Temporal and Spatial Dynamics of Vibrio harveyi: An Environmental Parameter Correlation Investigation in a 4-Metre-Deep Dicentrarchus labrax Aquaculture Tank
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site and Rearing Conditions
2.2. Sample Collection and Environmental Parameters
2.3. Bacterial Isolation
2.4. Quantification of V. harveyi Using Real-Time PCR
2.5. Statistical Analysis
3. Results
3.1. Water Quality and Fish Mortality
3.2. Quantification of V. harveyi
3.3. Influence of Environmental Factors
4. Discussion
4.1. Temporal and Spatial Study of V. harveyi in Aquaculture
4.2. Abundance of V. harveyi in the Tank
4.3. Environmental Factors Influencing V. harveyi Distribution
4.4. Challenges and Considerations in Managing Vibriosis Outbreaks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, N.; Thompson, S.; Glaser, M. Global Aquaculture Productivity, Environmental Sustainability, and Climate Change Adaptability. Environ. Manag. 2019, 63, 159–172. [Google Scholar] [CrossRef]
- EUMOFA. The EU Fish Market, 2022nd ed.; Publications Office: Luxembourg, 2022; ISBN 978-92-76-47506-4. [Google Scholar]
- Muniesa, A.; Basurco, B.; Aguilera, C.; Furones, D.; Reverté, C.; Sanjuan-Vilaplana, A.; Jansen, M.D.; Brun, E.; Tavornpanich, S. Mapping the knowledge of the main diseases Affecting seabass and sea bream in Mediterranean. Transbound. Emerg. Dis. 2020, 67, 1089–1100. [Google Scholar] [CrossRef]
- ANSES. Fiche de Description de Danger Biologique Transmissible par les Aliments: Vibrions enteropathogenes: Vibrio parahaemolyticus, Vibrio cholerae non-O1/ non-O139 et Vibrio vulnificus; ANSES: Maisons-Alfort, France, 2019. [Google Scholar]
- Novriadi, R. Vibriosis in aquaculture. Omniakuatika 2016, 12, 1–12. [Google Scholar] [CrossRef]
- Austin, B.; Zhang, X.-H. Vibrio harveyi: A significant pathogen of marine vertebrates and invertebrates. Lett. Appl. Microbiol. 2006, 43, 119–124. [Google Scholar] [CrossRef]
- Korun, J. Marine Vibrios associated with diseased sea bass (Dicentrarchus labrax) in Turkey. J. Fish. Sci. 2008, 2, 66–76. [Google Scholar] [CrossRef]
- Mohamad, N.; Amal, M.N.A.; Saad, M.Z.; Yasin, I.S.M.; Zulkiply, N.A.; Mustafa, M.; Nasruddin, N.S. Virulence-associated genes and antibiotic resistance patterns of Vibrio spp. Isolated from cultured marine fishes in Malaysia. BMC Vet. Res. 2019, 15, 176. [Google Scholar] [CrossRef]
- Abu Nor, N.; Zamri-Saad, M.; Md Yasin, I.-S.; Salleh, A.; Mustaffa-Kamal, F.; Matori, M.F.; Azmai, M.N.A. Efficacy of whole cell inactivated Vibrio harveyi vaccine against vibriosis in a marine red hybrid tilapia (Oreochromis niloticus × O. mossambicus) Model. Vaccines 2020, 8, 734. [Google Scholar] [CrossRef]
- Islam, S.I.; Mou, M.J.; Sanjida, S.; Tariq, M.; Nasir, S.; Mahfuj, S. Designing a novel mRNA vaccine against Vibrio harveyi Infection in fish: An immunoinformatics approach. Genomics Inform. 2022, 20, e11. [Google Scholar] [CrossRef]
- Vendramin, N.; Zrncic, S.; Padrós, F.; Oraic, D.; Breton, A.; Zarza, C.; Olesen, N. Fish health in mediterranean aquaculture, past mistakes and future challenges. Bull. Eur. Assoc. Fish Pathol. 2001, 36, 38–45. [Google Scholar]
- Montánchez, I.; Kaberdin, V.R. Vibrio harveyi: A brief survey of general characteristics and recent epidemiological traits associated with climate change. Mar. Environ. Res. 2020, 154, 104850. [Google Scholar] [CrossRef]
