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Abstract

:

Numerous studies have reported a correlation between gut microbiota and influenza A virus (IAV) infection and disease severity. However, the causal relationship between these factors remains inadequately explored. This investigation aimed to assess the influence of gut microbiota on susceptibility to human infection with H7N9 avian IAV and the severity of influenza A (H1N1)pdm09 infection. A two-sample Mendelian randomization analysis was conducted, integrating our in-house genome-wide association study (GWAS) on H7N9 susceptibility and H1N1pdm09 severity with a metagenomics GWAS dataset from a Chinese population. Twelve and fifteen gut microbiotas were causally associated with H7N9 susceptibility or H1N1pdm09 severity, separately. Notably, Clostridium hylemonae and Faecalibacterium prausnitzii were negative associated with H7N9 susceptibility and H1N1pdm09 severity, respectively. Moreover, Streptococcus peroris and Streptococcus sanguinis were associated with H7N9 susceptibility, while Streptococcus parasanguini and Streptococcus suis were correlated with H1N1pdm09 severity. These results provide novel insights into the interplay between gut microbiota and IAV pathogenesis as well as new clues for mechanism research regarding therapeutic interventions or IAV infections. Future studies should concentrate on clarifying the regulatory mechanisms of gut microbiota and developing efficacious approaches to reduce the incidence of IAV infections, which could improve strategy for preventing and treating IAV infection worldwide.
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1. Introduction


Influenza A viruses (IAVs) are primarily transmitted among aquatic birds and poultry but can sporadically cross species barriers to infect humans. Certain subtypes, such as H1N1 and H3N2, are capable of adapting to humans, enabling person-to-person transmission and triggering pandemics. These strains may evolve into seasonal influenza viruses [1]. However, avian IAVs, such as H5N1 and H7N9, fail to fully adapt to humans, lacking efficient human-to-human transmission after spillover infection. Despite this, spillover events may result in a high case fatality rate and harbor the potential for a new pandemic if the viruses continually evolve and adapt to humans [2]. According to the World Health Organization, seasonal IAV accounts for an estimated one billion infections, 3 to 5 million severe cases, and approximately 290,000 to 650,000 deaths each year [3]. Notably, avian IAV H7N9 triggered five outbreaks in China from 2013 to 2017, resulting in 1568 confirmed infections with a fatality rate of approximately 39%. To alleviate the public health impact of IAVs, it is imperative to investigate host factors influencing susceptibility to avian IAVs and the severity of seasonal IAVs. Recent research has underscored the role of innate immune system proteins (e.g., MxA and BTN3A3) in reducing human susceptibility to avian IAV H7N9 [4,5], while genetic variations in host genes, such as IFITM3 and IRF7, predispose individuals to severe disease caused by H1N1pdm09 [6,7]. This emphasizes the critical role of host factors in impeding the spread of IAV strains and underscores the potential of the human immune system to defend against such infections.



The gut microbiota, a complex and highly diverse microbial community, serves as an essential mediator linking diseases to human genome evolution and is closely associated with the development and progression of many diseases [8,9]. Numerous studies have recognized the broad-reaching immune impact of the gut microbiota on pulmonary health [10,11,12]. A systematic review of gut microbiota changes in respiratory tract infection (RTI) patients consistently revealed decreased diversity, with depletion of Firmicutes, Lachnospiraceae, Ruminococcaceae, and Ruminococcus, and enrichment of Enterococcus [13]. Fecal transfer experiments have indicated that gut microbes from mice surviving H7N9 infection can confer resistance to naive recipient mice challenged with IAV [14]. Additionally, patients with IAV infection may experience symptoms resembling gastroenteritis [15], indicating the importance of the gut–lung axis in maintaining lung immunity homeostasis during influenza infection. Investigations have revealed significant changes in the composition of intestinal microbiota in individuals affected by different IAV subtypes, including H7N9 and H1N1 [16,17,18]. However, these studies have only established associations between gut microbiota and various IAV subtypes. Due to the potential confounding factors and reverse causality, the causal relationship between gut flora and IAV infection remains unclear.



Mendelian randomization (MR) provides an efficient approach to evaluating causal effects using genetic variants as instrumental variables (IVs) [19]. Genetic variants are randomly assigned during meiosis and not influenced by traditional confounding factors, such as environment, socioeconomic status, and behavior. Furthermore, genetic variants remain stable after birth, enabling the evaluation of chronologically plausible associations. Therefore, MR can overcome confounding and reverse causality issues inherent in traditional observational studies. MR analysis has been widely applied to assess causal effects between gut microbiota and diseases, such as autoimmune diseases and coronavirus disease 2019 (COVID-19) [20,21]. Xu et al. employed MR to investigate the causal effect of gut microbiota on seasonal influenza and influenza-induced pneumonia in Finland. In their study, the identification of intestinal flora was limited to the genus level [22]. In this study, we performed a systematic two-sample MR study to explore the causal effect of species-level gut microbiota on avian IAV H7N9 susceptibility and H1N1pdm09 severity in Chinese. Note that genome-wide association studies (GWAS) of H7N9 susceptibility have been restricted to Chinese populations thus far. The outcomes of this study might offer new insights for personalized IAV treatment through the regulation of gut microbiota.




