The Importance of Maintaining and Improving a Healthy Gut Microbiota in Athletes as a Preventive Strategy to Improve Heat Tolerance and Acclimatization
Abstract
:1. Introduction
2. Heat Stress Stimulus and Gut Dysbiosis in Athletes
3. Could Gut Health Improve Heat Stress Tolerance in Athletes?
3.1. Specific Nutrition and Hydration Balance to Improve Gut Health and HA Tolerance in Athletes
3.2. The Effect of Probiotics, Prebiotics, Vitamins, and Short-Chain Fatty Acids on Gut Health to Improve Pre-Acclimatization and Heat Tolerance in Athletes
4. Gut Health as the Key Factor to Individualize Stimulus of Physical Exercise and HA
Author Contributions
Funding
Conflicts of Interest
References
- Esh, C.J.; Carter, S.; Galan-Lopez, N.; Garrandes, F.; Bermon, S.; Adami, P.E.; Racinais, S.; James, L.; Stellingwerff, T.; Adams, W.M.; et al. A Review of Elite Athlete Evidence-Based Knowledge and Preparation for Competing in the Heat. J. Sci. Sport Exerc. 2024. [Google Scholar] [CrossRef]
- Adams, W.M.; Hosokawa, Y.; Casa, D.J.; Périard, J.D.; Racinais, S.; Wingo, J.E.; Yeargin, S.W.; Scarneo-Miller, S.E.; Kerr, Z.Y.; Belval, L.N.; et al. Roundtable on Preseason Heat Safety in Secondary School Athletics: Heat Acclimatization. J. Athl. Train. 2021, 56, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Périard, J.D.; Eijsvogels, T.M.H.; Daanen, H.A.M. Exercise under Heat Stress: Thermoregulation, Hydration, Performance Implications, and Mitigation Strategies. Physiol. Rev. 2021, 101, 1873–1979. [Google Scholar] [CrossRef] [PubMed]
- Gibson, O.R.; James, C.A.; Mee, J.A.; Willmott, A.G.B.; Turner, G.; Hayes, M.; Maxwell, N.S. Heat Alleviation Strategies for Athletic Performance: A Review and Practitioner Guidelines. Temperature 2020, 7, 3–36. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.; Carter, S.; Stellingwerff, T. Cooling at Tokyo 2020: The Why and How for Endurance and Team Sport Athletes. Br. J. Sports Med. 2020, 54, 1243–1245. [Google Scholar] [CrossRef] [PubMed]
- Racinais, S.; Hosokawa, Y.; Akama, T.; Bermon, S.; Bigard, X.; Casa, D.J.; Grundstein, A.; Jay, O.; Massey, A.; Migliorini, S.; et al. IOC Consensus Statement on Recommendations and Regulations for Sport Events in the Heat. Br. J. Sports Med. 2023, 57, 8–25. [Google Scholar] [CrossRef]
- Racinais, S.; Alonso, J.M.; Coutts, A.J.; Flouris, A.D.; Girard, O.; González-Alonso, J.; Hausswirth, C.; Jay, O.; Lee, J.K.W.; Mitchell, N.; et al. Consensus Recommendations on Training and Competing in the Heat. Scand. J. Med. Sci. Sports 2015, 25, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Pires, W.; Veneroso, C.E.; Wanner, S.P.; Pacheco, D.A.S.; Vaz, G.C.; Amorim, F.T.; Tonoli, C.; Soares, D.D.; Coimbra, C.C. Association Between Exercise-Induced Hyperthermia and Intestinal Permeability: A Systematic Review. Sports Med. 2017, 47, 1389–1403. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wen, D.; Feng, C.; Yu, C.; Gu, Z.; Wang, L.; Zhang, Z.; Li, W.; Wu, S.; Liu, Y.; et al. Alteration of Gut Microbiota after Heat Acclimation May Reduce Organ Damage by Regulating Immune Factors during Heat Stress. Front. Microbiol. 2023, 14, 1114233. [Google Scholar] [CrossRef]
- Arnal, M.-E.; Lallès, J.-P. Gut Epithelial Inducible Heat-Shock Proteins and Their Modulation by Diet and the Microbiota. Nutr. Rev. 2016, 74, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Wang, Y.; Liu, B.; Dong, X.; Cai, W.; Zhang, N.; Zhang, H. Deciphering the Intricate Linkage between the Gut Microbiota and Alzheimer’s Disease: Elucidating Mechanistic Pathways Promising Therapeutic Strategies. CNS Neurosci. Ther. 2024, 30, e14704. [Google Scholar] [CrossRef] [PubMed]
- Tappenden, K.A.; Deutsch, A.S. The Physiological Relevance of the Intestinal Microbiota--Contributions to Human Health. J. Am. Coll. Nutr. 2007, 26, 679S–683S. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.; DeCoffe, D.; Molcan, E.; Gibson, D.L. Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease. Nutrients 2012, 4, 1095. [Google Scholar] [CrossRef] [PubMed]