- Pujalte, M.J.; Sitjà-Bobadilla, A.; Macián, M.C.; Belloch, C.; Álvarez-Pellitero, P.; Pérez-Sánchez, J.; Uruburu, F.; Garay, E. Virulence and molecular typing of Vibrio harveyi strains ssolated from cultured dentex, gilthead sea bream and European sea bass. Syst. Appl. Microbiol. 2003, 26, 284–292. [Google Scholar] [CrossRef]
- Mougin, J.; Roquigny, R.; Flahaut, C.; Bonnin-Jusserand, M.; Grard, T.; Le Bris, C. Abundance and spatial patterns over time of Vibrionaceae and Vibrio harveyi in water and biofilm from a seabass aquaculture facility. Aquaculture 2021, 542, 736862. [Google Scholar] [CrossRef]
- Roquigny, R.; Mougin, J.; Le Bris, C.; Bonnin-Jusserand, M.; Doyen, P.; Grard, T. Characterization of the marine aquaculture microbiome: A seasonal survey in a seabass farm. Aquaculture 2021, 531, 735987. [Google Scholar] [CrossRef]
- MAREL. Carnot High Frequency Measurement of the Coastal Environment in the Eastern English Channel. Data from MAREL CARNOT—COAST-HF (Coastal Ocean Observing System—High Frequency) Monitoring Programme within the Research Infrastructure ILICO; IFREMER: Boulogne-sur-Mer, France, 2022. [Google Scholar]
- Mougin, J.; Roquigny, R.; Travers, M.-A.; Grard, T.; Bonnin-Jusserand, M.; Le Bris, C. Development of a mreB-targeted real-time pcr method for the quantitative detection of Vibrio harveyi in seawater and biofilm from aquaculture systems. Aquaculture 2020, 525, 735337. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R; Rstudio: Boston, MA, USA, 2020. [Google Scholar]
- De Mendiburu, F.; Yaseen, M. Agricolae: Statistical Procedures for Agricultural Research. R package version 1.4.0. 2020. Available online: https://cran.r-project.org/package=agricolae (accessed on 16 April 2024).
- Lê, S.; Josse, J.; Husson, F. FactoMineR: A package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses; R Package Version 1.0.7. 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 16 April 2024).
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix (Version 0.92). 2021. Available online: https://github.com/taiyun/corrplot (accessed on 16 April 2024).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Khan, F.; Tabassum, N.; Anand, R.; Kim, Y.-M. Motility of Vibrio spp.: Regulation and controlling strategies. Appl. Microbiol. Biotechnol. 2020, 104, 8187–8208. [Google Scholar] [CrossRef] [PubMed]
- McCarter, L. The multiple identities of Vibrio parahaemolyticus. J. Mol. Microbiol. Biotechnol. 1999, 1, 51–57. [Google Scholar] [PubMed]
- Bourne, D.G.; Young, N.; Webster, N.; Payne, M.; Salmon, M.; Demel, S.; Hall, M. Microbial community dynamics in a larval aquaculture system of the tropical rock lobster, Panulirus ornatus. Aquaculture 2004, 242, 31–51. [Google Scholar] [CrossRef]
- Cruz, C.D.; Fletcher, G.C.; Paturi, G.; Hedderley, D.I. Influence of farming methods and seawater depth on Vibrio species in New Zealand Pacific oysters. Int. J. Food Microbiol. 2020, 325, 108644. [Google Scholar] [CrossRef]
- Neogi, S.B.; Lara, R.; Alam, M.; Harder, J.; Yamasaki, S.; Colwell, R.R. Environmental and hydroclimatic factors influencing Vibrio populations in the estuarine zone of the Bengal Delta. Environ. Monit. Assess. 2018, 190, 565. [Google Scholar] [CrossRef] [PubMed]
- Pianetti, A.; Bruscolini, F.; Sabatini, L.; Colantoni, P. Microbial characteristics of marine sediments in bathing area along Pesaro-Gabicce coast (Italy): A Preliminary Study. J. Appl. Microbiol. 2004, 97, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Vezzulli, L.; Chelossi, E.; Riccardi, G.; Fabiano, M. Bacterial community structure and activity in fish farm sediments of the Ligurian Sea (Western Mediterranean). Aquacult. Int. 2002, 10, 123–141. [Google Scholar] [CrossRef]