2. Materials and Methods


2.1. Study Design


First, we conducted a two-sample MR analysis to investigate potential causal relationships between gut microbial features and IAV infection. Three different MR methods (refer to Methods further below) were performed to increase the robustness of the results and avoid bias. The selection of IVs adhered to three critical assumptions [19]: (i) Relevance: the IVs were associated with the exposure of interest; (ii) Independence: the IVs were independent of other confounding factors that affect both the exposure and outcome; (iii) Exclusion restriction: the IVs were required to influence the outcome solely through the studied exposure. The stringent criteria for IV selection were essential to ensure the validity and robustness of the MR analysis results. Subsequently, protein–protein interaction (PPI) and functional enrichment analyses were carried out to investigate possible biological connections between gut microbiota and influenza infection. The study design is illustrated in Figure 1.




2.2. Gut Microbiome Data


The GWAS summary data for human gut microbiome composition were obtained from an extensive study [23], involving 1539 adult Chinese individuals with both blood and fecal samples available. Each participant underwent high-depth whole-genome and whole-metagenomic sequencing with a mean sequencing depth of 42× for the whole genome, ensuring precise genotyping. This dataset was composed of 500 microbial features, including 401 taxa (248 species, 95 genera, 32 families, 14 orders, 3 classes, and 9 phyla) and 99 module functions (MFs), all integrated into the analysis. The GWAS results for microbial features were meticulously adjusted for various factors, such as age, gender, body mass index, defecation frequency, stool form, 12 dietary and lifestyle factors, and the top four principal components (PCs), to minimize the effects of potential confounding factors [23].




2.3. H7N9 Susceptibility and H1N1 Severity GWAS Data


The summary statistics for H7N9 susceptibility were retrieved from a previous GWAS involving 217 H7N9 patients and 116 healthy poultry workers, all of Chinese descent [5]. Real-time reverse transcription polymerase chain reaction (RT–PCR) was used for diagnosing H7N9 infection, following the Diagnostic and Treatment Protocol for Human Infection with Avian Influenza A (H7N9) (http://www.nhc.gov.cn/gjhzs/s7952/201304/34750c7e6930463aac789b3e2156632f.shtml accessed on 30 May 2018). Similarly, summary statistics for H1N1 severity were collected from another preceding GWAS involving 165 Chinese H1N1pdm09 patients, confirmed by positive results of real-time RT–PCR [24]. Patients with mild symptoms (n = 95) were defined as outpatients not admitted to hospitals, while those with severe symptoms (n = 70) were hospitalized patients meeting specific criteria outlined in the Protocol for diagnosis and treatment of influenza (2019 version) [25]. All participants underwent high-depth whole-genome sequencing, with an average sequencing depth exceeding 30×, to detect potential variants and for genotyping. Subsequently, GWAS summary statistics were generated using logistic regression analysis, adjusted for gender, age, and PCs.




2.4. Selection of IVs


The single nucleotide polymorphisms (SNPs) associated with microbiome features were chosen as eligible IVs according to several criteria. Firstly, SNPs with a p value < 1 × 10−5 were chosen to represent a broad range of microbiome [23,26]. To ensure independence, linkage disequilibrium (LD) clumping was performed (r2 < 0.01 within a 1000 kb window) using the 1000 Genomes EAS population as a reference. SNPs with palindromic A/T or G/C alleles were excluded to prevent strand orientation or allele coding issues. SNPs associated with the outcome (p < 1 × 10−4) were also excluded. The strength of IVs was assessed using F-statistics, calculated using the formula [27]:


F = R2(N − 1 − k)/(1 − R2)k



(1)




where N represents the sample size, k indicates the number of IVs, and R2 stands for the proportion of variance explained. For a SNP, R2 was calculated using the equation:


R2 = 2 × EAF × (1 − EAF) × β2/[2 × EAF × (1 − EAF) × β2 + 2 × EAF × (1 − EAF) × N × SE2]



(2)




where EAF is the effect allele frequency, β is the effect size, and SE is the standard error of effect size. SNPs with F-statistics < 10 were deemed insufficient in strength and were subsequently removed [28]. The independence of selected SNPs allowed for the calculation of the combined R2 as the sum of individual R2 values under the assumption of an additive model.