- Kluger, M.J.; Conn, C.A.; Franklin, B.; Freter, R.; Abrams, G.D. Effect of Gastrointestinal Flora on Body Temperature of Rats and Mice. Am. J. Physiol. 1990, 258, R552–R557. [Google Scholar] [CrossRef] [PubMed]
- Patti, M.E.; Kahn, C.R. Oral Antibiotics Reduce Body Temperature of Healthy Rabbits in a Thermoneutral Environment. J. Basic Clin. Physiol. Pharmacol. 1999, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, E.; Zilber-Rosenberg, I. Do Microbiotas Warm Their Hosts? Gut Microbes 2016, 7, 283. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.M.; Brummer, R.J.; Derrien, M.; MacDonald, T.T.; Troost, F.; Cani, P.D.; Theodorou, V.; Dekker, J.; Méheust, A.; De Vos, W.M.; et al. Microbiome and Host Interactions: Homeostasis of the Gut Barrier and Potential Biomarkers. Am. J. Physiol.-Gastrointest. Liver Physiol. 2017, 312, G171. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, Stability and Resilience of the Human Gut Microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Herms, J.; González, A.; Corbi, F.; Odriozola, I.; Odriozola, A. Possible Relationship between the Gut Leaky Syndrome and Musculoskeletal Injuries: The Important Role of Gut Microbiota as Indirect Modulator. AIMS Public Health 2023, 10, 710–738. [Google Scholar] [CrossRef] [PubMed]
- Leon, L.R.; Helwig, B.G. Heat Stroke: Role of the Systemic Inflammatory Response. J. Appl. Physiol. 2010, 109, 1980–1988. [Google Scholar] [CrossRef] [PubMed]
- DAS, B.; Nair, G.B. Homeostasis and Dysbiosis of the Gut Microbiome in Health and Disease. J. Biosci. 2019, 44, 117. [Google Scholar] [CrossRef]
- Lambert, G.P.; Gisolfi, C.V.; Berg, D.J.; Moseley, P.L.; Oberley, L.W.; Kregel, K.C. Selected Contribution: Hyperthermia-Induced Intestinal Permeability and the Role of Oxidative and Nitrosative Stress. J. Appl. Physiol. 2002, 92, 1750–1761. [Google Scholar] [CrossRef] [PubMed]
- Doran, J.E. Biological Effects of Endotoxin. Curr. Stud. Hematol. Blood Transfus. 1992, 59, 66–99. [Google Scholar] [CrossRef]
- Williams, K. Endotoxins: Pyrogens, LAL Testing and Depyrogenation; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Camus, G.; Poortmans, J.; Nys, M.; Deby-Dupont, G.; Duchateau, J.; Deby, C.; Lamy, M. Mild Endotoxaemia and the Inflammatory Response Induced by a Marathon Race. Clin. Sci. 1997, 92, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E.; Vet-Joop, K.; Sturk, A.; Stegen, J.H.J.C.; Senden, J.; Saris, W.H.M.; Wagenmakers, A.J.M. Relationship between Gastro-Intestinal Complaints and Endotoxaemia, Cytokine Release and the Acute-Phase Reaction during and after a Long-Distance Triathlon in Highly Trained Men. Clin. Sci. 2000, 98, 47–55. [Google Scholar] [CrossRef]
- Costa, K.A.; Soares, A.D.N.; Wanner, S.P.; das Graç Carvalho dos Santos, R.; Fernandes, S.O.A.; dos Santos Martins, F.; Nicoli, J.R.; Coimbra, C.C.; Cardoso, V.N. L-Arginine Supplementation Prevents Increases in Intestinal Permeability and Bacterial Translocation in Male Swiss Mice Subjected to Physical Exercise under Environmental Heat Stress. J. Nutr. 2014, 144, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Liu, Y.; Dong, Q.; Wang, T.; Niu, C. Alterations in the Gut Microbiome and Metabolic Profile in Rats Acclimated to High Environmental Temperature. Microb. Biotechnol. 2022, 15, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Paone, P.; Cani, P.D. Mucus Barrier, Mucins and Gut Microbiota: The Expected Slimy Partners? Gut 2020, 69, 2232–2243. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Herms, J.; González-Benito, A.; Corbi, F.; Odriozola, A. What If Gastrointestinal Complications in Endurance Athletes Were Gut Injuries in Response to a High Consumption of Ultra-Processed Foods? Please Take Care of Your Bugs If You Want to Improve Endurance Performance: A Narrative Review. Eur. J. Appl. Physiol. 2024, 124, 383–402. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.E.; Anderson, J.M.; Casa, D.J.; Johnson, E.C. Exertional Heat Stroke and the Intestinal Microbiome. Scand. J. Med. Sci. Sports 2012, 22, 581–582. [Google Scholar] [CrossRef] [PubMed]