- Chimetto, L.A.; Brocchi, M.; Thompson, C.C.; Martins, R.C.R.; Ramos, H.R.; Thompson, F.L. Vibrios dominate as culturable nitrogen-fixing bacteria of the Brazilian coral Mussismilia hispida. Syst. Appl. Microbiol. 2008, 31, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Fang, W.; Yang, X.; Zhou, S.; Hu, L.; Li, X.; Qi, X.; Su, H.; Xie, L. A nonluminescent and highly virulent Vibrio harveyi strain is associated with “bacterial white tail disease” of Litopenaeus vannamei shrimp. PLoS ONE 2012, 7, e29961. [Google Scholar] [CrossRef] [PubMed]
- Gulev, S.K.; Thorne, P.W.; Ahn, J.; Dentener, F.J.; Domingues, C.M.; Gerland, S.; Gong, D.; Kaufman, D.S.; Nnamchi, H.C.; Quaas, J. Changing state of the climate system. Clim. Chang. 2021, 287–422. [Google Scholar] [CrossRef]
- Abioye, O.E.; Osunla, A.C.; Okoh, A.I. Molecular detection and distribution of six medically important Vibrio spp. in selected freshwater and brackish water resources in Eastern Cape province, South Africa. Front. Microbiol. 2021, 12, 617703. [Google Scholar] [CrossRef]
- Scro, A.K.; Westphalen, J.; Kite-Powell, H.L.; Brawley, J.W.; Smolowitz, R.M. The effect of off-bottom versus on-bottom oyster culture on total and pathogenic Vibrio spp. Abundances in oyster tissue, water and sediment samples. Int. J. Food Microbiol. 2022, 379, 109870. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, C.S.; Hite, M.F.; Oliver, J.D. Ecology of Vibrio vulnificus in estuarine waters of Eastern North Carolina. Appl. Environ. Microbiol. 2003, 69, 3526–3531. [Google Scholar] [CrossRef]
- Prayitno, S.B.; Latchford, J.W. Experimental Infections of crustaceans with luminous bacteria related to Photobacterium and Vibrio. Effect of salinity and ph on infectiosity. Aquaculture 1995, 132, 105–112. [Google Scholar] [CrossRef]
- Trinanes, J.; Martinez-Urtaza, J. Future scenarios of risk of Vibrio infections in a warming planet: A global mapping study. Lancet Planet Health 2021, 5, e426–e435. [Google Scholar] [CrossRef]
- Firmino, J.; Furones, M.D.; Andree, K.B.; Sarasquete, C.; Ortiz-Delgado, J.B.; Asencio-Alcudia, G.; Gisbert, E. Contrasting Outcomes of Vibrio harveyi pathogenicity in gilthead seabream, Sparus Aurata and European seabass, Dicentrachus Labrax. Aquaculture 2019, 511, 734210. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, J.-L. Correlation of total bacterial and Vibrio spp. Populations between fish and water in the aquaculture system. Front. Mar. Sci. 2017, 4, 147. [Google Scholar] [CrossRef]
- Fox-Kemper, B. Ocean, cryosphere and sea level change. In Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC), Ed.; Cambridge University Press: Cambridge, UK, 2021; pp. 1211–1362. ISBN 978-1-00-915788-9. [Google Scholar]
- IPCC. Intergovernmental Panel on Climate Change (IPCC) Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Clatworthy, A.E.; Pierson, E.; Hung, D.T. Targeting virulence: A new paradigm for antimicrobial therapy. Nat. Chem. Biol. 2007, 3, 541–548. [Google Scholar] [CrossRef]
- D’Angelo, F.; Baldelli, V.; Halliday, N.; Pantalone, P.; Polticelli, F.; Fiscarelli, E.; Williams, P.; Visca, P.; Leoni, L.; Rampioni, G. Identification of FDA-Approved drugs as antivirulence agents targeting the pqs quorum-sensing system of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2018, 62, e01296-18. [Google Scholar] [CrossRef] [PubMed]