2.5. Two-Sample MR Analysis


The inverse variance weighted (IVW) test served as the primary method to evaluate causal effects, aggregating Wald ratios of IVs in a fixed-effect meta-analysis model, providing reliable results under the assumption of no horizontal pleiotropy for each IV [29]. Additionally, MR–Egger regression and the weighted median (WM) method were used for supplementary analysis. Suppose there are M genetic variants, where j represents the jth variant, with x denoting the exposure, and y signifying the outcome. The IVW method is a basic model assuming that pleiotropy does not exist or is zero. It estimated the causal effect (    β   x y      ) by integrating the effect ratio (    θ   j   =     β   y j      /    β   x j        ) of genetic variant on outcome (    β   y j      ) and exposure (    β   x j      ) using inverse variance weighting. IVW estimates can also be obtained using the following weighted linear regression model without intercept terms:


       β  ^    y j   = b     β  ^    x j   +   ε   j     ,     ε   j     ~   N   0 ,     s e     β   y j         2       



(3)







The estimate of the slope parameter b is the causal effect, and the weight is the inverse of the variance of the genetic association effect corresponding to the outcome. In order to control the uncorrelated pleiotropy, MR–Egger identifies the violations of pleiotropy and heterogeneity by incorporating an intercept in the IVW model [30]. The regression model is as follows:


       β  ^    y j   =   b   0   + b     β  ^    x j   +   ε   j     ,     ε   j     ~   N   0 ,     s e     β   y j         2       



(4)







Because some IVs may be pleiotropic, the WM method estimates the causal effect from the weighted median of the effect ratio (    θ   j    ). The WM method offers consistent estimates even when up to 50% of the IVs are invalid [31]. Following the application of the Bonferroni correction, we established a statistically significant threshold of p = 1 × 10−4 (0.05/500). The associations with p < 0.05 but above 1 × 10−4 were considered nominally significant.




2.6. Sensitivity Analysis


Sensitivity analyses were conducted to assess the robustness of the MR analysis. MR–Egger intercept tests and MR–Pleiotropy Residual Sum and Outlier (MR–PRESSO) global tests were used to examine horizontal pleiotropy [32,33]. Additionally, Cochran’s Q statistic and a funnel plot were used to examine heterogeneity [34]. A leave-one-out analysis was conducted to demonstrate that inferred causal relationships were not influenced by a single SNP [32]. All MR analyses were carried out using R software (version 4.1.2) and the “TwoSampleMR” package (version 0.5.6).




2.7. Biological Annotation


ANNOVAR (version 20180416) was used to functionally annotate variants with p < 1 × 10−4 in H7N9 susceptibility and H1N1 severity GWAS, and variants with p < 1 × 10−5 in the gut microbiome GWAS [35]. PPI networks were constructed using shared positional mapped genes between IAVs and the gut microbiome. These networks were predicted using the Search Tool for the Retrieval of Interacting Genes (STRING, version 12.0) online database [36]. A combined score ≥ 0.4 was chosen for construction of the PPI networks. We also extracted the functional enrichment results for human phenotype (Experimental Factor Ontology [37] and Human Phenotype Ontology [38]) from STRING, which could provide insight into the associations of genes with various phenotypes. The connected PPI networks were visualized using Cytoscape software (version 3.8.0) [39]. The top 10 nodes were identified as hub genes using the Maximal Clique Centrality (MCC) method with the CytoHubba plug-in (version 0.1) [40]. The effect of hub genes on multiple phenotypes was evaluated through Phenome-Wide Association Study (PheWAS) by examining the pleiotropy of hub genes in the summary statistics for 4756 complex traits and diseases across 28 domains using the GWAS ATLAS [41]. PheWAS offered a more comprehensive understanding of the biological significance of these genes and helped elucidate the MR results. The statistically significant threshold was defined as 1.05 × 10−5 (0.05/4756). IVs for pairs of microbial features and IAVs with significant causality were annotated using ANNOVAR. Additionally, Gene Ontology (GO) [42,43] and Kyoto Encyclopedia of Genes and Genomes (KEGG) [44] pathway enrichment analyses were performed for the positional mapped genes using DAVID (https://david.ncifcrf.gov/tools.jsp accessed on 21 January 2024) [45,46] to reveal the potential underlying biological pathways or functions of causal associations. GO is utilized as a bioinformatics tool for annotating genes and analyzing the biological processes they are involved in. It classifies gene functions into biological processes (BP), molecular functions (MF), and cellular components (CC). KEGG is a database for analyzing molecular signaling pathways and interactions in biological systems. A significance threshold of p < 0.05 and Fold Enrichment > 2.5 was considered statistically significant. The enrichment analysis results are visualized by SRplot web server (http://www.bioinformatics.com.cn/SRplot accessed on 21 January 2024) [47].





