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Abstract: Extensive research has been conducted to identify key proteins governing stress responses,
virulence, and antimicrobial resistance, as well as to elucidate their interactions within Listeria
monocytogenes. While these proteins hold promise as potential targets for novel strategies to control L.
monocytogenes, given their critical roles in regulating the pathogen’s metabolism, additional analysis
is needed to further assess their druggability—the chance of being effectively bound by small-
molecule inhibitors. In this work, 535 binding pockets of 46 protein targets for known drugs (mainly
antimicrobials) were first analyzed to extract 13 structural features (e.g., hydrophobicity) in a ligand–
protein docking platform called Molsoft ICM Pro. The extracted features were used as inputs to
develop a logistic regression model to assess the druggability of protein binding pockets, with a
value of one if ligands can bind to the protein pocket. The developed druggability model was then
used to evaluate 23 key proteins from L. monocytogenes that have been identified in the literature. The
following proteins are predicted to be high-potential druggable targets: GroEL, FliH/FliI complex,
FliG, FlhB, FlgL, FlgK, InlA, MogR, and PrfA. These findings serve as an initial point for future
research to identify specific compounds that can inhibit druggable target proteins and to design
experimental work to confirm their effectiveness as drug targets.
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1. Introduction

It is estimated by the Centers for Disease Control and Prevention (CDC) that about
48 million cases of foodborne illnesses occur in the United States every year. Among them
are approximately 1600 listeriosis infections that cause about 260 deaths, a 94% hospital-
ization rate, and a 16% mortality rate [1,2]. The fatality rate reaches as high as 30% for
people with weakened immunity (e.g., the elderly and children) and pregnant women [3].
Listeriosis is caused by the foodborne pathogen Listeria monocytogenes, which is the third
leading cause of death among pathogens that cause foodborne illnesses [4]. L. monocyto-
genes, as a facultative intracellular pathogen, can endure various stress conditions [5]. It is
reported as a prevalent pathogen across various countries, such as the United Kingdom,
the United States, Canada, Australia, and Mexico [6]. L. monocytogenes is commonly found
in environmental settings and is carried by animals, with humans primarily contacting
the bacteria through contaminated foods and surfaces [7]. Consequently, L. monocytogenes
poses significant concerns for the food industry [8]. The primary treatment for listeriosis
typically involves ampicillin, administered either alone or in combination with gentam-
icin [9]. Although the presence of ampicillin-resistance genes in L. monocytogenes has not
shown an increasing trend [10], the ongoing risk of resistance persists due to lateral gene
transfer in bacteria [11]. Identifying novel methods to control L. monocytogenes is thus
needed to ensure the continued availability of effective treatments for infected patients.

L. monocytogenes survives in the environment via its ability to react to external stresses
by producing key proteins that facilitate adaptive reactions [12]. These stress response
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factors enable L. monocytogenes to survive in conditions including low moisture, high
salt concentration, and refrigeration [13]. Previous studies have identified important
stress response factors; for example, sigB plays a critical role in osmotic and cold stress
responses [14]. Once the pathogen survives, it expresses proteins that enable it to invade
host cells, evade host immune defenses, and initiate infection [15]. When treated with
antimicrobials, the pathogen may express antimicrobial-resistance genes to defeat drugs
designed to eliminate it [16]. Identifying targets that disrupt the stress response, antibiotic
resistance, and virulence provides multiple vectors to control L. monocytogenes. For example,
these targets could enhance food preservation techniques to diminish the occurrence of L.
monocytogenes in the food chain, diminish virulence to alleviate the severity of infections in
individuals exposed to the pathogen, and counteract the emergence of antibiotic resistance
by discovering novel or synergistic compounds to maintain the efficacy of existing therapies.
Enhancements in any of these areas can yield favorable effects in the treatment of L.
monocytogenes. For instance, anti-virulence medications targeting specific virulence factors
could serve as viable alternatives to traditional antibiotic therapies [17].

However, the development of new treatments presents a significant challenge. From
2008 to 2010, 51% of Phase II drug failures were due to a lack of efficacy [18]. Bayer
funded a study in which the properties of a good drug target were defined [18]. Two key
properties of effective drug targets have been defined as follows: (1) the target should
play a functional role in the disease process, and (2) the target should be druggable [18].
Druggability means that a functional part of the target can be bound by a drug, such as a
chemical compound [18]. In the case of proteins, drugs are essentially ligands that attach to
the proteins and modify their functionality, and the protein structures can be analyzed for
pockets in which ligands can bind [19]. In this work, an approach is developed to evaluate
protein structures to identify pockets and to assess the likelihood of ligand binding as a
measure of druggability to evaluate protein targets for L. monocytogenes.