- McEwen, S.A.; Collignon, P.J. Antimicrobial resistance: A One Health perspective. Microbiol. Spectrum 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Zinsstag, J.; Schelling, E.; Waltner-Toews, D.; Tanner, M. From “One Medicine” to “One Health” and systemic approaches to health and well-being. Prev. Vet. Med. 2011, 101, 148–156. [Google Scholar] [CrossRef] [PubMed]
Sampling Month | ||||||||
---|---|---|---|---|---|---|---|---|
May (n = 2) | June (n = 2) | July (n = 3) | August (n = 4) | September (n = 2) | October (n = 2) | November (n = 1) | ||
Temperature (°C) | Top | 18.29 ± 0.77 | 19.06 ± 0.30 | 20.89 ± 0.28 | 22.06 ± 0.58 | 20.69 ± 0.03 | 17.82 ± 0.36 | 16.71 ± 0 |
Mid | 18.29 ± 0.74 | 19.06 ± 0.30 | 20.89 ± 0.28 | 22.05 ± 0.57 | 20.71 ± 0.05 | 17.82 ± 0.36 | 16.70 ± 0 | |
Bot | 18.29 ± 0.74 | 19.06 ± 0.30 | 20.89 ± 0.28 | 22.06 ± 0.57 | 20.71 ± 0.04 | 17.82 ± 0.36 | 16.70 ± 0 | |
pH | Top | 8.07 ± 0.71 | 7.53 ± 0.16 | 7.37 ± 0.22 | 7.29 ± 0.04 | 7.39 ± 0.06 | 7.17 ± 0.19 | 7.06 ± 0 |
Mid | 8.06 ± 0.70 | 7.55 ± 0.06 | 7.31 ± 0.24 | 7.23 ± 0.07 | 7.33 ± 0.03 | 7.12 ± 0.17 | 7.03 ± 0 | |
Bot | 7.95 ± 0.72 | 7.51 ± 0.02 | 7.25 ± 0.23 | 7.18 ± 0.07 | 7.25 ± 0.08 | 7.02 ± 0.16 | 6.87 ± 0 | |
Salinity (psu) | Top | 33.83 ± 0.68 | 34.75 ± 0.16 | 35.14 ± 0.16 | 35.07 ± 0.16 | 34.97 ± 0.11 | 34.09 ± 0.05 | 33.08 ± 0 |
Mid | 33.40 ± 1.34 | 34.74 ± 0.18 | 35.17 ± 0.18 | 35.16 ± 0.07 | 34.91 ± 0.05 | 34.00 ± 0.18 | 31.99 ± 0 | |
Bot | 33.45 ± 1.34 | 34.63 ± 0.27 | 35.12 ± 0.15 | 35.18 ± 0.10 | 34.83 ± 0.20 | 33.81 ± 0.30 | 32.67 ± 0 | |
Dissolved oxygen (mg.L−1) | Top | 5.27 ± 0.15 | 4.13 ± 0.04 | 3.20 ± 0.01 | 4.70 ± 0.21 | 5.46 ± 0.02 | 3.47 ± 0.06 | 6.47 ± 0.15 |
Mid | 5.45 ± 0.03 | 5.19 ± 0.02 | 3.39 ± 0.01 | 3.63 ± 0.02 | 5.83 ± 0.09 | 3.46 ± 0.04 | 3.64 ± 0.26 | |
Bot | 5.74 ± 0.03 | 5.49 ± 0.03 | 3.44 ± 0.02 | 4.04 ± 0.03 | 7.30 ± 0.43 | 3.82 ± 0.05 | 3.65 ± 0.11 | |
Turbidity (FNU) | Top | 4.51 ± 1.02 | 5.02 ± 0.07 | 4.90 ± 1.44 | 2.84 ± 0.82 | 6.89 ± 0.52 | 7.15 ± 4.95 | 3.30 ± 0 |
Mid | 4.26 ± 1.32 | 3.40 ± 1.45 | 4.17 ± 0.75 | 3.86 ± 0.83 | 4.64 ± 1.65 | 5.56 ± 2.36 | 6.67 ± 0 | |
Bot | 3.99 ± 0.47 | 3.99 ± 0.77 | 6.41 ± 2.73 | 3.83 ± 0.80 | 6.39 ± 3.13 | 5.35 ± 1.77 | 5.29 ± 0 | |
Fish Mortality (%) | 1.26 | 0.98 | 1.31 | 4.57 | 0.90 | 0.06 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Da Fonseca Ferreira, A.; Roquigny, R.; Grard, T.; Le Bris, C. Temporal and Spatial Dynamics of Vibrio harveyi: An Environmental Parameter Correlation Investigation in a 4-Metre-Deep Dicentrarchus labrax Aquaculture Tank. Microorganisms 2024, 12, 1104. https://doi.org/10.3390/microorganisms12061104
Da Fonseca Ferreira A, Roquigny R, Grard T, Le Bris C. Temporal and Spatial Dynamics of Vibrio harveyi: An Environmental Parameter Correlation Investigation in a 4-Metre-Deep Dicentrarchus labrax Aquaculture Tank. Microorganisms. 2024; 12(6):1104. https://doi.org/10.3390/microorganisms12061104
Chicago/Turabian StyleDa Fonseca Ferreira, Alix, Roxane Roquigny, Thierry Grard, and Cédric Le Bris. 2024. "Temporal and Spatial Dynamics of Vibrio harveyi: An Environmental Parameter Correlation Investigation in a 4-Metre-Deep Dicentrarchus labrax Aquaculture Tank" Microorganisms 12, no. 6: 1104. https://doi.org/10.3390/microorganisms12061104
APA StyleDa Fonseca Ferreira, A., Roquigny, R., Grard, T., & Le Bris, C. (2024). Temporal and Spatial Dynamics of Vibrio harveyi: An Environmental Parameter Correlation Investigation in a 4-Metre-Deep Dicentrarchus labrax Aquaculture Tank. Microorganisms, 12(6), 1104. https://doi.org/10.3390/microorganisms12061104