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Abstract: Periodontitis is a destructive inflammatory response triggered by dysbiosis. Lactobacil-
lus acidophilus LA5 (LA5) may impair microbial colonization and alter the host. Thus, we evaluated
the effect of LA5 on alveolar bone loss in a periodontitis murine model and investigated its effect
on the oral and gut microbiomes. Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nu-
cleatum, and Streptococcus gordonii were inoculated in C57BL/6 mice (P+), with LA5 (L+). SHAM
infected controls (P- and/or L- groups) were also evaluated. After 45 days, alveolar bone loss in the
maxilla and oral and gut microbiomes were determined. The administration of LA5 controlled the
microbial consortium-induced alveolar bone loss. Periodontopathogens infection resulted in shifts in
the oral and gut microbiomes consistent with dysbiosis, and LA5 reshaped these changes. The oral
microbiome of P+L- group showed the increased abundance of Enterococaccea, Streptoccocaceae, Staphy-
lococcaceae, Moraxellaceae, and Pseudomonadaceae, which were attenuated by the administration of LA5
to the infected group (P+L+). The administration of LA5 to otherwise non-infected mice resulted in
the increased abundance of the superphylum Patescibacteria and the family Saccharamonadaceae in
the gut. These data indicate L. acidophilus LA5 as a candidate probiotic for the control of periodontitis.

Keywords: Lactobacillus; periodontitis; probiotics

1. Introduction

Periodontitis is a destructive inflammatory disease triggered by a dysbiotic oral micro-
biome [1], which is also followed by an altered gut microbial composition, as evidenced by
murine and human studies [2–4]. The administration of probiotics, i.e., live bacteria that
provide benefits to health [5], seems a promising approach to reestablishing a balanced mi-
crobiome and control periodontitis [6]. The benefits of controlling periodontitis progression
by the use of probiotics may be extended to other inflammatory disorders, such as diabetes
and cardiovascular diseases [7], and the search for a strain that is efficient in controlling
the dysbiosis underlying these conditions is of paramount importance for the long-term
benefit of probiotic therapy [8].

Probiotic lactobacilli can produce direct antimicrobial compounds [6] and modulate
the host response [9]. Their administration reduced the number of residual pockets in
periodontitis-treated patients [10] and decreased the levels of pathogenic bacteria in saliva
and subgingival biofilm [11]. Meta-analyses studies reported that the administration of
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certain lactobacilli probiotics is able to control gingivitis and periodontitis [12,13]. How-
ever, different probiotic strains and regimens were used, complicating the comparison
among studies.

The concept for the use of probiotics to control periodontitis involves their ability to
decrease oral colonization by pathogens without affecting commensal organisms, and to
modulate the inflammatory response. By controlling inflammation, probiotics also alter
resident microbial communities.

The strain L. acidophilus LA5 is safe to humans and has been successfully used in
the control of gestational hyperglycemia [14], glycemic control in patients with metabolic
syndrome [15], control of systemic inflammation in obese people [16], and improvement in
several parameters such as hepatic transaminases, serum total cholesterol, and low-density
lipoprotein cholesterol levels [17], evidencing its potential to control inflammatory diseases.

Our previous in vitro data revealed that L. acidophilus LA5 was able to inhibit the
adhesion and invasion of periodontopathogens to gingival epithelial cells [18,19] and
reduced Porphyromonas gingivalis abundance in multispecies biofilms without interfering
in commensals [20]. Moreover, secreted products of L. acidophilus LA5 inhibited biofilm
formation and affected pre-formed biofilms of Aggregatibacter actinomycetemcomitans [21].
In fact, L. acidophilus LA5 and its by-products inhibited the transcription of P. gingivalis
and A. actinomycetemcomitans key virulence factors [20,21]. Our screening studies aiming to
determine probiotics strains suitable for the control of periodontitis also highlighted LA5
due to its ability to attenuate the production of pro-inflammatory cytokines by P. gingivalis
or A. actinomycetemcomitans-infected gingival epithelial cells [18,19]. Furthermore, LA5 was
able to control alveolar bone loss in a periodontitis mice model induced by Agreggatibacter
actinomycetemcomitans and Streptococcus gordonii [22].