3. Results


3.1. Effect of Gut Microbiota on H7N9 Susceptibility


The results of the MR analysis concerning H7N9 susceptibility are detailed in Figure S1. The genetic IVs varied from 2 to 29 across different gut microbiome features. F-statistics for the human gut microbiota ranged from 20.17 to 37.02, all surpassing 10, indicating a reduced susceptibility to weak instrument bias. Initially, the IVW method identified 14 gut bacterial taxa associated with H7N9 susceptibility (Figure 2, Table S1). The effect directions estimated by MW were consistent with those derived from IVW. However, the MR–Egger method revealed inconsistent directions for two gut bacterial taxa, including the genus Rahnella and Coprococcus catus. Subsequently, 12 gut bacterial taxa were found to be nominally causally associated with H7N9 susceptibility with statistical significance. It is worth noting that Clostridium hylemonae (β = −0.335, 95% CI: −0.622 to −0.049, p = 0.022) and Clostridium ramosum (β = −0.390, 95% CI: −0.684 to −0.096, p = 0.009), known for synthesizing short-chain fatty acids (SCFAs), exhibited a negative correlation with the susceptibility to H7N9. Additionally, Streptococcus peroris (β = −0.327, 95% CI: −0.648 to −0.006, p = 0.046) and Streptococcus sanguinis (β = −0.552, 95% CI: −1.017 to −0.087, p = 0.020)) were associated with a reduced risk of H7N9 susceptibility, while Streptococcus mitis (β = 0.504, 95% CI: 0.022 to 0.986, p = 0.041) showed an increased risk of H7N9 susceptibility. Scatter plots are displayed in Figure S2.



In the sensitivity analysis (Table 1), both the MR–PRESSO Global test and MR–Egger intercept test indicated a limited impact of horizontal pleiotropy. Furthermore, Cochran’s Q test suggested no significant heterogeneity. The leave-one-out analysis indicated that no SNPs significantly influenced the overall result (Figure S3). Most funnel plots demonstrated symmetry (Figure S4), reinforcing the robustness and reliability of the MR analysis results.




3.2. Effect of Gut Microbiota on H1N1 Severity


Causal effects of all gut microbiota on H1N1 severity are presented in Figure S5. The genetic IVs for each gut microbiome feature ranged from 7 to 31, with F-statistics ranging from 23.38 to 30.70, surpassing the empirical threshold of 10. The IVW analysis identified 18 gut bacterial taxa associated with H1N1 severity. However, alternative MR analysis methods revealed inconsistent effect directions for three bacterial species: Roseburia intestinalis, Treponema vincentii, and Veillonella atypica. Ultimately, 15 gut bacterial taxa met the criteria as significant contributors to the development of H1N1 severity (Figure 3, Table S2). In particular, Faecalibacterium prausnitzii (β = −0.394, 95% CI: −0.774 to −0.013, p = 0.043), playing a key role in the biosynthesis of SCFAs, exhibited a negative association with the risk of H1N1 severity. Moreover, Streptococcus parasanguinis (β = −0.574, 95% CI: −1.004 to −0.144, p = 0.009) and Streptococcus suis (β = −0.455, 95% CI: −0.865 to −0.044, p = 0.030) were also correlated with a reduced risk of H1N1 severity. Scatter plots are available in Figure S6.



Based on the results of sensitivity analysis, no significant horizontal pleiotropy or heterogeneity was detected using the MR–Egger intercept test, MR–PRESSO global test and Cochran’s Q test (Table 2). Furthermore, the leave-one-out analysis and funnel plots demonstrated the stability of the findings (Figures S7 and S8).




3.3. Biological Annotation


We identified a total of 87 shared GWAS significant genes connecting H7N9 susceptibility and microbiota features (Table S3) and 30 shared genes of H1N1 severity and microbiota features (Table S4). The PPI network analysis of both gene sets using the STRING database revealed a significantly higher number of interactions than expected by chance. By evaluating the enrichment of observed edges compared to expected edges, we obtained a PPI p-value of 8.43 × 10−8 for 87 proteins (Figure S9A) and 3.70 × 10−3 for 30 proteins (Figure S9B), indicating a biological connection to some extent. According to STRING, previous studies found that these genes were associated with several phenotypes at a false discovery rate (FDR) < 0.05. For the overlapping proteins between H7N9 susceptibility and microbiota features, we identified a significant enrichment of 44 phenotypes (Table S5), including gut microbiome measurement, susceptibility to infectious disease measurement, respiratory disease biomarker, etc. In contrast, we observed a significant enrichment of only three phenotypes among the overlapping proteins between H1N1 severity and microbiota features (Table S6).



The connected PPI networks were visualized using Cytoscape (Figure 4), and hub genes were screened (Tables S7 and S8). Except for ZBTB18 and C1orf100, all hub genes were associated with multiple phenotypes (p < 1.05 × 10−5). In the PPI network linking H7N9 susceptibility to microbiota features, PheWAS results revealed that 8 out of 10 hub genes (LRP1B, ROBO2, USH2A, FOXP1, TENM4, CACNA1C, PCLO, and AGRN) showed enrichment with genetic signals associated with the metabolic or nutritional domain. Moreover, 4 of the 10 hub genes (LRP1B, FOXP1, CACNA1C, and KALRN) were enriched with genetic signals associated with the immunological domain (Figure S10, Table S9). Similarly, 8 of 10 hub genes (PTPRD, RARB, PPARGC1A, SORCS2, MED15, DLGAP1, PLCB4, and DGKB) in the network connecting H1N1 severity to microbiota features showed enrichment with the metabolic or nutritional domain. However, only one hub gene (PPARGC1A) was enriched with the immunological domain (Figure S11, Table S10). In summary, PPI networks and PheWAS analysis uncover the connection between IAV infection and microbial features, which are associated with hub genes, as well as the metabolic or nutritional domain and the immunological domain.