While ongoing research is being conducted to discover novel drugs or inhibitors
targeting L. monocytogenes [13,20], more work is needed to evaluate potential targets for new
drugs and assess their druggability. Prior studies have identified key genes and proteins
involved in the stress response, virulence, and antibiotic resistance of L. monocytogenes [10]
that could serve as targets for new methods of control. However, little work has been
conducted to further evaluate the druggability of these targets. This work aims to fill this
gap by developing a druggability-evaluation model based on the structural characteristics
of binding pockets in proteins inhibited by known inhibitors and FDA-approved drugs
(mainly antimicrobials). Subsequently, the developed model will be utilized to assess
potential protein targets of L. monocytogenes highlighted in the existing literature.

2. Materials and Methods

In this work, an approach was developed to assess the druggability of proteins by
analyzing their binding pocket structures in L. monocytogenes. A protein is considered
druggable if a drug molecule can bind to one of its binding pockets and impact its typical
function [21]. Molsoft ICM-Pro software (Sorrento Valley, CA, USA) is one of the best
platforms for identifying pockets that ligands can dock to and measuring their structural
features, which can impact the likelihood of ligand docking [22]. For example, a binding
pocket must be accessible to a ligand, and the pocket must be large enough to accommodate
the ligand. Protein structures used for analysis in ICM-Pro are obtained from the Protein
Data Bank (PDB). Figure 1 shows examples of the analysis of ICM-Pro on protein structures
with pockets without (Figure 1A) and with docked ligands (Figure 1B).

The framework of our druggability analysis approach for protein targets of L. mono-
cytogenes is illustrated in Figure 2. A reference set of 46 proteins was carefully chosen to
encompass both pockets with and without known binding ligands. While more protein
targets can be chosen, this work is mainly focused on proteins that are targets of inhibitors
and FDA-approved antimicrobials (mainly against L. monocytogenes) and that have known
crystal structures. Given the protein structures, a pocket searching program (i.e., ICM
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Pocket Finder) determines the locations of the pockets and extracts their structural features
(e.g., aromatic, Figure 2). The structural features for the reference proteins with known
binding antimicrobials were evaluated to determine whether there were differences in
structural features between pockets with and without docked ligands. Key structural
features were then determined and used as the input to develop a logistic regression (LR)
model to predict the likelihood of ligand binding in a pocket. The pocket LR model was
then used to assess the likelihood of ligand binding to pockets in a target set of proteins
found in the literature for L. monocytogenes.
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Figure 2. The framework of our druggability analysis approach for protein targets of L. monocytogenes.

2.1. Materials
2.1.1. Reference Protein Selection to Build the Druggability Analysis Model

The approach developed in this work started with a set of reference proteins that are
considered druggable. The reference set was generated using three criteria: (1) the protein
structure is available in the PDB so that it can be analyzed in the ligand–protein docking
program Molsolf ICM-Pro; (2) the source organism for the protein is bacterial (preferably
L. monocytogenes) since the work is focused on L. monocytogenes; and (3) the protein is
druggable (either confirmed in the literature or because the PDB structure contains a ligand)
so that differences between pockets with and without ligands can be evaluated. Using
these criteria, a reference set of 46 proteins that were bound by ligands, including known
inhibitors and FDA-approved drugs, was established. The reference proteins were selected
in multiple steps. In the first step, a literature review of druggable proteins was conducted,
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and 10 proteins were identified for which structures with ligands were also available
in the PDB. In the second step, all structures in the PDB for proteins associated with L.
monocytogenes were reviewed, and 20 structures with docked ligands were selected. Lastly,
an additional 16 structures with docked ligands were identified using the “Find Similar
Assemblies” feature in the PDB. The selected reference proteins are summarized in Table A1
in Appendix A.

2.1.2. Physical Characterization of Protein Structures

Molsoft ICM-Pro is a modeling software program with tools for molecular modeling
and docking [23]. It has multiple features, including ICM Pocket Finder, which identifies
potential ligand binding sites, i.e., pockets in protein structures, and calculates the physical
properties of the binding sites [24]. Pocket Finder determines the pockets from a three-
dimensional protein structure using a predicting algorithm that has been validated using
data from the PDB [22]. As part of this validation, it was also shown that prediction
results are not significantly impacted by differences between the apo and bound forms
of pockets [22]. Given a protein structure, ICM Pocket Finder returns a list of pockets
and results for the 13 structural features that represent the physical characteristics of each
pocket. The structural features are described in Table 1. Protein structure analysis was
performed using ICM-Pro version 3.9-3a for Linux.

Table 1. Summary of the structural features returned by ICM Pocket Finder [25].