- Han, N.; Pan, Z.; Liu, G.; Yang, R.; Yujing, B. Hypoxia: The “Invisible Pusher” of Gut Microbiota. Front. Microbiol. 2021, 12, 690600. [Google Scholar] [CrossRef] [PubMed]
- Cermak, N.M.; Res, P.T.; de Groot, L.C.; Saris, W.H.; van Loon, L.J. Protein Supplementation Augments the Adaptive Response of Skeletal Muscle to Resistance-Type Exercise Training: A Meta-Analysis. Am. J. Clin. Nutr. 2012, 96, 1454–1464. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Herms, J.; Julià-Sánchez, S.; Hamlin, M.J.; Corbi, F.; Pagès, T.; Viscor, G. Popularity of Hypoxic Training Methods for Endurance-Based Professional and Amateur Athletes. Physiol. Behav. 2015, 143, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Bouchama, A.; Parhar, R.S.; El-Yazigi, A.; Sheth, K.; Al-Sedairy, S. Endotoxemia and Release of Tumor Necrosis Factor and Interleukin 1 Alpha in Acute Heatstroke. J. Appl. Physiol. 1991, 70, 2640–2644. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, P.; Martí, V.; de la Plata, A.M.; Salinas, G.; Bonastre, J.; Ruano, M. Bacterial Translocation in Heat Stroke. Am. J. Emerg. Med. 2009, 27, e1–e1168. [Google Scholar] [CrossRef] [PubMed]
- Malamud, N.; Haymaker, W.; Custer, R.P. Heat Stroke; a Clinico-Pathologic Study of 125 Fatal Cases. Mil. Surg. 1946, 99, 397–449. [Google Scholar] [CrossRef] [PubMed]
- Treon, S.P.; Thomas, P.; Broitman, S.A. Lipopolysaccharide (LPS) Processing by Kupffer Cells Releases a Modified LPS with Increased Hepatocyte Binding and Decreased Tumor Necrosis Factor-α Stimulatory Capacity. Proc. Soc. Exp. Biol. Med. 1993, 202, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.E.; Lee, E.C.; Armstrong, E.M. Interactions of Gut Microbiota, Endotoxemia, Immune Function, and Diet in Exertional Heatstroke. J. Sports Med. 2018, 2018, e5724575. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.M. Exercise in a Hot Environment: The Skin Circulation. Scand. J. Med. Sci. Sports 2010, 20, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Bouchama, A.; Knochel, J.P. Heat Stroke. N. Engl. J. Med. 2002, 346, 1978–1988. [Google Scholar] [CrossRef] [PubMed]
- Zuhl, M.N.; Lanphere, K.R.; Kravitz, L.; Mermier, C.M.; Schneider, S.; Dokladny, K.; Moseley, P.L. Effects of Oral Glutamine Supplementation on Exercise-Induced Gastrointestinal Permeability and Tight Junction Protein Expression. J. Appl. Physiol. 2014, 116, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Heled, Y.; Fleischmann, C.; Epstein, Y. Cytokines and Their Role in Hyperthermia and Heat Stroke. J. Basic Clin. Physiol. Pharmacol. 2013, 24, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Al-Sadi, R.; Said, H.M.; Ma, T.Y. Lipopolysaccharide Causes an Increase in Intestinal Tight Junction Permeability In Vitro and In Vivo by Inducing Enterocyte Membrane Expression and Localization of TLR-4 and CD14. Am. J. Pathol. 2013, 182, 375–387. [Google Scholar] [CrossRef]
- Lambert, G.P.; Lang, J.; Bull, A.; Pfeifer, P.C.; Eckerson, J.; Moore, C.; Lanspa, S.; O’Brien, J. Fluid Restriction during Running Increases GI Permeability. Int. J. Sports Med. 2008, 29, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Pugh, L.G.; Corbett, J.L.; Johnson, R.H. Rectal Temperatures, Weight Losses, and Sweat Rates in Marathon Running. J. Appl. Physiol. 1967, 23, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Maron, M.B.; Wagner, J.A.; Horvath, S.M. Thermoregulatory Responses during Competitive Marathon Running. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1977, 42, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.; Lee, J.K.W.; Chew, S.A.N.; Lim, C.L.; Tan, E.Y.M. Continuous Thermoregulatory Responses to Mass-Participation Distance Running in Heat. Med. Sci. Sports Exerc. 2006, 38, 803–810. [Google Scholar] [CrossRef]
