, 215, 1666–1670. [Google Scholar] [CrossRef] [PubMed]
- Boyle, A.G.; Timoney, J.F.; Newton, J.R.; Hines, M.T.; Waller, A.S.; Buchanan, B.R. Streptococcus equi Infections in Horses: Guidelines for Treatment, Control, and Prevention of Strangles-Revised Consensus Statement. J. Vet. Intern. Med. 2018, 32, 633–647. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y. Identification of a Novel Genotype of Streptococcus equi Subspecies equi in a Donkey Suffering from Strangles. Pak. Vet. J. 2019, 39, 609–611. [Google Scholar] [CrossRef]
- Pusterla, N.; Bowers, J.; Barnum, S.; Hall, J.A. Molecular detection of Streptococcus equi subspecies equi in face flies (Musca autumnalis) collected during a strangles outbreak on a Thoroughbred farm. Med. Vet. Entomol. 2020, 34, 120–122. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.; Waller, A.S.; Frykberg, L.; Flock, M.; Zachrisson, O.; Guss, B.; Flock, J.I. Intramuscular vaccination with Strangvac is safe and induces protection against equine strangles caused by Streptococcus equi. Vaccine 2020, 38, 4861–4868. [Google Scholar] [CrossRef]
- McGlennon, A.; Waller, A.; Verheyen, K.; Slater, J.; Grewar, J.; Aanensen, D.; Newton, R. Surveillance of strangles in UK horses between 2015 and 2019 based on laboratory detection of Streptococcus equi. Vet. Rec. 2021, 189, e948. [Google Scholar] [CrossRef]
- Jaramillo-Morales, C.; James, K.; Barnum, S.; Vaala, W.; Chappell, D.E.; Schneider, C.; Craig, B.; Bain, F.; Barnett, D.C.; Gaughan, E.; et al. Voluntary Biosurveillance of Streptococcus equi Subsp. equi in Nasal Secretions of 9409 Equids with Upper Airway Infection in the USA. Vet. Sci. 2023, 10, 78. [Google Scholar] [CrossRef]
- Rotinsulu, D.A.; Ewers, C.; Kerner, K.; Amrozi, A.; Soejoedono, R.D.; Semmler, T.; Bauerfeind, R. Molecular Features and Antimicrobial Susceptibilities of Streptococcus equi ssp. equi Isolates from Strangles Cases in Indonesia. Vet. Sci. 2023, 10, 49. [Google Scholar] [CrossRef]
- Arafa, A.A.; Hedia, R.H.; Ata, N.S.; Ibrahim, E.S. Vancomycin resistant Streptococcus equi subsp. equi isolated from equines suffering from respiratory manifestation in Egypt. Vet. World 2021, 14, 1808–1814. [Google Scholar] [CrossRef]
- Bell, D.S.H.; Goncalves, E. Diabetogenic effects of cardioprotective drugs. Diabetes Obes. Metab. 2021, 23, 877–885. [Google Scholar] [CrossRef]
- Pringle, J.; Venner, M.; Tscheschlok, L.; Bachi, L.; Riihimaki, M. Long term silent carriers of Streptococcus equi ssp. equi following strangles; carrier detection related to sampling site of collection and culture versus qPCR. Vet. J. 2019, 246, 66–70. [Google Scholar] [CrossRef]
- Durham, A.E.; Kemp-Symonds, J. Failure of serological testing for antigens A and C of Streptococcus equi subspecies equi to identify guttural pouch carriers. Equine Vet. J. 2021, 53, 38–43. [Google Scholar] [CrossRef]
- Duran, M.C.; Goehring, L.S. Equine strangles: An update on disease control and prevention. Austral J. Vet. Sci. 2021, 53, 23–31. [Google Scholar] [CrossRef]
- Boyle, A.G.; Stefanovski, D.; Rankin, S.C. Comparison of nasopharyngeal and guttural pouch specimens to determine the optimal sampling site to detect Streptococcus equi subsp equi carriers by DNA amplification. BMC Vet. Res. 2017, 13, 75. [Google Scholar] [CrossRef]
- Stöckle, S.D.; Winter, J.C.; Schöpe, S.S.; Gehlen, H. Possibilities and limitations of the prevention of strangles outbreaks on horse farms. Pferdeheilkunde 2019, 35, 258–264. [Google Scholar] [CrossRef]
- Lindahl, S.; Båverud, V.; Egenvall, A.; Aspán, A.; Pringle, J. Comparison of sampling sites and laboratory diagnostic tests for S. equi subsp. equi in horses from confirmed strangles outbreaks. J. Vet. Intern. Med. 2013, 27, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Waller, A.S. New Perspectives for the Diagnosis, Control, Treatment, and Prevention of Strangles in Horses. Vet. Clin. N. Am.-Equine 2014, 30, 591–607. [Google Scholar] [CrossRef]
- Webb, K.; Barker, C.; Harrison, T.; Heather, Z.; Steward, K.F.; Robinson, C.; Newton, J.R.; Waller, A.S. Detection of Streptococcus equi subspecies equi using a triplex qPCR assay. Vet. J. 2013, 195, 300–304. [Google Scholar] [CrossRef]
- Harms, C.; Mapes, S.; Akana, N.; Coatti Rocha, D.; Pusterla, N. Detection of modified-live equine intranasal vaccine pathogens in adult horses using quantitative PCR. Vet. Rec. 2014, 175, 510. [Google Scholar] [CrossRef] [PubMed]