The clinical use of probiotics is dependent on the apprehension of their properties,
in order to select the most appropriate agent for each condition [23]. In vitro analyses
are only the first step of pre-clinical studies, and the effect of a probiotic strain must be
determined experimentally in vivo. Aiming to further assess the potential of L. acidophilus
LA5 to control periodontitis, we evaluated its ability to control alveolar bone loss and
modulate the oral and gut microbiomes in a murine periodontitis model.

2. Materials and Methods
2.1. Animals and Group Allocation

Four-week-old C57Bl6 mice bred under specific pathogen-free conditions were pur-
chased from the mouse breeding facility of the Medical School, University of São Paulo.
All procedures were performed in accordance with the ARRIVE 2.0 guidelines and with
the approval of the Institutional Animal Care and Use Committee (Approval number:
CEUA/ICB-USP protocol 111; CEUA/FO-USP protocol 20/2019).

Mice presenting alterations in growth, physical defects, and/or weight were excluded
at baseline. After one week of acclimation at the animal facility of the Department of Micro-
biology, Institute of Biomedical Sciences, University of São Paulo, the resident microbiome
was reduced by the use of antimicrobials. Then, animals were randomly allocated into four
groups: the periodontitis group (P+L-) received a microbial consortium formed by human
periodontopathogens; the test group (P+L+) was treated with the pathogenic consortium
plus L. acidophilus LA5; the probiotic group (P-L+) received only L. acidophilus LA5; and the
SHAM infected group (P-L-) received the vehicles. The animals were followed for 45 days,
counting from the first microbial inoculation, and monitored for weight, mobility, fur, and
skin lesions throughout the experimental period.

Each animal was assigned a temporary random number within the group, and a cage
was selected randomly from the pool of all cages and given a numerical designation. During
the allocation, the assessment of the results and data analysis blinding was performed.
However, blindness was not possible during the inoculation of microorganisms, since the
same researcher prepared the suspensions, and these bacterial culture suspensions differed
in color from the vehicle.
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2.2. Sample Size

Sample calculation was performed based on previous data, using alveolar bone loss as
the primary outcome [24]. Taking into consideration the difference in the bone volume of
4719 cubic pixels at a standard area, a sample size of 7.84 animals was adequate to obtain a
Type I error rate of 5% and power greater than 80% [25]. Thus, each experimental group
consisted of eight animals.

2.3. Bacteria Cultures

Lactobacillus acidophilus LA-5™ (CHR Hansen Holding A/S, Hørsholm, Denmark)
was grown in MRS broth (BD; Becton, Dickinson and Company, Sparks, NV, USA). The
microbial consortium for inducing experimental periodontitis was produced as described
previously [24]. Briefly, the oral organisms of human origin P. gingivalis ATCC 33,277 (non-
capsulated fimbriated fimA I), P. gingivalis (W83 encapsulated K1, afimbriated), Prevotella
intermedia 17 [26], and F. nucleatum ATCC 25586 [27] were cultivated in an anaerobic
chamber (85% N2, 5% H2, and 10% CO2) in BHI HM [brain heart infusion broth (BD)
supplemented with yeast extract, hemin (1 mg/mL; Sigma-Aldrich, Darmstadt, Germany),
and menadione (0.1 mg/mL; Sigma-Aldrich)]. S. gordonii DL1 [28] was cultivated in brain
heart infusion broth at 10% CO2.

Cultures in the stationary phase were harvested and bacteria suspended in lyophiliza-
tion solution [10% skin milk with 5% L-Glutamic acid monosodium salt hydrate (Sigma-
Aldrich) and 5% dithiothreitol (Sigma-Aldrich)]. Standardized aliquots were lyophilized
(FreezoneTriad Freezer Dryers, Labconco, Kansas City, MO, USA) and maintained at
−80 ◦C. For each lot, viability was estimated under appropriate conditions.