- Lee, J.K.W.; Nio, A.Q.X.; Lim, C.L.; Teo, E.Y.N.; Byrne, C. Thermoregulation, Pacing and Fluid Balance during Mass Participation Distance Running in a Warm and Humid Environment. Eur. J. Appl. Physiol. 2010, 109, 887–898. [Google Scholar] [CrossRef] [PubMed]
- Coris, E.E.; Ramirez, A.M.; Van Durme, D.J. Heat Illness in Athletes: The Dangerous Combination of Heat, Humidity and Exercise. Sports Med. 2004, 34, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Casa, D.J.; DeMartini, J.K.; Bergeron, M.F.; Csillan, D.; Eichner, E.R.; Lopez, R.M.; Ferrara, M.S.; Miller, K.C.; O’Connor, F.; Sawka, M.N.; et al. National Athletic Trainers’ Association Position Statement: Exertional Heat Illnesses. J. Athl. Train. 2015, 50, 986–1000. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.E.; Epstein, Y.; Greenleaf, J.E.; Haymes, E.M.; Hubbard, R.W.; Roberts, W.O.; Thompson, P.D. American College of Sports Medicine Position Stand. Heat and Cold Illnesses during Distance Running. Med. Sci. Sports Exerc. 1996, 28, i–x. [Google Scholar] [CrossRef] [PubMed]
- Moseley, P.L.; Gisolfi, C.V. New Frontiers in Thermoregulation and Exercise. Sports Med. 1993, 16, 163–167. [Google Scholar] [CrossRef]
- Lim, C.L. Heat Sepsis Precedes Heat Toxicity in the Pathophysiology of Heat Stroke—A New Paradigm on an Ancient Disease. Antioxidants 2018, 7, 149. [Google Scholar] [CrossRef] [PubMed]
- Lundgren-Kownacki, K.; Dahl, M.; Gao, C.; Jakobsson, K.; Linninge, C.; Song, D.; Kuklane, K. Exploring How a Traditional Diluted Yoghurt Drink May Mitigate Heat Strain during Medium-Intensity Intermittent Work: A Multidisciplinary Study of Occupational Heat Strain. Ind. Health 2018, 56, 106. [Google Scholar] [CrossRef] [PubMed]
- Shing, C.M.; Peake, J.M.; Lim, C.L.; Briskey, D.; Walsh, N.P.; Fortes, M.B.; Ahuja, K.D.K.; Vitetta, L. Effects of Probiotics Supplementation on Gastrointestinal Permeability, Inflammation and Exercise Performance in the Heat. Eur. J. Appl. Physiol. 2014, 114, 93–103. [Google Scholar] [CrossRef]
- Di Vincenzo, F.; Del Gaudio, A.; Petito, V.; Lopetuso, L.R.; Scaldaferri, F. Gut Microbiota, Intestinal Permeability, and Systemic Inflammation: A Narrative Review. Intern. Emerg. Med. 2024, 19, 275–293. [Google Scholar] [CrossRef] [PubMed]
- Statovci, D.; Aguilera, M.; MacSharry, J.; Melgar, S. The Impact of Western Diet and Nutrients on the Microbiota and Immune Response at Mucosal Interfaces. Front. Immunol. 2017, 8, 838. [Google Scholar] [CrossRef] [PubMed]
- Keto-Timonen, R.; Hietala, N.; Palonen, E.; Hakakorpi, A.; Lindström, M.; Korkeala, H. Cold Shock Proteins: A Minireview with Special Emphasis on Csp-Family of Enteropathogenic Yersinia. Front. Microbiol. 2016, 7, 1151. [Google Scholar] [CrossRef] [PubMed]
- Shaw, M.K.; Marr, A.G.; Ingraham, J.L. Determination of the Minimal Temperature for Growth of Escherichia Coli. J. Bacteriol. 1971, 105, 683–684. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, B.; Gebendorfer, K.M.; Buchner, J.; Winter, J. Evolution of Escherichia Coli for Growth at High Temperatures. J. Biol. Chem. 2010, 285, 19029–19034. [Google Scholar] [CrossRef]
- Hameed, U.F.S.; Liao, C.; Radhakrishnan, A.K.; Huser, F.; Aljedani, S.S.; Zhao, X.; Momin, A.A.; Melo, F.A.; Guo, X.; Brooks, C.; et al. H-NS Uses an Autoinhibitory Conformational Switch for Environment-Controlled Gene Silencing. Nucleic Acids Res. 2019, 47, 2666–2680. [Google Scholar] [CrossRef] [PubMed]
- Brewer, S.M.; Twittenhoff, C.; Kortmann, J.; Brubaker, S.W.; Honeycutt, J.; Massis, L.M.; Pham, T.H.M.; Narberhaus, F.; Monack, D.M. A Salmonella Typhi RNA Thermosensor Regulates Virulence Factors and Innate Immune Evasion in Response to Host Temperature. PLoS Pathog. 2021, 17, e1009345. [Google Scholar] [CrossRef] [PubMed]