A total of 170 IVs for the 12 pairs of microbial features and H7N9 susceptibility with potential causality were mapped onto 216 genes (Table S11), and 232 IVs for the 15 pairs of microbial features and H1N1 severity were mapped onto 304 genes (Table S12). The GO analysis showed that both gene sets were significantly enriched in several terms, including cell–cell junction assembly, adherens junction organization, cell–cell adhesion mediated by cadherin, cell–cell adhesion via plasma-membrane adhesion molecules, calcium-dependent cell–cell adhesion via plasma membrane cell adhesion molecules, and homophilic cell adhesion via plasma membrane adhesion molecules. Additionally, the 216 mapped genes were significantly enriched in galactosylceramide catabolic process, phosphorylation, while the 304 mapped genes were significantly enriched in transmembrane receptor protein tyrosine kinase signaling pathway, Ras protein signal transduction, positive regulation of T-helper cell differentiation, etc. (Figure 5, Tables S13 and S14). In the KEGG analysis, the 216 mapped genes did not show significantly enriched pathways, whereas the 317 mapped genes were significantly enriched in the Rap1, Apelin, and calcium signaling pathways (Figure S12, Table S15).





4. Discussion


Our research revealed that 12 specific bacterial features were causally associated with H7N9 susceptibility, while 15 bacterial features were causally associated with the severity of H1N1, underscoring the significance of the gut–lung axis in regulating immune responses during IAV infections. We also provided a possible biological interpretation of the association between gut microbiota and IAV infection using gene- and gene-set-based analyses on multi-omics data.



The complex and diverse microbial ecosystem in the gastrointestinal tract plays a pivotal role in maintaining human health. Recent studies have demonstrated the intricate interplay between gut microbiota and immune system regulation, extending its impact beyond the gut to encompass the entire body, including distant organs such as the lungs [48,49,50]. The gut–lung axis, representing the interaction between gastrointestinal bacteria and the pulmonary system, can modulate inflammatory activity at both local and systemic levels [51]. Notably, in the treatment of IAV-induced viral respiratory infections, the significant disruption of the gut microbial ecosystem by antibiotics can compromise the innate and adaptive defenses of the host, emphasizing the essential role of the gut–lung axis in IAV infection [52,53]. Furthermore, emerging evidence has underscored the critical role of microbiota composition in regulating the development of virus-specific CD4 and CD8 T cells, as well as antibody responses, in respiratory influenza virus infections [53]. Disruptions in gut microbes could potentially impair immune cell migration to the lungs, thereby increasing susceptibility to respiratory tract infections [54,55]. This observation emphasized the pivotal role of gut microbiota in shaping host immune responses and underscored the potential for modulating microbiota composition as a new therapeutic approach for treating influenza and other respiratory viral infections.



There is mounting evidence linking the composition of gut microbiota to IAV infections, with the fecal microbiomes of H1N1 and H7N9 patients showing a noticeable decrease in bacterial diversity [16,17]. It is worth noting that gut dysbiosis, often characterized by reduced microbial diversity, is commonly associated with inflammatory and autoimmune disorders [51]. In patients with laboratory-confirmed H1N1, a reduction in the phyla Actinobacteria and Firmicutes, along with the genera Faecalibacterium and Streptococcus, was observed compared to healthy controls [16]. Similarly, in a study involving 26 patients infected with H7N9, a decrease in the phyla of Bacteroidetes and the genera of Eubacterium, Roseburia, and Faecalibacterium, as well as the species of Roseburia intestinalis and Faecalibacterium prausnitzii, was noted, while an enrichment was observed for the genus of Veillonella [17].



Consistent with previous research, our study identified that six out of eight bacterial taxa negatively associated with H1N1 severity belonged to the phylum Firmicutes, with the exception of Bacteroides thetaiotaomicron and Bacteroides xylanisolvens. Similarly, apart from Citrobacter youngae, the other four bacterial taxa negatively linked to H7N9 susceptibility also belonged to Firmicutes. Previous studies have reported a reduction in Firmicutes among patients with RTIs, including H1N1 infection, COVID-19, tuberculosis (TB), community-acquired pneumonia, and recurrent respiratory tract infections [13]. Certain gut microbes, notably Faecalibacterium prausnitzii and Clostridium hylemonae of the Firmicutes phylum, possess a strong ability to produce SCFAs, such as acetate, propionate, and butyrate, through the fermentation of dietary fiber and resistant starch [56,57]. Microbiota-derived butyrate activates the nuclear receptor peroxisome proliferator activated receptor γ in colonic epithelial cells, shifting their energy metabolism towards fatty acid oxidation and oxidative phosphorylation in mitochondria, which consumes high levels of oxygen [58,59,60]. This suggests that SCFAs promote gut homeostasis through a positive feedback loop by limiting the luminal bioavailability of oxygen. SCFAs can also signal through the membrane receptor G protein-coupled receptor (GPR) to activate signaling pathways that regulate immune functions [61]. Research has shown that acetate could protect against respiratory syncytial virus-induced disease by activating GPR43 and modulating type 1 responses in lung epithelial cells [62]. Moreover, SCFAs can induce both effector and regulatory T cells to regulate the immune system by inhibiting the direct histone deacetylase (HDAC) in T cells and enhancing the mTOR-S6K pathway [63]. In our study, Faecalibacterium prausnitzii, a representative bacterium of the phylum Firmicutes, was also found to be negatively correlated with H1N1 severity. Faecalibacterium prausnitzii is considered as an anti-inflammatory probiotic that provides defense against various gastrointestinal disorders [64]. Reduced levels of Faecalibacterium prausnitzii have been observed in patients with COVID-19, TB, asthma, and cystic fibrosis [65,66,67,68]. Additionally, a study investigating the correlations between gut microbiota and persistent symptoms in recovered COVID-19 patients revealed a negative correlation between chest tightness after activity and the relative abundance of Faecalibacterium prausnitzii [69].