On the day of each inoculation, lyophilized bacteria of the microbial consortium were
suspended in BHI HM broth, incubated anaerobically for 6 h to achieve a physiological state,
and suspended in 2% carboxymethylcellulose gel (LabSynth, São Paulo, Brazil) in PBS to
reach 2 × 1012 CFU/mL of each strain. Lyophilized L. acidophilus LA5 was suspended in 2%
carboxymethylcellulose gel in PBS to reach 2 × 1010 CFU/mL. Then, bacterial suspensions
were immediately inoculated in the mice, with an interval of 4–5 h between the inoculations
of the probiotic and the microbial consortium.

2.4. Experimental Periodontitis and Probiotic Administration

Detailed procedures were reported previously [24]. Animals received kanamycin
(Inlab, São Paulo, Brazil) and amoxicillin (EMS, São Paulo, Brazil) diluted to g/mL in drink-
ing water for four days [28,29], and their oral cavities were rinsed with 2% chlorhexidine
digluconate for the last two days [30].

After the two-day wash-out period, the animals of the L+ groups were treated with
50 µL of L. acidophilus LA5 containing 1 × 109 CFU and inoculated in the oral cavity
with the aid of a gavage needle, once a day, starting on the first day of the experimental
period, for 44 days. Animals of the P+ groups received 50 µL of the microbial consortium
suspension containing 1 × 1011 CFU of each strain by oral gavage, five days/week, totaling
25 inoculations, starting on the second day of the experimental period, and concluding
12 days before euthanasia. Control groups P- and/or L- received only the vehicles of the
microbial consortium and/or the probiotic (2% carboxymethylcellulose gel in PBS) for the
same volumes and days as the P+ and/or L+ groups.

2.5. Sample Collection

At the end of the experimental period (45 days), mice were anesthetized with ke-
tamine/xylazine and euthanized by cervical dislocation. Oral biofilm samples were col-
lected using micro brushes. Gut samples comprised the jejunal microbiota obtained after
opening the small intestine with a scalpel and removing its content with a wooden spatula.
Samples were placed in TRIS EDTA (TE) buffer (pH 8.0) for microbiome analyses. The right
hemi maxilla was transferred to a tube containing 4% formaldehyde solution, maintained
for 24 h at RT, and stored at 4 ◦C in PBS until further analysis.
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2.6. Microcomputed Tomography (µCT) Analysis

Alveolar bone loss was determined in the right hemimaxilla using a microtomo-
graph (SkyScan 1176, version 1.1, Bruker Biospin, Kontich, Belgian) at 45 kV voltage,
550 µA current, 8.71 µm pixel size, and 0.2 mm aluminum filter. The alignment of three-
dimensional (3D) images was performed using the DataViewer (Skyscan) with the occlusal
plane oriented parallel to the transverse plane. The region of interest (ROI) for bone volume
measurement was set between the distal surface of the first molar and the mesial surface of
the second molar, using a 60 × 30-pixel area covering 15 coronal sections starting from the
enamel–cementum junction of the second. The analysis was performed using CTAnalyser
software Version 1.15.4.0, Skyscan.

2.7. Oral and Gut Microbiome Sequencing

DNA was extracted from oral biofilms and small intestine content samples using the
MASTER PURETM DNA PURIFICATION KIT (Epicentre® Illumina Company, Madison, WI,
USA). The purified DNA quality was determined using a Qubit 2.0 fluorometer (Thermo-
Fisher Scientific, Carlsbad, CA, USA). Negative controls manipulated with the samples
were included.

A barcoded primer set based on universal primers Bakt_341F CCTACGGGNGGCWGCAG
and Bakt_805R GACTACHVGGGTATCTAATCC [31] was used to amplify the hypervari-
able V3–V4 region of the 16SrRNA gene. DNA samples were sequenced by Macrogen
(Seoul, Republic of Korea) using the Illumina MiSeq 2 × 250 platform, following the manu-
facturer’s protocol. Illumina sequencing data were submitted to the Sequence Read Archive
(SRA) under BioProject identification number PRJNA994097.