- Almblad, H.; Randall, T.E.; Liu, F.; Leblanc, K.; Groves, R.A.; Kittichotirat, W.; Winsor, G.L.; Fournier, N.; Au, E.; Groizeleau, J.; et al. Bacterial Cyclic Diguanylate Signaling Networks Sense Temperature. Nat. Commun. 2021, 12, 1986. [Google Scholar] [CrossRef]
- Jain, S.; Graham, C.; Graham, R.L.J.; McMullan, G.; Ternan, N.G. Quantitative Proteomic Analysis of the Heat Stress Response in Clostridium Difficile Strain 630. J. Proteome Res. 2011, 10, 3880–3890. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Smyth, D.; O’Hagan, B.M.G.; Heap, J.T.; McMullan, G.; Minton, N.P.; Ternan, N.G. Inactivation of the dnaK Gene in Clostridium Difficile 630 Δerm Yields a Temperature-Sensitive Phenotype and Increases Biofilm-Forming Ability. Sci. Rep. 2017, 7, 17522. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Xie, J.; Fang, W.; Wen, X.; Yin, C.; Meng, Q.; Zhong, R.; Chen, L.; Zhang, H. Chronic Heat Stress Induces the Disorder of Gut Transport and Immune Function Associated with Endoplasmic Reticulum Stress in Growing Pigs. Anim. Nutr. (Zhongguo Xu Mu Shou Yi Xue Hui) 2022, 11, 228–241. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Maltecca, C.; Tiezzi, F. Potential Use of Gut Microbiota Composition as a Biomarker of Heat Stress in Monogastric Species: A Review. Animals 2021, 11, 1833. [Google Scholar] [CrossRef] [PubMed]
- Huus, K.E.; Ley, R.E. Blowing Hot and Cold: Body Temperature and the Microbiome. mSystems 2021, 6, e0070721. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yan, T.; Wang, X.; Kuang, S.; Xiao, Y.; Lu, W.; Bi, D. Probiotic Mixture Ameliorates Heat Stress of Laying Hens by Enhancing Intestinal Barrier Function and Improving Gut Microbiota. Ital. J. Anim. Sci. 2017, 16, 292–300. [Google Scholar] [CrossRef]
- Lutgendorff, F.; Akkermans, L.M.A.; Söderholm, J.D. The Role of Microbiota and Probiotics in Stress-Induced Gastro-Intestinal Damage. Curr. Mol. Med. 2008, 8, 282–298. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.L.; Mackinnon, L.T. The Roles of Exercise-Induced Immune System Disturbances in the Pathology of Heat Stroke. Sports Med. 2006, 36, 39–64. [Google Scholar] [CrossRef] [PubMed]
- Serino, M.; Luche, E.; Gres, S.; Baylac, A.; Bergé, M.; Cenac, C.; Waget, A.; Klopp, P.; Iacovoni, J.; Klopp, C.; et al. Metabolic Adaptation to a High-Fat Diet Is Associated with a Change in the Gut Microbiota. Gut 2012, 61, 543–553. [Google Scholar] [CrossRef] [PubMed]
- Moreira, A.P.B.; Texeira, T.F.S.; Ferreira, A.B.; Peluzio, M.d.C.G.; de Cássia Gonçalves Alfenas, R. Influence of a High-Fat Diet on Gut Microbiota, Intestinal Permeability and Metabolic Endotoxaemia. Br. J. Nutr. 2012, 108, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Bäckhed, F.; Fulton, L.; Gordon, J.I. Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome. Cell Host Microbe 2008, 3, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Pendyala, S.; Walker, J.M.; Holt, P.R. A High-Fat Diet Is Associated with Endotoxemia That Originates from the Gut. Gastroenterology 2012, 142, 1100–1101.e2. [Google Scholar] [CrossRef] [PubMed]
- Spruss, A.; Kanuri, G.; Wagnerberger, S.; Haub, S.; Bischoff, S.C.; Bergheim, I. Toll-like Receptor 4 Is Involved in the Development of Fructose-Induced Hepatic Steatosis in Mice. Hepatology 2009, 50, 1094–1104. [Google Scholar] [CrossRef] [PubMed]
- Spruss, A.; Kanuri, G.; Stahl, C.; Bischoff, S.C.; Bergheim, I. Metformin Protects against the Development of Fructose-Induced Steatosis in Mice: Role of the Intestinal Barrier Function. Lab. Investig. 2012, 92, 1020–1032. [Google Scholar] [CrossRef] [PubMed]
- Berg, A.M.; Kelly, C.P.; Farraye, F.A. Clostridium Difficile Infection in the Inflammatory Bowel Disease Patient. Inflamm. Bowel Dis. 2013, 19, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Begley, M.; Hill, C.; Gahan, C.G.M. Bile Salt Hydrolase Activity in Probiotics. Appl. Environ. Microbiol. 2006, 72, 1729–1738. [Google Scholar] [CrossRef] [PubMed]