Parameter Definition

Volume Pocket volume

Hydrophobicity Percentage of pocket surface in contact with hydrophobic protein residues
(in the range of 0–1)

Buriedness Ratio of pocket surface area covered by its shell to total pocket surface area
(1.0 means completely buried)

Aromatic Fraction of pocket formed by aromatic side chains (higher is better)

DLID Drug-like density score measuring bindability of proteins (slightly negative
and above 0 are considered “druggable”)

Area Pocket area
LoopFraction Fraction of pocket formed by residues from loops (lower is better)

dTSsc Estimate of entropic penalty associated with flexible side chains forming
parts of the pocket

relTSsc Same as dTSsc but relative to pocket volume (lower is better)
Bfactor Average b-factor of pocket-forming atoms (lower is better)

relBfactor Normalized deviation of pocket b-factor from the average over the protein
(lower is better)

Radius Radius of an ideal spherical cavity with the same volume as the pocket

Nonsphericity Ratio of pocket area to ideal spherical cavity area (1.0 means
completely spherical)

ICM Pocket Finder’s analysis of a protein uses three-dimensional structures from the
PDB database [26]. The PDB stores coordinate files for each protein, listing the atoms in
the protein and their locations relative to each other in the molecule [27]. The structures,
determined using methods such as X-ray crystallography, NMR spectroscopy, and cryo-
electron microscopy, are submitted to the PDB by structural biologists [27]. Each structure
is given a unique identifier and includes a header that gives basic information about the
protein. If the structure of a protein is available in the Protein Data Bank, the PDB identifier
can be searched directly in ICM-Pro, and the structure can be loaded and analyzed with
ICM Pocket Finder.
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2.1.3. Target Protein Selection for Druggability Analysis

A primary objective of this work is to perform a druggability analysis of high-potential
drug targets to control L. monocytogenes. Prior studies have identified key genes and proteins
involved in the stress response [14,28], virulence [8,29], and antibiotic resistance [10] of L.
monocytogenes, as well as the interaction among all three processes [30]. Twenty-three key
proteins were thus selected from these studies as high-potential targets for druggability
analysis. These proteins were selected because they play an important role in the stress
response, antibiotic resistance, and virulence of L. monocytogenes, and their structures are
available in the PDB. The target proteins are listed in Table A2 in Appendix B.

2.2. Methods

The structural features were compared between the pockets with known binding
ligands and the pockets without a ligand. All statistical calculations described in this section
were performed using the free statistical software package RStudio, version 2023.12.1 Build
402, created by Posit Software, PBC (Boston, MA, USA) [31]. The logistic regression model
was generated in R using the “glm” command from the package “base” version 4.3.2. The
McFadden R2 was calculated in R using the “pR2” command, which is part of the package
“pscl” version 1.5.9. The commands used in R for additional calculations are described in
each section.

2.2.1. Statistical Analysis of Pocket Data for Reference Proteins

Summary statistics were calculated for each structural feature of the pocket data for
the reference proteins to determine whether there were statistically significant differences
between pockets with and without ligand docking. These statistics serve as justification for
selecting pocket features as the inputs of the logistic regression model. First, a Shapiro–Wilk
test was performed to determine whether the data for each of the pocket parameters were
normally distributed. For normally distributed data, a two-sided t-test was performed with
a 95% confidence interval and the hypothesis that there is no difference between the means
of the parameter data with and without ligands. For non-normally distributed data, a Mann–
Whitney test was performed to determine whether there is a difference in the parameter
data with and without the ligand. The Shapiro–Wilk test was performed in R using the
“shapiro.test” command, the t-test was performed in R using the “t-test” command, and
the Mann–Whitney test was performed in R using the “wilcox.test” command. Each of
these commands is part of the package “stats” version 4.3.2.

2.2.2. Preparation of the Reference Data Set

Prior to generating the logistic regression model, the pocket features were normalized
to the range of 0 to 1. This allows a direct comparison of the magnitudes of the logistic
regression coefficients to determine the relative impact of each parameter on the predicted
result. The pocket feature data for the reference proteins with known binding ligands and
target proteins for L. monocytogenes were combined into one data set for normalization to
ensure they were on the same scale. The structural feature data returned by Pocket Finder
for the reference and target proteins are included in the supplementary information File S1.