Sequences were analyzed using Qiime 2 2022.8 software [32]. Sequences were demulti-
plexed, and reads were filtered for quality score (mean q > 10) using Dada 2, quality of phred
10 (90%), and for chimeric sequences. Trimmed sequences were clustered into operational
taxonomic units (OTUs) at a similarity threshold of 97% [33]. Taxonomy was assigned using
the Silva database (SILVA_SSU database version 132–99, accessed in August 2019). Alpha
diversity was calculated for species richness (Chao 1), Pielou, Shannon–Weaver, and Simp-
son indexes [34], and differences among groups were determined using Kruskal–Wallis
with Dunn’s post hoc test. Beta diversity analyses were based on distance matrices of
weighted and unweighted Unifrac, Bray Curtis, and Jaccard, and reported according to
principal coordinate analysis (PCoA) [32,35]. To determine whether the visually observed
differences were statistically significant, PERMANOVA (Permutational Multivariate Analy-
sis of Variance Using Distance Matrices) was performed with 999 permutations. The effects
of the different treatments on the microbial mean taxa abundance at the different taxonomic
levels of oral and gut communities were evaluated by ANCOM (analysis of composition
of microbiomes) [36]. The W value (number of rejections of the null hypothesis assuming
that the mean log absolute abundances of all taxa do not differ by the same amount among
studied groups) empirical cut-off was set at the 75th percentile [37].

2.8. Statistical Analysis

Alveolar bone porosity and volume (%) were tested for normality using the Kolmogorov–
Smirnov test with Lilliefors correlation, and homogeneity of variances was assessed by the
F test. One-way ANOVA followed by Tukey’s multiple comparison was used to identify
inter-group differences. Statistical significance was established at p < 0.05. The analy-
ses were performed using the GraphPad Prism® Version 6.0 statistical package (La Jolla,
CA, USA).

3. Results
3.1. Effect of L. acidophilus on Controlling Alveolar Bone Loss

The oral inoculation with the microbial consortium resulted in significant alveolar
bone loss as evidenced by decreased bone volume and increased porosity in the P+L- group
compared to SHAM (Figure 1). This deleterious effect was attenuated by the treatment with
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probiotics. While pathogen-inoculated groups presented mean 10.8% (±10.0) bone volume
and mean 89.13% (±10.02) porosity in the measured ROI, treatment with L. acidophilus LA-5
elevated bone volume to mean 26.7% (±9.52) and decreased bone porosity to mean 73.27%
(±9.52). L. acidophilus administration (P-L+) per se resulted in minimal and insignificant
bone loss.
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Figure 1. Administration of L. acidophilus La5 prevents alveolar bone loss induced by the infection
with a microbial consortium. Alveolar bone levels were determined 12 days after twenty-five inocu-
lations of a microbial consortium formed by P. gingivalis, P. intermedia, F. nucleatum, and S. gordonii
(P+ groups) and/or 1 day after 44 days of administration of 1 × 109 CFU LA5 (L+ groups). (A): Rep-
resentative images of alveolar bone. Data were obtained at the region between the red points by
Micro-CT analysis of the right hemimaxilla (Pixel size: 8.71 µm). (B): % alveolar bone volume
(average and sd) and % bone porosity (average and sd), determined in pixels3 in C57Bl/6 mice
submitted to different treatments: SHAM (negative control), P+L- (positive control, inoculated with
the microbial consortium), P-L+ (L. acidophilus LA5), P+L+ (microbial consortium + L. acidophilus LA5).
* Statistically significant difference in relation to the negative control (SHAM). ANOVA, Tukey’s
multiple comparison, p < 0.05%.