- Pokusaeva, K.; Fitzgerald, G.F.; van Sinderen, D. Carbohydrate Metabolism in Bifidobacteria. Genes Nutr. 2011, 6, 285–306. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, J.; Lange, B.; Frick, J.-S.; Sauer, H.; Zimmermann, K.; Schwiertz, A.; Rusch, K.; Klosterhalfen, S.; Enck, P. A Vegan or Vegetarian Diet Substantially Alters the Human Colonic Faecal Microbiota. Eur. J. Clin. Nutr. 2012, 66, 53–60. [Google Scholar] [CrossRef] [PubMed]
- De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of Diet in Shaping Gut Microbiota Revealed by a Comparative Study in Children from Europe and Rural Africa. Proc. Natl. Acad. Sci. USA 2010, 107, 14691–14696. [Google Scholar] [CrossRef]
- Amasheh, M.; Luettig, J.; Amasheh, S.; Zeitz, M.; Fromm, M.; Schulzke, J.-D. Effects of Quercetin Studied in Colonic HT-29/B6 Cells and Rat Intestine In Vitro. Ann. N. Y. Acad. Sci. 2012, 1258, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Forslund, S.K. Fasting Intervention and Its Clinical Effects on the Human Host and Microbiome. J. Intern. Med. 2023, 293, 166–183. [Google Scholar] [CrossRef] [PubMed]
- Deloose, E.; Janssen, P.; Depoortere, I.; Tack, J. The Migrating Motor Complex: Control Mechanisms and Its Role in Health and Disease. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Jäger, R.; Mohr, A.E.; Carpenter, K.C.; Kerksick, C.M.; Purpura, M.; Moussa, A.; Townsend, J.R.; Lamprecht, M.; West, N.P.; Black, K.; et al. International Society of Sports Nutrition Position Stand: Probiotics. J. Int. Soc. Sports Nutr. 2019, 16, 62. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.K.; Allerton, D.M.; Ansley-Robson, P.; Hemmings, K.; Cox, M.; Costa, R.J.S. Does Short-Term High Dose Probiotic Supplementation Containing Lactobacillus casei Attenuate Exertional-Heat Stress Induced Endotoxaemia and Cytokinaemia? Int. J. Sport. Nutr. Exerc. Metab. 2016, 26, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeldt, V.; Benfeldt, E.; Valerius, N.H.; Pærregaard, A.; Michaelsen, K.F. Effect of Probiotics on Gastrointestinal Symptoms and Small Intestinal Permeability in Children with Atopic Dermatitis. J. Pediatr. 2004, 145, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Zareie, M.; Johnson-Henry, K.; Jury, J.; Yang, P.C.; Ngan, B.Y.; McKay, D.M.; Soderholm, J.D.; Perdue, M.H.; Sherman, P.M. Probiotics Prevent Bacterial Translocation and Improve Intestinal Barrier Function in Rats Following Chronic Psychological Stress. Gut 2006, 55, 1553–1560. [Google Scholar] [CrossRef] [PubMed]
- Zyrek, A.A.; Cichon, C.; Helms, S.; Enders, C.; Sonnenborn, U.; Schmidt, M.A. Molecular Mechanisms Underlying the Probiotic Effects of Escherichia Coli Nissle 1917 Involve ZO-2 and PKCzeta Redistribution Resulting in Tight Junction and Epithelial Barrier Repair. Cell. Microbiol. 2007, 9, 804–816. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.C.; Cookson, A.L.; McNabb, W.C.; Park, Z.; McCann, M.J.; Kelly, W.J.; Roy, N.C. Lactobacillus Plantarum MB452 Enhances the Function of the Intestinal Barrier by Increasing the Expression Levels of Genes Involved in Tight Junction Formation. BMC Microbiol. 2010, 10, 316. [Google Scholar] [CrossRef] [PubMed]
- Karczewski, J.; Troost, F.J.; Konings, I.; Dekker, J.; Kleerebezem, M.; Brummer, R.J.M.; Wells, J.M. Regulation of Human Epithelial Tight Junction Proteins by Lactobacillus Plantarum In Vivo and Protective Effects on the Epithelial Barrier. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, G851–G859. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Y.; Sidhu, A.; Ma, Z.; McClain, C.; Feng, W. Lactobacillus Rhamnosus GG Culture Supernatant Ameliorates Acute Alcohol-Induced Intestinal Permeability and Liver Injury. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G32–G41. [Google Scholar] [CrossRef] [PubMed]