The full normalized reference data set was evaluated in R for pair-wise correlations.
This was carried out using the “Find Correlation” command from the package “caret”
version 6.0–94. The volume, area, and radius features were determined to be correlated
to each other based on a correlation cutoff value of 0.9. Since collinearity can affect the
variances, signs, and magnitudes of logistic regression coefficient estimates [32], the volume
and radius were not included in the logistic regression model. While any one of the three
correlated features could have been kept, it was determined to keep the area (removing
volume and radius) by generating a model for all three cases and selecting the one with
the highest McFadden R2 value. The R2 values for the model with volume (with area and
radius removed), area (with volume and radius removed), and radius (with volume and
area removed) were 0.4454, 0.4507, and 0.4456, respectively. As a result, 11 of the 13 features
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listed in Table 1 were used for the model. An additional parameter called ligDock was
created and added to the reference data to represent the druggability of each protein pocket.
It was assigned a value of 0 for pockets without docked ligands and a value of 1 for pockets
with docked ligands. It was used as the output of the logistic regression model.

2.2.3. Logistic Regression

Logistic regression (LR) can be used with a binomial dependent variable and multiple
independent variables. The LR model has the following form:

ln
(

p
1 − p

)
= β0 + β1x1 + β2x2 + · · ·+ β11x11 (1)

where p is the probability of the binding pocket in the protein target being bound by a ligand,
xi denotes the independent pocket feature, and βi denotes the regression coefficients [33].
For this work, the output variable p is represented by ligDock, which has a value of 1 if a
pocket contains a ligand and 0 if it does not contain a ligand. A protein that has a pocket
that contains a ligand (ligDock = 1) is druggable, whereas a protein that does not contain
any pockets with ligands (ligDock = 0) is considered to be non-druggable. The independent
variables x1, x2, . . ., x11 are pocket characteristics calculated in ICM-Pro (representing all
the features in Table 1 except volume and radius). Generating the LR model estimates the
regression coefficients β0, β1, . . . β11 for each of the independent variables. These represent
the extent to which each of the features impacts the dependent variable, i.e., druggability.

Estimating the coefficients for the LR model requires a training data set. For this
analysis, the reference data were randomly split into two data sets: one to train the model,
i.e., to estimate the regression coefficients, and one to test the predictability of the model.
The reference data set consisted of 46 proteins that resulted in 535 pockets, of which
138 contained docked ligands, and 397 did not contain docked ligands. Approximately
50% of the reference data were used to train the model. As a result, the training data set
had 268 pockets, of which 61 contained docked ligands. The test data set had 267 pockets,
of which 77 contained docked ligands.

2.2.4. Analysis of the Target Data Set

The program ICM Pocket Finder was also used to generate pocket data for the target
proteins identified from the literature for L. monocytogenes. The 23 target proteins contained
238 pockets. The target feature data were normalized together with the reference data
prior to analysis. The LR model developed for the reference protein set was used to
predict the chances of ligand docking in the pockets for each of the 23 target proteins for
L. monocytogenes.

3. Results
3.1. Summary Statistics of Pocket Data for Reference Proteins

Summary statistics for each of the pocket features for the reference proteins were cal-
culated. Per the Shapiro–Wilk test, the data were normally distributed for hydrophobicity,
buriedness, and DLID, and the data for all other parameters were not normally distributed.
The two-sided t-test was performed for normally distributed data, and the Mann–Whitney
test was performed for non-normally distributed data. The data sets were determined to be
statistically different for 11 of the 13 features (excluding loopFraction and relTSsc) with a
significant p-value. Figure 3 shows the box plot comparisons for each of the features using
the un-normalized data and the p-values for the statistical tests (i.e., two-sided t-test or
Mann–Whitney test).
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Figure 3. Comparison of results for each structural feature for pockets with and without ligands:
(a) volume, p-value = 2.2 × 10−16 (Mann–Whitney); (b) hydrophobicity, p-value = 0.0417 (t-test);
(c) buriedness, p-value = 1.734 × 10−7 (t-test); (d) aromatic, p-value = 1.309 × 10−12 (Mann–Whitney);
(e) DLID, p-value = 2.2 × 10−16 (t-test); (f) area, p-value = 2.2 × 10−16 (Mann–Whitney); (g) loopFrac-
tion, p-value = 0.6116 (Mann–Whitney); (h) dTSsc, p-value = 2.2 × 10−16 (Mann–Whitney); (i) relTSsc,
p-value = 0.5352 (Mann–Whitney); (j) Bfactor, p-value = 0.001695 (Mann–Whitney); (k) relBfac-
tor, p-value = 1.906 × 10−5 (Mann–Whitney); (l) radius, p-value = 2.2 × 10−16 (Mann–Whitney);
(m) nonsphericity, p-value = 8 × 10−7 (Mann–Whitney).

3.2. Logistic Regression Model Results

Table 2 summarizes the LR model coefficients calculated using the training data. The p-
values are significant for 5 out of the 12 coefficients. The McFadden R2, which is a measure
of the resolution of the model between predicted states [34], is 0.45 for the full model. A
reduced version of the model was calculated using only the independent variables for
which the p-values were significant. This resulted in a model for which the McFadden R2

was 0.41. A second reduced version of the model was calculated with loopFraction and
relTSsc variables excluded because there was not a statistically significant difference in the
means of these parameters with and without docking (see Figure 2). The McFadden R2 for
this version of the model was 0.43. Since the R2 was higher, the full model was used for all
subsequent results.