Our results indicated that the species Streptococcus peroris and Streptococcus sanguinis, as well as Streptococcus parasanguinis and Streptococcus suis, were negatively correlated with H7N9 susceptibility and H1N1 severity, respectively. However, concerning the genus Streptococcus, different outcomes were observed in individuals infected with H1N1 and H7N9 compared to the control group, showing decreased levels for H1N1 and elevated levels for H7N9 [16,17]. Animal studies have indicated that pre-exposure to Streptococcus suis improved survival in mice co-infected with the influenza virus, with the upregulated innate immunity potentially playing a significant role in reducing mortality when the bacteria were administered before viral infection [70]. Furthermore, a clinical trial demonstrated that the estimated risk of respiratory failure during the course of COVID-19 was significantly lower by eightfold in the group receiving oral bacteriotherapy with streptococcal-containing preparations compared to the untreated group. Conversely, the incidence of ICU admission and mortality was higher among patients not treated with oral bacteriotherapy [71]. The bacterial strains present in the bacterial formulation enhanced the production of both nuclear factor erythroid 2p45-related factor 2 and its target Heme oxygenase-1, exerting antiviral effects through the reduction of oxidative stress [72]. Interestingly, Xu et al. reported that the genus Streptococcus was negatively associated with influenza outcomes in FinnGen cohorts, consistent with our findings in the Chinese population [22]. However, we also found that Streptococcus mitis was positively associated with H7N9 susceptibility. Streptococcus mitis is a predominant cause of infective endocarditis and bacteremia. It is notable that the majority of virulence factors identified in the Streptococcus pneumoniae genome are shared with Streptococcus mitis [73]. These findings suggest that not all Streptococcus species provide protection against influenza. In particular, Streptococcus mitis appears to be a potential risk factor for susceptibility to H7N9.



In our study, we identified hub genes such as LRP1B and PTPRD that serve as key connections between IAV infection and microbiota features. LRP1B, which belongs to the low-density lipoprotein (LDL) receptor family, plays diverse roles in normal cell function and development by interacting with multiple ligands. The LDL receptor family has roles related to the clearance of extracellular ligands and is proposed to be involved in extracellular signal transduction [74]. A previous GWAS study demonstrated an association between LRP1B and Influenza A (H1N1) infection [75]. Depletion of LRP1B has been shown to reduce IAV A/Puerto Rico/8/34 H1N1 infection [76] and influenza A/WSN/33 replication [77]. PTPRD encoded a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes, including cell growth, differentiation, mitotic cycle, and oncogenic transformation [78]. PTPRD is involved in various signaling pathways, including PTPRD/STAT3/JAK and PTPRD/PD-1/PD-L1 axes [79,80,81,82]. These pathways are crucial in regulating IAV replication and anti-IAV immunity [83,84]. Moreover, PheWAS analysis revealed connections between hub genes and metabolic, nutritional, and immunological traits. GO enrichment highlighted a significant association between genes derived from IAVs and the BP of adherens junctions. Adherens junctions are formed by the transmembrane adhesion molecule vascular endothelial (VE)-cadherin and its cytoplasmic tail binding molecules, like β-catenin and plakoglobin, which anchor to actin via α-catenin and stabilize the junction [85]. The Rap1 signaling pathway, identified through KEGG enrichment, plays a critical role in regulating cell adhesion and cell–cell junction formation by modulating the function of integrins and other adhesion molecules in various cell types. Notably, gut microbiota could influence endothelial cell function at distant sites, such as the liver [86]. During IAV infection, the virus affects VE cells by inducing β-catenin degradation in adherens junctions, which is one of the key mechanisms leading to vascular hyperpermeability in severe influenza [87]. Therefore, a plausible mechanism for the causal relationship between gut microbiota and IAV infection may involve the regulation of adherens junctions in endothelial cells during the course of IAV infection.