- Miyauchi, E.; O’Callaghan, J.; Buttó, L.F.; Hurley, G.; Melgar, S.; Tanabe, S.; Shanahan, F.; Nally, K.; O’Toole, P.W. Mechanism of Protection of Transepithelial Barrier Function by Lactobacillus salivarius: Strain Dependence and Attenuation by Bacteriocin Production. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G1029–G1041. [Google Scholar] [CrossRef] [PubMed]
- Zakostelska, Z.; Kverka, M.; Klimesova, K.; Rossmann, P.; Mrazek, J.; Kopecny, J.; Hornova, M.; Srutkova, D.; Hudcovic, T.; Ridl, J.; et al. Lysate of Probiotic Lactobacillus Casei DN-114 001 Ameliorates Colitis by Strengthening the Gut Barrier Function and Changing the Gut Microenvironment. PLoS ONE 2011, 6, e27961. [Google Scholar] [CrossRef] [PubMed]
- Agostini, S.; Goubern, M.; Tondereau, V.; Salvador-Cartier, C.; Bezirard, V.; Lévèque, M.; Keränen, H.; Theodorou, V.; Bourdu-Naturel, S.; Goupil-Feuillerat, N.; et al. A Marketed Fermented Dairy Product Containing Bifidobacterium Lactis CNCM I-2494 Suppresses Gut Hypersensitivity and Colonic Barrier Disruption Induced by Acute Stress in Rats. Neurogastroenterol. Motil. 2012, 24, 376-e172. [Google Scholar] [CrossRef] [PubMed]
- Wagnerberger, S.; Spruss, A.; Kanuri, G.; Stahl, C.; Schröder, M.; Vetter, W.; Bischoff, S.C.; Bergheim, I. Lactobacillus Casei Shirota Protects from Fructose-Induced Liver Steatosis: A Mouse Model. J. Nutr. Biochem. 2013, 24, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Brandtzaeg, P. The Gut as Communicator between Environment and Host: Immunological Consequences. Eur. J. Pharmacol. 2011, 668 (Suppl. S1), S16–S32. [Google Scholar] [CrossRef] [PubMed]
- Ulitsky, A.; Ananthakrishnan, A.N.; Naik, A.; Skaros, S.; Zadvornova, Y.; Binion, D.G.; Issa, M. Vitamin D Deficiency in Patients with Inflammatory Bowel Disease: Association with Disease Activity and Quality of Life. J. Parenter. Enter. Nutr. 2011, 35, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Ashton, T.; Young, I.S.; Davison, G.W.; Rowlands, C.C.; McEneny, J.; Van Blerk, C.; Jones, E.; Peters, J.R.; Jackson, S.K. Exercise-Induced Endotoxemia: The Effect of Ascorbic Acid Supplementation. Free Radic. Biol. Med. 2003, 35, 284–291. [Google Scholar] [CrossRef] [PubMed]
- King, M.A.; Rollo, I.; Baker, L.B. Nutritional Considerations to Counteract Gastrointestinal Permeability during Exertional Heat Stress. J. Appl. Physiol. 2021, 130, 1754–1765. [Google Scholar] [CrossRef] [PubMed]
- Plöger, S.; Stumpff, F.; Penner, G.B.; Schulzke, J.D.; Gäbel, G.; Martens, H.; Shen, Z.; Günzel, D.; Aschenbach, J.R. Microbial Butyrate and Its Role for Barrier Function in the Gastrointestinal Tract. Ann. N. Y. Acad. Sci. 2012, 1258, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Searle, L.E.J.; Cooley, W.A.; Jones, G.; Nunez, A.; Crudgington, B.; Weyer, U.; Dugdale, A.H.; Tzortzis, G.; Collins, J.W.; Woodward, M.J.; et al. Purified Galactooligosaccharide, Derived from a Mixture Produced by the Enzymic Activity of Bifidobacterium Bifidum, Reduces Salmonella Enterica Serovar Typhimurium Adhesion and Invasion In Vitro and In Vivo. J. Med. Microbiol. 2010, 59, 1428–1439. [Google Scholar] [CrossRef] [PubMed]
- Pachikian, B.D.; Essaghir, A.; Demoulin, J.B.; Catry, E.; Neyrinck, A.M.; Dewulf, E.M.; Sohet, F.M.; Portois, L.; Clerbaux, L.A.; Carpentier, Y.A.; et al. Prebiotic Approach Alleviates Hepatic Steatosis: Implication of Fatty Acid Oxidative and Cholesterol Synthesis Pathways. Mol. Nutr. Food Res. 2013, 57, 347–359. [Google Scholar] [CrossRef] [PubMed]
- Venkatraman, A.; Ramakrishna, B.S.; Pulimood, A.B.; Patra, S.; Murthy, S. Increased Permeability in Dextran Sulphate Colitis in Rats: Time Course of Development and Effect of Butyrate. Scand. J. Gastroenterol. 2000, 35, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Qiao, K.; Wu, H.; Zhang, Y. The Impact of Food Additives on the Abundance and Composition of Gut Microbiota. Molecules 2023, 28, 631. [Google Scholar] [CrossRef] [PubMed]