Table 2. Logistic regression model coefficients.

Variable (xi) Coefficient (βi) Std. Error z Value Pr (>|z|)

(Intercept) 3.9724 1.8218 2.180 0.029277
Hydrophobicity −15.0826 4.2276 −3.568 0.000360

Aromatic −1.6691 1.8166 −0.919 0.358196
Buriedness −14.8371 5.5163 −2.690 0.007152

DLID 31.8352 10.1678 3.131 0.001742
Area 15.0366 12.9474 1.161 0.245494

loopFraction −1.8166 1.1914 −1.525 0.127343
dTSsc −7.0218 5.4238 −1.295 0.195450

relTSsc 5.9622 3.8447 1.551 0.120960
Bfactor 0.6733 3.4303 0.196 0.844396

relBfactor −10.5689 3.0309 −3.487 0.000488
Nonsphericity −9.0507 4.0022 −2.261 0.023732

The LR model was tested by using it to predict the results for pockets for the reference
testing data. Figure 4 shows the density plot for model predictions for the test data. The
predicted results for pockets without a ligand are clustered near zero, as expected. However,
the predicted results for pockets with ligands are spread out across a wider range of values.
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This indicates that the pocket characteristics are more consistent, and the model can more
accurately identify pockets with no ligands.

The LR model generated by the “glm” command in R outputs a continuous result
that represents the probability of a binary outcome of 1 or 0. To classify the predicted
results as 1 or 0, a cutoff value is selected such that values greater than or equal to the
cutoff value are classified as 1, and values less than the cutoff value are classified as 0. The
optimal cutoff value was determined using the model to predict the results for the test
data with a range of cutoff values. Based on the results shown in Table 3, a cutoff value of
0.50 was selected because it resulted in the highest accuracy and the highest specificity for
the model. This cutoff value ensures the highest chance of correctly predicting “docking”
for a pocket with docking but also increases the possibility of incorrectly identifying “no
docking” as “docking”.
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Table 3. Cutoff value results for test data.

Cutoff Value Accuracy 1 Sensitivity 2 Specificity 3 Positive
Pred. Rate 4

Negative
Pred. Rate 5

0.60 0.7790 0.8047 0.6731 0.9105 0.4545
0.50 0.8015 0.8309 0.7000 0.9503 0.5455
0.40 0.8015 0.8586 0.6579 0.8632 0.6494
0.30 0.7715 0.8644 0.5889 0.8053 0.6883
0.20 0.7491 0.9020 0.5439 0.7263 0.8052

1 Accuracy is the rate of correct predictions for “no docking” and “docking”. 2 Sensitivity is the rate of correctly
predicting “no docking” for a pocket with “no docking”. 3 Specificity is the rate of correctly predicting “docking”
for a pocket with “docking”. 4 The positive prediction rate is the rate of correct “no docking” predictions. 5 The
negative prediction rate is the rate of correct “docking” predictions.

Using a cutoff value of 0.5, the LR model was used to predict the results for the test
data. The results are shown in Table 4.

Table 4. Predicted results for test data (267 samples).

Prediction
Reference

0 1

0 172 18
1 35 42

The classification of predicted results for the test data is shown graphically in Figure 5,
referred to as the confusion matrix. With a cutoff value of 0.5, the overall prediction
accuracy for the model evaluating the testing data set was 80%. For actual values of 0,
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i.e., “no docking”, 91% of the values were correctly predicted, i.e., below the horizontal line
at y = 0.5. For actual values of 1, i.e., “docking”, 55% of the values were correctly predicted,
i.e., above the horizontal line at y = 0.5.
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3.3. Predicted Results for Target Proteins

The chance of docking was calculated for target proteins. For the 23 target proteins,
28 of the 238 pockets had predicted results of ligDock = 1, i.e., “docking”. These represent
9 of the 23 target proteins. If at least one pocket for a protein demonstrates druggability
(i.e., with an output of 1 from the LR model), the protein is considered a druggable target.
Table 5 lists the target proteins that are predicted to be druggable by the LR model, with
the PDB ID and the name of the protein (within the parenthesis).