This study had several strengths. Firstly, we utilized the largest-scale metagenomics GWAS dataset available for individuals of Chinese ancestry. Despite the relatively small sample size of the H1N1 and H7N9 GWAS, they represented the most extensive GWAS study on avian IAV susceptibility conducted to date. Secondly, the application of metagenomic sequencing techniques allowed for precise bacterial classification down to the species level. Through the analysis of biologically relevant samples, metagenomes provided a comprehensive view of the gut microbial community, offering unparalleled insights into bacterial diversity and composition. Thirdly, our study adopted a two-sample MR approach to estimate causal effects and integrated three sensitivity analysis techniques to ensure robustness and mitigate potential pleiotropy from the IVs. By employing a rigorous analytical framework, the study aimed to provide accurate quantitative estimates of the causal relationship, thereby enhancing confidence in the validity of the findings. Our results revealed the correlations between gut microbiota composition and avian IAV infection, suggesting the potential utility of gut microbiota as a targeted risk assessment tool for the disease and as a potential therapeutic strategy.



There were several limitations in this study. Firstly, the ethnic homogeneity of the research population necessitates caution when extrapolating our findings to individuals of different races. Secondly, although we adopted one of the largest gut metagenomics and IAV GWAS datasets to date, the sample size remained modest, and the number of loci examined was relatively limited. Therefore, further research based on larger GWAS datasets is crucial to validate our observations and establish the generalizability of the findings across diverse populations. Thirdly, our findings were not corroborated by in vivo flora colonization assay.



Despite these limitations, we believe that our findings provided new clues for further investigation of microbial function via microbiota colonization in vivo. Focusing on gut microbiota could represent an innovative approach to the prophylaxis and therapy of IAV infections.




5. Conclusions


Our MR study has successfully identified the potential causal effects of 12 and 15 gut microbial features on H7N9 infection and H1N1pdm09 severity, respectively. In particular, Clostridium hylemonae and Faecalibacterium prausnitzii, which promote the production of SCFAs, were negatively associated with H7N9 susceptibility and H1N1pdm09 severity separately. These findings not only highlight the significant implications for understanding the pathogenesis of IAV infection but also provide valuable clues for future research to elucidate the role of gut microbiota in infectious diseases.



In summary, our study not only expands our knowledge concerning the impact of the gut microbiota on H7N9 susceptibility and H1N1pdm09 severity but also underscores the potential for targeting gut microbial composition based on these findings. The causally related bacterial groups open a promising avenue for the development of novel preventative and therapeutic strategies against IAV and other respiratory tract infections. An in-depth comprehension of the foundational mechanisms will facilitate the development of efficacious strategies to modulate the gut microbiome, thereby reducing the incidence and severity of IAV infections.
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Figure 1. Overview of the process of Mendelian randomization analysis and major assumptions. 
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Figure 2. Causal effects of gut microbiota on H7N9 susceptibility. Summary of Mendelian randomization (MR) estimates derived from inverse variance weighted (IVW), weighted median (WM), and MR–Egger analyses. CI denotes confidence interval; OR, odds ratio; SNPs, single nucleotide polymorphisms. “s_”, “g_”, “f_” are species, genus, and family, respectively. 






Figure 2. Causal effects of gut microbiota on H7N9 susceptibility. Summary of Mendelian randomization (MR) estimates derived from inverse variance weighted (IVW), weighted median (WM), and MR–Egger analyses. CI denotes confidence interval; OR, odds ratio; SNPs, single nucleotide polymorphisms. “s_”, “g_”, “f_” are species, genus, and family, respectively.
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Figure 3. Causal effects of gut microbiota on H1N1 severity. Summary of Mendelian randomization (MR) estimates obtained from inverse variance weighted (IVW), weighted median (WM), and MR–Egger analyses. CI, confidence interval; SNPs, single nucleotide polymorphisms. “s_”, “g_”, “f_” are species, genus, and family, respectively. 
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Figure 4. Visualization of connected protein-protein interaction networks using Cytoscape. (A) The network of overlapped genes between H7N9 susceptibility and microbiota features. (B) The network of overlapped genes between H1N1 severity and microbiota features. Node size and color correspond to the respective degrees, while edge weight and color are proportional to the STRING confidence score. 
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Figure 5. Gene Ontology pathway enrichment analysis performed on (A) 216 genes annotated from instrumental variables for pairs of microbial features and H7N9 susceptibility with potential causal relationships in Mendelian randomization (MR), and (B) 314 genes annotated from IVs for pairs of microbial features and H1N1 severity with potential causal relationships in MR. BP: biological process, CC: cellular component, MF: molecular function. 
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Table 1. Sensitivity analysis of the causal effect between gut microbiota and H7N9 susceptibility.
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Exposure