- Cheshire, W.P.; Fealey, R.D. Drug-Induced Hyperhidrosis and Hypohidrosis: Incidence, Prevention and Management. Drug Saf. 2008, 31, 109–126. [Google Scholar] [CrossRef] [PubMed]
- Tidmas, V.; Brazier, J.; Hawkins, J.; Forbes, S.C.; Bottoms, L.; Farrington, K. Nutritional and Non-Nutritional Strategies in Bodybuilding: Impact on Kidney Function. Int. J. Environ. Res. Public Health 2022, 19, 4288. [Google Scholar] [CrossRef] [PubMed]
- Cheshire, W.P.; Freeman, R. Disorders of Sweating. Semin. Neurol. 2003, 23, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, S.C.; Barbara, G.; Buurman, W.; Ockhuizen, T.; Schulzke, J.D.; Serino, M.; Tilg, H.; Watson, A.; Wells, J.M. Intestinal Permeability—A New Target for Disease Prevention and Therapy. BMC Gastroenterol. 2014, 14, 189. [Google Scholar] [CrossRef] [PubMed]
- Massey, V.L.; Arteel, G.E. Acute Alcohol-Induced Liver Injury. Front. Physiol. 2012, 3, 193. [Google Scholar] [CrossRef] [PubMed]
- Bennett-Guerrero, E.; Barclay, G.R.; Weng, P.L.; Bodian, C.A.; Feierman, D.E.; Vela-Cantos, F.; Mythen, M.G. Endotoxin-Neutralizing Capacity of Serum from Cardiac Surgical Patients. J. Cardiothorac. Vasc. Anesth. 2001, 15, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Strutz, F.; Heller, G.; Krasemann, K.; Krone, B.; Müller, G.A. Relationship of Antibodies to Endotoxin Core to Mortality in Medical Patients with Sepsis Syndrome. Intensive Care Med. 1999, 25, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Relja, B.; Szermutzky, M.; Henrich, D.; Maier, M.; de Haan, J.-J.; Lubbers, T.; Buurman, W.A.; Marzi, I. Intestinal-FABP and Liver-FABP: Novel Markers for Severe Abdominal Injury. Acad. Emerg. Med. 2010, 17, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Reisinger, K.W.; Derikx, J.P.M.; Thuijls, G.; van der Zee, D.C.; Brouwers, H.A.A.; van Bijnen, A.A.; Wolfs, T.G.A.M.; van Heurn, L.W.E.; Buurman, W.A.; Kramer, B.W. Noninvasive Measurement of Intestinal Epithelial Damage at Time of Refeeding Can Predict Clinical Outcome after Necrotizing Enterocolitis. Pediatr. Res. 2013, 73, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Thuijls, G.; Derikx, J.P.M.; van Wijck, K.; Zimmermann, L.J.I.; Degraeuwe, P.L.; Mulder, T.L.; Van der Zee, D.C.; Brouwers, H.A.A.; Verhoeven, B.H.; van Heurn, L.W.E.; et al. Non-Invasive Markers for Early Diagnosis and Determination of the Severity of Necrotizing Enterocolitis. Ann. Surg. 2010, 251, 1174–1180. [Google Scholar] [CrossRef]
- McCubbin, A.J.; Allanson, B.A.; Caldwell Odgers, J.N.; Cort, M.M.; Costa, R.J.S.; Cox, G.R.; Crawshay, S.T.; Desbrow, B.; Freney, E.G.; Gaskell, S.K.; et al. Sports Dietitians Australia Position Statement: Nutrition for Exercise in Hot Environments. Int. J. Sports Nutr. Exerc. Metab. 2020, 30, 83–98. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cinca-Morros, S.; Álvarez-Herms, J. The Importance of Maintaining and Improving a Healthy Gut Microbiota in Athletes as a Preventive Strategy to Improve Heat Tolerance and Acclimatization. Microorganisms 2024, 12, 1160. https://doi.org/10.3390/microorganisms12061160
Cinca-Morros S, Álvarez-Herms J. The Importance of Maintaining and Improving a Healthy Gut Microbiota in Athletes as a Preventive Strategy to Improve Heat Tolerance and Acclimatization. Microorganisms. 2024; 12(6):1160. https://doi.org/10.3390/microorganisms12061160
Chicago/Turabian StyleCinca-Morros, Sergi, and Jesús Álvarez-Herms. 2024. "The Importance of Maintaining and Improving a Healthy Gut Microbiota in Athletes as a Preventive Strategy to Improve Heat Tolerance and Acclimatization" Microorganisms 12, no. 6: 1160. https://doi.org/10.3390/microorganisms12061160
APA StyleCinca-Morros, S., & Álvarez-Herms, J. (2024). The Importance of Maintaining and Improving a Healthy Gut Microbiota in Athletes as a Preventive Strategy to Improve Heat Tolerance and Acclimatization. Microorganisms, 12(6), 1160. https://doi.org/10.3390/microorganisms12061160