3.2. Effect of L. acidophilus on Reshaping Oral and Gut Microbiomes

A total of 1029,613 (oral) and 1043,808 (gut) raw reads were obtained, of which
901,401 (oral) and 647,954 (gut) reads remained after quality filtering and sequence process-
ing. Although each group comprised eight animals, some samples did not yield enough
DNA to enable amplification and sequencing. Thus, the oral samples evaluated were
obtained from five animals in the SHAM group, eight for P+L-, six for P-L+, and six for
the P+L+ group, and there were the same numbers for the gut samples, except for the
P+L+ group, which comprised seven gut samples.

The oral sequences were assigned to 36,056 Amplicon sequence variants (ASVs),
with an average of 507.831549 ASVs per sample (range: 189.338028–669.901408). Gut se-
quences comprised 24,628 ASVs, with an average of 315.459591 ASVs per sample (range:
103.607595–474.291139). Oral samples comprised 432 OTUs, whereas gut samples com-
prised 493 OTUs. Rarefaction curves indicated that similar sequence depths were achieved
for all oral and gut samples.
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Administration of the microbial consortium (P+L-) and/or the probiotic (P-L+ and
P+L+) did not alter the alpha diversity indexes of oral and gut niches when these groups
were compared to the SHAM (P-L-) group. However, the richness and evenness (Chao1
and Shannon diversity indexes, respectively) of the oral microbiome were higher under
pathogen infection and probiotic co-treatment (P+L+) than for the P-L+ group (Figure 2A,B).
This suggests that the administration of the probiotic in mice infected with the microbial
consortium leads to increased diversity in the oral cavity when compared to the administra-
tion of the probiotic alone in healthy animals. Alpha diversity indexes did not differ when
the gut microbiomes of the four studied groups were compared (Supplemental Figure S1).
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Figure 2. Phylogenetic alpha diversity indices (Chao in (A), and Shannon in (B)) of the oral microbial
communities of C57Bl/6 mice submitted to different treatments: SHAM (negative control), P+L- (pos-
itive control, inoculated with the microbial consortium), P-L+ (L. acidophilus LA5), P+L+ (microbial
consortium + L. acidophilus LA5). Kruskal–Wallis with Dunn’s test, significant differences * p < 0.05,
** p < 0.01.

Beta diversity analysis revealed that administration of the microbial consortium did
not lead to differences in the structure of the oral microbial communities (SHAM versus
P+L-). The administration of the probiotic to non-infected animals (SHAM versus P-L+)
did not result in significant differences in the oral microbiome. However, PERMANOVA
revealed that the oral microbiomes of P-L+ differed from P+L- by using Bray–Curtis,
Jaccard and weighted Unifrac distances (p < 0.005). P-L+ and P+L+ also differed by using
Bray-Curtis and Jaccard distances (p < 0.05), while SHAM differed from P+L+ by using
Bray–Curtis distance (p < 0.05) (Figure 3).

Gut samples from each studied group clustered apart from the others by using Bray–
Curtis, Jaccard, unweighted and weighted Unifrac distances, except for P-L+ versus P+L+
by using weighted Unifrac, and P+L- versus P+L+ by using unweighted Unifrac distances.
Thus, administration of the probiotic and/or the microbial consortium induced remarkable
changes in the gut microbiome, as visualized in PCoA plots (Figure 4).