- Cordoni, G.; Williams, A.; Durham, A.; Florio, D.; Zanoni, R.G.; La Ragione, R.M. Rapid diagnosis of strangles (Streptococcus equi subspecies equi) using PCR. Res. Ve.t Sci. 2015, 102, 162–166. [Google Scholar] [CrossRef]
- Pusterla, N.; Leutenegger, C.M.; Barnum, S.M.; Byrne, B.A. Use of quantitative real-time PCR to determine viability of Streptococcus equi subspecies equi in respiratory secretions from horses with strangles. Equine Vet. J. 2018, 50, 697–700. [Google Scholar] [CrossRef] [PubMed]
- Riihimaki, M.; Aspan, A.; Ljung, H.; Pringle, J. Long term dynamics of a Streptococcus equi ssp equi outbreak, assessed by qPCR and culture and seM sequencing in silent carriers of strangles. Vet. Microbiol. 2018, 223, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.Z.; Chen, J.T.; Li, J.; Wu, X.J.; Wen, J.Z.; Liu, X.Z.; Lin, L.Y.; Liang, X.Y.; Huang, H.Y.; Zha, G.C.; et al. Reverse Transcription Recombinase-Aided Amplification Assay with Lateral Flow Dipstick Assay for Rapid Detection of 2019 Novel Coronavirus. Front. Cell Infect. Microbiol. 2021, 11, 613304. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Zhang, R.; He, X.; Tian, F.; Nie, M.; Shen, X.; Ma, X. RAP: A Novel Approach to the Rapid and Highly Sensitive Detection of Respiratory Viruses. Front. Bioeng. Biotechnol. 2021, 9, 766411. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Ren, W.C.; Xue, Z.T.; Miao, Y.D.; Wang, W.; Zhang, X.X.; Yao, C.; Shang, Y.Y.; Li, S.S.; Mi, F.L.; et al. Real-time recombinase-aided amplification assay for rapid amplification of the gene of s. Eur. J. Clin. Microbiol. 2023, 42, 963–972. [Google Scholar] [CrossRef]
- Cao, Y.H.; Fang, T.S.; Shen, J.L.; Zhang, G.D.; Guo, D.H.; Zhao, L.A.; Jiang, Y.; Zhi, S.; Zheng, L.; Lv, X.F.; et al. Development of Recombinase Aided Amplification (RAA)-Exo-Probe Assay for the Rapid Detection of Shiga Toxin-Producing Escherichia coli. J. AOAC Int. 2023, 106, 1246–1253. [Google Scholar] [CrossRef]
Name | Sequence (5′-3′) | Location | Reference |
---|---|---|---|
eqbE-F1 | CATCTATTTGGTCAAACCATTTGAATGTACCAAG | 1,226,818 to 1,226,852 | This study |
eqbE-F2 | CCGAAAGATTGGATTTCCATTCCATATGGTAG | 1,226,859 to 1,226,890 | This study |
eqbE-F3 | TGGTAGGATCTGCCCTAATTATGTTAAAGGTG | 1,226,830 to 1,226,861 | This study |
eqbE-R1 | CTACCATTATCTCCAGTTCTATACCACCTCATC | 1226, 928 to 1,226,958 | This study |
eqbE-R2 | TACCACCTCATCCCATCTTGTTCGAAGTAC | 1,226,947 to 1,226,979 | This study |
eqbE-R3 | CCAAGAAACTCAATAATCCCATCATTCCATG | 1,226,982 to 1,226,912 | This study |
Probe | TATCGGTGGAGTTGGTGTTGCTAAATGTTA/i6FAMdT//idSp/A/iBHQ1dT/GGTGACGAAGAATTA-3′C3 Spacer | 1,226,969 to 1,227,017 | This study |
eqbE-F | ATGTAGCTATGGCAAATGTGGC | 1,223,599 to 1,223,620 | [26] |
eqbE-R | AACACCCTTAGGAACACCTG | 1,223,689 to 1,223,708 | [26] |
eqbE-probe | FAM-ATTGTTACTATGGCTGAAGGT-BHO1 | 1,223,966 to 1,223,987 | [26] |
Method | Real-Time PCR | Kappa | p-Value | |||
---|---|---|---|---|---|---|
Positive | Negative | Total | ||||
RAA | Positive | 64 | 2 | 66 | 0.931 | 0.0001 |
Negative | 1 | 31 | 32 | |||
Total | 65 | 33 | 98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zu, H.; Sun, R.; Li, J.; Guo, X.; Wang, M.; Guo, W.; Wang, X. Development of a Real-Time Recombinase-Aided Amplification Method for the Rapid Detection of Streptococcus equi subsp. equi. Microorganisms 2024, 12, 777. https://doi.org/10.3390/microorganisms12040777
Zu H, Sun R, Li J, Guo X, Wang M, Guo W, Wang X. Development of a Real-Time Recombinase-Aided Amplification Method for the Rapid Detection of Streptococcus equi subsp. equi. Microorganisms. 2024; 12(4):777. https://doi.org/10.3390/microorganisms12040777
Chicago/Turabian StyleZu, Haoyu, Rongkuan Sun, Jiaxin Li, Xing Guo, Min Wang, Wei Guo, and Xiaojun Wang. 2024. "Development of a Real-Time Recombinase-Aided Amplification Method for the Rapid Detection of Streptococcus equi subsp. equi" Microorganisms 12, no. 4: 777. https://doi.org/10.3390/microorganisms12040777
APA StyleZu, H., Sun, R., Li, J., Guo, X., Wang, M., Guo, W., & Wang, X. (2024). Development of a Real-Time Recombinase-Aided Amplification Method for the Rapid Detection of Streptococcus equi subsp. equi. Microorganisms, 12(4), 777. https://doi.org/10.3390/microorganisms12040777