Table 5. Predicted results for target proteins.

ligDock = 0 ligDock = 1 (Druggable)

1I5N (CheA)
1XEU (InlC)
2J70 (RsBU)
2PLC (PlcA)
2WQV (InlB)
2ZVY (MotB)
3FDQ (FlaA)
3MIX (FlhA)
4NL2 (Hfq)
5H5T (FliD)
6F2D (Flip)

7X1K (DegU)
8CQM (PlcB)

1O6V (InlA)
1XCK (GroEL)

3B0Z (FlhB)
4UT1 (FlgK)

5B0O (FliH/FliI complex)
5LEJ (PrfA)
5ZIY (FlgL)

7X9S (MogR)
8UMD (FliG)

4. Discussion
4.1. Logistic Regression Model

The primary purpose of this work was to develop an approach to assessing the
druggability of proteins. A reference set of proteins considered to be druggable was created
by performing a literature search for druggable proteins and searching the PDB for all L.
monocytogenes protein structures with ligands and similar assemblies. The reference set of
46 proteins consisting of 535 pockets was analyzed. The summary statistics for the pocket
features confirm that there are differences in the results between pockets with and without
docked ligands. This supports the premise of this work, i.e., that the pocket features of
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proteins can be used to assess their likelihood for ligand docking, which is an indicator
of druggability.

The pocket data were normalized to allow a direct comparison of the coefficients that
have the most impact on the predicted result based on magnitude. The sign of a coefficient
also indicates whether the corresponding parameter is directly or inversely correlated to the
likelihood of docking, i.e., druggability. In general, the coefficients agree with expectations.
For example, DLID is positive with the largest magnitude. This parameter was previously
developed to predict ligand docking, with larger values being better [20]. Buriedness and
area also have larger magnitudes and signs that correspond with the expected impact. The
buriedness parameter is the ratio of the pocket surface area covered by its shell to the total
pocket surface, where 1.0 corresponds to completely buried. Therefore, it is expected that
this would be inversely correlated to ligand docking since lower values correspond to
the pocket being more accessible to ligands. Larger areas correspond to larger pockets,
which minimize sizing constraints and would be expected to make the pockets more
favorable for ligand docking. The main feature that contradicts expected behavior is
hydrophobicity. It was expected that pockets with higher percentages of hydrophobic
surface areas would be more favorable for ligand docking [20]; however, the LR model
indicates that this parameter is inversely correlated to docking. A potential explanation for
this is that the arrangement of hydrophobic groups in the binding site is also important,
not just the overall hydrophobicity [20]. This logic model will be further improved by
incorporating the information on local residues around the binding pockets. This is an
interesting direction for future research.

The density plot in Figure 4 shows that the model better predicts “no docking”. This
is confirmed by the accuracy (80%), sensitivity (83%), and positive prediction (95%) results
in Table 3 for the test data. For “docking”, the model is less accurate, as indicated by the
specificity (70%) and negative prediction (55%) results in Table 3. This likely means that it is
not necessary for all the features to be aligned for docking to occur. For example, based on
the regression coefficients, high values of DLID, area, relTSsc, and Bfactor would contribute
to a predicted result closer to 1. But the fact that the test results for docking are spread out,
as shown in Figure 4, indicates that high values are not required for all these features for
docking to be feasible. The selected cutoff value for the model was based on achieving
the highest rate of true “docking” predictions for the test data. The model should be used
with caution, as the likelihood of a false “docking” prediction is 17%, and that of a false
“no docking” prediction is 30%. It is suggested that the model be used in conjunction with
other tools, such as sequence-based or structure-based prediction, to evaluate potential
protein targets.

4.2. Druggability Assessment of Target Proteins

The LR model was used to assess the druggability of a set of target proteins. These
proteins were previously identified as key proteins involved in the stress response, viru-
lence, and antibiotic resistance of L. monocytogenes and represent high-potential targets to
better control the pathogen. As shown in Table 5, 9 of the 23 target proteins are identified
as having a high likelihood of ligand docking and are therefore considered to be druggable.
These are GroEL, FlgK, FlgL, FlhB, FliG, FliH/FliI complex, InlA, MogR, and PrfA. The
functions of each of these proteins are specified in Table A2. Of particular interest are the
PrfA protein, which is a regulator of all virulence proteins that are important during the
infection process [35], and the various motility processes, which have a role in biofilm
formation and antibiotic resistance [10].

The ability to find effective drugs for the proteins identified by the model can be
impacted by the following issues. The method determines the druggability of the protein
target based upon the geometric properties of potential binding pockets in the protein
structure. It has been shown that binding kinetics, such as the association rate and dissocia-
tion rate, can influence the affinity of the ligand to the target and impact factors such as
onset of action and duration of response [36]. If there are non-critical proteins involved in
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other pathways or cellular functions that have similar binding pockets and more favorable
binding kinetics, these could affect the specificity of ligand binding to the target proteins.
These are issues that should be considered in the evaluation of specific ligands as potential
drugs for side-effect evaluation.