Firmicutes was the most abundant phylum in all oral communities, whereas Bac-
teroidetes was more abundant in gut samples, independently on the treatment (Figure 5A).
No differences in abundance at the phylum level among the groups were observed either in
oral or gut microbiome analysis, except for an enrichment in the superphylum Patescibac-
teria in the gut of the P-L+ group (W at 75% = 132.25) (Figures 5B and 6A). However, when
the abundance of each phylum was compared as fold changes among groups, we could
observe that Patescibacteria was also more abundant in the oral biofilm of mice of the
P-L+ group compared to SHAM (Figure 6B). The effect of administration of L. acidophilus
LA5 to otherwise non-infected animals (P-L- versus SHAM) and infected animals (P+L+
versus P+L-) in fold changes of the abundance of different phyla in the oral biofilm and
gut samples is shown Figure 5B. These data (in fold changes) at other taxonomic levels are
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shown in Supplemental file Figure S2 (Class), Figure S3 (Order), Figure S4 (Family), and
Figure S5 (Genus Level).
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Figure 5. Phyla relative abundance (%)-based plots (in A) and fold changes of abundance (in B) of oral
and gut microbial communities of C57Bl/6 mice submitted to different treatments: SHAM (negative
control), P+L- (positive control, inoculated with the microbial consortium), P-L+ (L. acidophilus LA5),
P+L+ (microbial consortium + L. acidophilus LA5). The effect of L. acidophilus LA5 in the oral biofilm
and gut microbiomes was determined by comparing the abundance of taxons in the P-L+ group and
SHAM, and in the P+L+ group and P+L-. * ANCOM, significant differences.
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Figure 6. The composition of the gut microbiome differed among the groups regarding the phylum
Patescibacteria (in A), the family Saccharimonadaceae (in B), and the genus Candidatus Saccharimonas
(in C) in C57Bl/6 mice submitted to different treatments: SHAM (negative control), P+L- (positive
control, inoculated with the microbial consortium), P-L+ (L. acidophilus LA5), P+L+ (microbial
consortium + L. acidophilus LA5). ANCOM revealed differences in microbial mean taxa abundance
among the groups. W values for the P-L+ group are shown using the 75th percentile of the W
distribution as the empirical cut-off value. Kruskal–Wallis with Dunn’s pos hoc test. Significant
differences * p < 0.05; ** p < 0.01.

Differences in taxa abundance in the oral microbiome were not seen at high taxo-
nomic levels, but the abundance of several taxa at the family level differed among groups
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(Figure 7). ANCOM analysis indicated that administration of the microbial consortium
increased the abundance of Enterococcaceae, Streptococcaceae, Staphylococcaceae, Moraxellaceae,
Pseudomonadaceae, and Caulobacteriaceae in the oral microbiome, as attested when the P+L-
group was compared to SHAM. On the other hand, the administration of L. acidophilus
LA5 (P-L+) led to the increased abundance of Caulobacteriaceae and Morganellaceae and the
decreased abundance of Moraxellaceae when compared to SHAM. All three experimental
groups showed reduced abundance of Ruminococcaceae when compared to SHAM. More
importantly, the administration of L. acidophilus LA5 to the animals infected with the micro-
bial consortium (P+L+) abolished most of the differences in the oral microbiome promoted
by the microbial consortium by decreasing the abundance of Enterococcaceae, Pseudomon-
adaceae, Moraxellaceae, Staphylococcacea, and Streptococcaceae, reaching abundance levels
similar to those demonstrated in the SHAM group. However, the levels of Caulobacteriaceae
continued to increase with the co-administration of L. acidophilus LA5 to the infected group
(Figures 7 and S4). The gut microbiome of P-L+ mice differed from the other groups due to
an increased abundance of the family Saccharimonadaceae, genus Saccharimonas (Figure 6B,C),
although other differences could be observed at the family level when data were converted
to fold changes (Figure S4).
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Figure 7. The composition of the oral microbiome differed among the groups at the family level
of C57Bl/6 mice submitted to different treatments: SHAM (negative control), P+L- (positive con-
trol, inoculated with the microbial consortium), P-L+ (L. acidophilus LA5), P+L+ (microbial consor-
tium + L. acidophilus LA5). ANCOM revealed differences in microbial mean taxa abundance among
the groups. The mean abundance of each family is represented in the graphs. W values are shown in
the table using the 75th percentile of the W distribution as the empirical cut-off value. Kruskal–Wallis
with Dunn’s pos hoc test. Significant differences * p < 0.05; ** p < 0.01.

4. Discussion

We aimed to evaluate the potential of the probiotic strain L. acidophilus La5 to control
periodontal destruction and to shape the resident microbiome in a model of periodontal
destruction induced by a microbial consortium associated with periodontitis in humans.
The experimental model employed was able to induce alveolar bone loss in infected
mice and to promote a shift in the abundance of certain organisms in the oral and gut
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microbiomes. The use of the probiotic, on the other side, was effective in modulating such
deleterious effects.

Although a microbial consortium was orally inoculated in mice in order to achieve
a synergistic effect, as seen in periodontitis [38], the main pathogen implicated in peri-
odontitis, P. gingivalis, was not detected in the oral biofilm at the end of the experimental
period. However, the altered oral and gut microbiomes persisted for at least 12 days after
the last inoculation of the pathogens. Our results are similar to data in which mice were
experimentally monoinfected with P. gingivalis, oral dysbiosis was seen after 10 days of the
last inoculation of the pathogen, and P. gingivalis was detected in very low levels in few of
the inoculated animals [39].

The inoculation of the consortium did not lead to changes in diversity indexes, possi-
bly due to the previous use of antimicrobials to clear the resident microbiota [40]. However,
the dental biofilms of mice infected with the microbial consortium leading to alveolar
bone loss were characterized by increased abundance of the families Enterococcaceae, Strep-
tococcaceae, Staphylococccaceae, Pseudomonadaceae, Caulobacteriaceae, and Moraxellaceae and
decreased levels of Ruminococcaceae when compared to SHAM infected animals. Previous
studies also reported that P. gingivalis induces overgrowth of the genera Staphylococcus
and Streptococcus [39], and families Caulobacteriaceae, Moraxellaceae, and Staphylococcace [40]
in the oral cavity of mice. However, increased levels of Pseudomonadaceae were elicited
exclusively by the microbial consortium, although our data differ from others [39,40] also
on the oral sampling site (gingival tissue versus dental biofilm). The microbial consortium
also exerted an effect on the structure of the gut microbiome, as evidenced by Beta diver-
sity analysis, where the gut microbiome of SHAM clustered apart from the P+L- group,
although no specific taxa were consistently more or less abundant in the infected group
when compared to SHAM by using ANCOM.

The administration of L. acidophilus La5 to the infected group was able to attenuate
alveolar bone loss induced by the microbial consortium. This beneficial effect was accom-
panied by a microbial shift in the oral microbiome, where the abundance of Enterococcaceae,
Streptococcaceae, Staphylococccaceae, Pseudomonadaceae, and Moraxellaceae returned to levels
observed in the oral microbiome of SHAM infected animals. However, treatment with
L. acidophilus LA5 promoted an enrichment of Caulobacteriaceae in the oral microbiome of
animals infected with the microbial consortium. The effect of increased levels of Caulobac-
teriaceae in the oral cavity has not been established, but most members of this family are
commensals with few exceptions in patients with underlying conditions [40].

The oral intake of L. acidophilus La5 was also able to induce changes in the jejunal
microbiome of the mice, with increased levels of the superphylum Patescibacteria and
the family Saccharimonadaceae, genus Candidatus Saccharomonas, but these alterations were
lost in mice that were infected with the microbial consortium and received concomitant
administration of L. acidophilus La5. Little is known on the role of the superphylum
Patescibacteria, a group of still-uncultivated bacteria [41] reported in low abundance in
fecal samples of mice [42]. In humans, its increased abundance in stool samples was
associated with multiple sclerosis in children [43], whereas its decreased abundance was
reported in the saliva of subjects with brain tumors [44]. On the other hand, the increased
abundance of family Sacchararomonadaceae, genus Candidatus Saccharomonas in the gut after
the administration of L. acidophilus LA5 in otherwise non-infected mice may be beneficial to
the host. The enrichment of these SCFA (short chain fatty acids)-producing bacteria leads
to increased serum acetate concentrations, which is implicated in the regulation of glucose
metabolism [45]. Furthermore, the abundance of Candidatus Saccharomonas in the gut of
mice is negatively correlated with levels of pro-inflammatory cytokines in serum [46].