4.3. Limitations

There are some limitations of the approach developed in this paper. First, the model
requires the protein structure for ICM-Pro to extract the pocket feature data. While protein
structures are increasingly available from multiple sources, structures are not available for
all proteins. In addition, the model calculates the features for “docking” based on pockets
with docked ligands and for “no docking” based on pockets without docked ligands. For
pockets that do not contain ligands, they are characterized as “no docking”. However, this
may be due to the fact that these pockets are not as competitive in attracting the binding
compounds when compared to the pockets with binding ligands. It is not known whether
these pockets absolutely cannot support ligand docking or whether structures are just not
available with docked ligands in those pockets.

Since the results are based on the structural features of the reference set of proteins,
increasing the size of the reference set by using more proteins from other organisms
and additional structures as they become available could improve the model’s accuracy.
Lastly, since structures were not available in the PDB for all the target proteins from
L. monocytogenes, structures for the proteins from other bacterial organisms were used, and
there could be differences in the structures from different organisms. The results from this
work can be further refined once the crystal structures of those proteins are available.

5. Conclusions

L. monocytogenes is ranked third among foodborne pathogens in causing death. It can
survive environmental stress, escape antimicrobial treatment, and invade human bodies to
cause sickness. It thus poses a significant challenge to the food industry. While extensive
research has been conducted to identify key proteins that facilitate the growth, antibiotic
resistance, and virulence of L. monocytogenes, little work has been carried out to further
evaluate the druggability of those proteins. To address this gap, a logistic regression model
has been generated and tested to predict the druggability of protein targets based on the
structures of binding pockets of proteins with known ligands (e.g., antimicrobials) and
crystal structures. The developed logistic regression model was then used to evaluate 23 key
proteins for L. monocytogenes, and the following proteins are predicted to be druggable
targets: GroEL, FlgK, FlgL, FlhB, FliG, FliH/FliI complex, InlA, MogR, and PrfA. These
results serve as an initial step for further drug discovery to identify specific compounds
that can dock to the druggable target proteins and for experimental work to confirm that
they are effective targets.
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Appendix A

Table A1. Summary of reference proteins.

PDB Entry Protein Organism Ligand Source

1C14 Ndah E. coli Triclosan [37]

1E9X Cyp51 M. tuberculosis 4-Phenylimidazole PDB search for similar
assemblies

1EA1 Cyp51 M. tuberculosis Fluconazole [37]

1I2Z Ndah E. coli Imidazole PDB search for similar
assemblies

1KIJ GyrB T. thermophilus Novobiocin [37]
1KZN GyrB E. coli Clorobiocin [37]
1QMF Pbp2X S. pneumoniae Carboxylic acid [37]

1TZ6 AirK S. enterica Aminoimidazole riboside PDB search for similar
assemblies

2Q3J Cpfc B. subtilis N-methyl mesoporphyrin PDB search for similar
assemblies

3DA1 Gpdh B. halodurans Flavin-adenine dinucleotide [38]

3SYN FlhF B. subtilis Guanosine-5′-diphosphate PDB search for similar
assemblies

3TFC AroA L. monocytogenes Phosphoenolpyruvate PDB search for Lm protein
complexes

3TNL SkdH L. monocytogenes Shikimate and NAD [38]

3TOZ SkdH L. monocytogenes Nicotinamide-adenine-dinucleotide PDB search for Lm protein
complexes

3U9E Bup/Acp L. monocytogenes Coenzyme A PDB search for Lm protein
complexes

3UF6 Bup/Acp L. monocytogenes 3′-Dephosphocoenzyme A PDB search for Lm protein
complexes

3ZG8 Pbp4 L. monocytogenes Ampicillin PDB search for Lm protein
complexes

3ZG9 Pbp4 L. monocytogenes Cefuroxime PDB search for Lm protein
complexes

3ZGA Pbp4 L. monocytogenes Carbenicillin PDB search for Lm protein
complexes

4INJ MccF L. monocytogenes Methyl sulfamate PDB search for Lm protein
complexes

4JRO FabG L. monocytogenes Nicotinamide-adenine-dinucleotide
phosphate

PDB search for Lm protein
complexes

4RWW PstA L. monocytogenes Cyclic-di-AMP PDB search for Lm protein
complexes

4S1B PgpH L. monocytogenes Cyclic-di-AMP PDB search for Lm protein
complexes

5B0O FliH/FliI S. enterica Adenosine-5’-diphosphate PDB search for similar
assemblies

5DHP NadK1 L. monocytogenes Novel inhibitor PDB search for Lm protein
complexes

5F1R PrfA L. monocytogenes Ring-fused 2-pyridone (C10) PDB search for Lm protein
complexes

5F7V Lmo0181 L. monocytogenes Cycloalternan PDB search for Lm protein
complexes

5TED QuiR L. monocytogenes Shikimate PDB search for Lm protein
complexes

5UPX ImpDH L. monocytogenes Xanthosine monophosphate PDB search for Lm protein
complexes

5VJD FbaA E. coli Dihydroxyacetonephosphate [38]

5ZQB PbpD2 L. monocytogenes Penicillin G PDB search for Lm protein
complexes
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Table A1. Cont.