L. acidophilus is a member of the human resident microbiota and can be found in the
oral cavity, gastrointestinal tract, and vaginal mucosa [47]. However, the oral administration
of L. acidophilus LA5 in mice, using a similar protocol as used in the current study, did not
yield the detection of the species L. acidophilus in the oral nor in the gut microbiomes [22].
Long lasting colonization by probiotics is not expected either in the oral cavity or in the
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gut [48,49], indicating the need for probiotic usage on a daily basis for effective results, as
performed in the present study.

These results should be taken under the limitations of the present experimental model,
where exogenous strains of human origin were inoculated in young mice with unbalanced
microbiomes disturbed by the previous use of chlorhexidine and antimicrobials. Other
studies should be performed in order to assess the effect of L. acidophilus LA5 on the control
of periodontal and systemic inflammation, since this strain is known to provide benefits in
inflammatory diseases [14–17].

Our data suggest that L. acidophilus LA5 can lead to shifts in unbalanced oral and gut
microbiomes, leading to the control of periodontitis.

5. Conclusions

The oral administration of L. acidophilus LA5 can attenuate bone resorption and revert
most of the shifts in the oral microbiome induced by infection with a microbial consor-
tium of human periodontal pathogens. Further studies are still needed to elucidate the
mechanisms underlying the beneficial properties of L. acidophilus LA5. Nevertheless, our
data suggest that this strain is a promising candidate as an adjuvant to the periodontal
treatment, used either alone or in combination with other probiotic strains.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms12061057/s1, Figure S1. Phylogenetic Alpha
diversity indices (Chao in A, and Simpson in B) of the gut microbial communities of C57Bl/6 mice
submitted to different treatments: SHAM (negative control), P+L- (positive control, inoculated with
the microbial consortium), P-L+ (L. acidophilus LA5), P+L+ (microbial consortium + L. acidophilus
LA5). Kruskal Wallis with Dunn´s pos hoc test. No significant differences, p > 0.05. Figure S2:
Fold changes of abundance at the Class taxonomic level of oral and gut microbial communities of
C57Bl/6 mice submitted to different treatments: SHAM (negative control), P+L- (positive control,
inoculated with the microbial consortium), P-L+ (L. acidophilus LA5), P+L+ (microbial consortium
+ L. acidophilus LA5). The effect of L. acidophilus LA5 in the oral biofilm and gut microbiomes was
determined by comparing the abundance of taxons in P-L+ group and SHAM, and in P+L+ group
and P+L-. Data reported as fold changes of abundance. Figure S3: Fold changes of abundance at
the Order taxonomic level of oral and gut microbial communities of C57Bl/6 mice submitted to
different treatments: SHAM (negative control), P+L- (positive control, inoculated with the microbial
consortium), P-L+ (L. acidophilus LA5), P+L+ (microbial consortium + L. acidophilus LA5). The effect
of L. acidophilus LA5 in the oral biofilm and gut microbiomes was determined by comparing the
abundance of taxons in P-L+ group and SHAM, and in P+L+ group and P+L-. Data reported as fold
changes of abundance. Figure S4: Fold changes of abundance at the family taxonomic level of oral
and gut microbial communities of C57Bl/6 mice submitted to different treatments: SHAM (negative
control), P+L- (positive control, inoculated with the microbial consortium), P-L+ (L. acidophilus LA5),
P+L+ (microbial consortium + L. acidophilus LA5). The effect of L. acidophilus LA5 in the oral biofilm
and gut microbiomes was determined by comparing the abundance of taxons in P-L+ group and
SHAM, and in P+L+ group and P+L-. Data reported as fold changes of abundance. * ANCOM,
significant differences. Figure S5: Fold changes of abundance at the genus taxonomic level of oral
and gut microbial communities of C57Bl/6 mice submitted to different treatments: SHAM (negative
control), P+L- (positive control, inoculated with the microbial consortium), P-L+ (L. acidophilus LA5),
P+L+ (microbial consortium + L. acidophilus LA5). The effect of L. acidophilus LA5 in the oral biofilm
and gut microbiomes was determined by comparing the abundance of taxons in P-L+ group and
SHAM, and in P+L+ group and P+L-. Data reported as fold changes of abundance.
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