PDB Entry Protein Organism Ligand Source

5ZQC PbpD2 L. monocytogenes Ampicillin PDB search for Lm protein
complexes

5ZQD PbpD2 L. monocytogenes Cefotaxime PDB search for Lm protein
complexes

5ZQE PbpD2 L. monocytogenes Cefuroxime PDB search for Lm protein
complexes

6C5N IlvC S. aureus Hydroxymate inhibitor 1 [38]

6C8Q NadE E. faecalis Nicotinamide-adenine-dinucleotide PDB search for similar
assemblies

6FXJ ChdC L. monocytogenes Iron coproporphyrin III PDB search for Lm protein
complexes

6HVL CdaA L. monocytogenes Cyclic-di-AMP and AMP PDB search for Lm protein
complexes

6O6N FasR M. tuberculosis Arachinoyl-Coenzyme A PDB search for similar
assemblies

6XXY LeuB H. influenzae O-isobutenyl oxalylhydroxamate [38]

7NNV ArgF M. tuberculosis Carbamoyl phosphate PDB search for similar
assemblies

7XMD Cytbo3 E. coli Allosteric inhibitor N4 PDB search for similar
assemblies

8EBC ImpDH L. monocytogenes Inosinic acid PDB search for Lm protein
complexes

8H62 InlA L. monocytogenes E-cadherin EC12 PDB search for Lm protein
complexes

8UVZ DhfR B. subtilis Nicotinamide-adenine-dinucleotide and
folate

PDB search for similar
assemblies

8VDA FabH B. subtilis Coenzyme A PDB search for similar
assemblies

Appendix B

Table A2. Summary of the target proteins.

PDB Entry Protein Function Source

1AOD PlcA Plays a role in transmembrane signaling. [35]

1I5N CheA
A chemotaxis protein involved in the
transmission of sensory signals from
chemoreceptors to flagellar motors.

[39]

1O6V InlA A surface protein that mediates the
attachment to and invasion of host cells. [35]

1XCK GroeL

Prevents misfolding and promotes
refolding and proper assembly of
unfolded polypeptides generated under
stress conditions.

[40]

1XEU Inlc
Stimulates the formation of membrane
protrusions that mediate the intercellular
spread of L. monocytogenes.

[35]

2J70 RsbU
Acid, antibiotic, cold, ethanol, heat,
osmotic and nutritional stress responses
require rsbU to activate sigB.

[41]

2PLC PlcA Plays a role in transmembrane signaling. [35]

2WQV InlB A surface protein that mediates
attachment to and invasion of host cells. [35]
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Table A2. Cont.

PDB Entry Protein Function Source

2ZVY MotB A motility protein. [42]

3B0Z FlhB

A motility protein; a membrane protein
responsible for substrate specificity,
switching from rod/hook-type export to
filament-type export.

[30]

3FDQ FlaA
A motility protein; a flagellin protein that
polymerizes to form the filaments of
bacterial flagella.

[30]

3MIX FlhA A motility protein; a membrane protein
involved in the flagellar export apparatus. [30]

4NL2 Hfq A regulatory factor involved in the stress
response and virulence. [43]

4UT1 FlgK

A motility protein; a flagellar hook
protein; acts as a hook filament junction
protein with flgL to join the flagellar
filament to the hook.

[30]

5B0O FliH/FliI Involved in type III protein export during
flagellum assembly. [30,44]

5H5T FliD
A motility protein; a flagellar hook
protein; required for morphogenesis and
for the elongation of the flagellar filament.

[30]

5LEJ PrfA A transcriptional activator of
virulence genes. [35]

5ZIY FlgL
A motility protein; Lmo0706; acts as a
hook filament junction protein with FlgK
to join the flagellar filament to the hook.

[30]

6F2D FliP
A motility protein; forms the core of the
central channel in the flagella export
apparatus with proteins fliQ and fliR.

[30]

7X1K DegU A stress response regulator. [45]

7X9S MogR A transcriptional repressor required
for virulence. [46]

8CQM PlcB Plays a role in transmembrane signaling. [35]

8UMD FliG
One of three proteins involved in
switching the direction of the
flagellar rotation.

[30]
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