	
Method

	
Heterogeneity

	
Pleiotropy Egger Intercept Pval

	
MR–PRESSO Global Test Pval




	
Q

	
Q_df

	
Q_pval






	
f_Coriobacteriaceae

	
MR–Egger

	
9.371

	
12

	
0.671

	
0.830

	
0.754




	
IVW

	
9.419

	
13

	
0.741




	
f_Leuconostocaceae

	
MR–Egger

	
8.736

	
9

	
0.462

	
1.000

	
0.592




	
IVW

	
8.736

	
10

	
0.557




	
g_Mobiluncus

	
MR–Egger

	
28.293

	
17

	
0.042

	
0.961

	
0.083




	
IVW

	
28.298

	
18

	
0.058




	
g_Rahnella

	
MR–Egger

	
6.428

	
10

	
0.778

	
0.098

	
0.600




	
IVW

	
9.751

	
11

	
0.553




	
s_Citrobacter youngae

	
MR–Egger

	
6.861

	
10

	
0.738

	
0.433

	
0.766




	
IVW

	
7.529

	
11

	
0.755




	
s_Clostridium hylemonae

	
MR–Egger

	
3.534

	
9

	
0.939

	
0.198

	
0.858




	
IVW

	
5.469

	
10

	
0.858




	
s_Clostridium ramosum

	
MR–Egger

	
6.906

	
13

	
0.907

	
0.978

	
0.930




	
IVW

	
6.907

	
14

	
0.938




	
s_Coprococcus catus

	
MR–Egger

	
13.319

	
13

	
0.424

	
0.106

	
0.347




	
IVW

	
16.410

	
14

	
0.289




	
s_Desulfovibrio alaskensis

	
MR–Egger

	
3.362

	
6

	
0.762

	
0.970

	
0.878




	
IVW

	
3.364

	
7

	
0.849




	
s_Eubacterium cellulosolvens

	
MR–Egger

	
0.018

	
2

	
0.991

	
0.773

	
0.983




	
IVW

	
0.127

	
3

	
0.988




	
s_Slackia exigua

	
MR–Egger

	
5.910

	
12

	
0.921

	
0.390

	
0.913




	
IVW

	
6.706

	
13

	
0.917




	
s_Streptococcus mitis

	
MR–Egger

	
7.813

	
12

	
0.800

	
0.184

	
0.701




	
IVW

	
9.798

	
13

	
0.710




	
s_Streptococcus peroris

	
MR–Egger

	
5.576

	
6

	
0.472

	
0.213

	
0.430




	
IVW

	
7.515

	
7

	
0.377




	
s_Streptococcus sanguinis

	
MR–Egger

	
4.667

	
9

	
0.862

	
0.433

	
0.862




	
IVW

	
5.339

	
10

	
0.867








Abbreviations: IVW, inverse variance weighted; MR–PRESSO, MR–pleiotropy residual sum and outlier. “s_”, “g_”, “f_” are species, genus, family, order, class, and phylum, respectively.













 





Table 2. Sensitivity analysis of the causal effect between gut microbiota and H1N1 severity.
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Exposure

	
Method

	
Heterogeneity

	
Pleiotropy Egger Intercept Pval

	
MR–PRESSO Global Test Pval




	
Q

	
Q_df

	
Q_pval






	
f_Sutterellaceae

	
MR–Egger

	
10.309

	
17

	
0.890

	
0.612

	
0.911




	
IVW

	
10.576

	
18

	
0.911




	
g_Acetivibrio

	
MR–Egger

	
8.999

	
11

	
0.622

	
0.894

	
0.725




	
IVW

	
9.018

	
12

	
0.701




	
g_Ethanoligenens

	
MR–Egger

	
4.722

	
9

	
0.858

	
0.593

	
0.894




	
IVW

	
5.029

	
10

	
0.889




	
g_Subdoligranulum

	
MR–Egger

	
4.104

	
13

	
0.990

	
0.611

	
0.992




	
IVW

	
4.375

	
14

	
0.993




	
g_Yersinia

	
MR–Egger

	
2.935

	
6

	
0.817

	
0.499

	
0.850




	
IVW

	
3.453

	
7

	
0.840




	
s_Bacteroides_thetaiotaomicron

	
MR–Egger

	
15.037

	
18

	
0.659

	
0.366

	
0.673




	
IVW

	
15.897

	
19

	
0.664




	
s_Bacteroides_xylanisolvens

	
MR–Egger

	
6.308

	
8

	
0.613

	
0.408

	
0.645




	
IVW

	
7.071

	
9

	
0.630




	
s_Clostridiales_genomosp._BVAB3

	
MR–Egger

	
9.242

	
9

	
0.415

	
0.719

	
0.535




	
IVW

	
9.384

	
10

	
0.496




	
s_Eubacterium_biforme

	
MR–Egger

	
17.371

	
22

	
0.743

	
0.680

	
0.790




	
IVW

	
17.546

	
23

	
0.782




	
s_Faecalibacterium_prausnitzii

	
MR–Egger

	
24.531

	
29

	
0.702

	
0.203

	
0.706




	
IVW

	
26.226

	
30

	
0.664




	
s_Neisseria_gonorrhoeae

	
MR–Egger

	
5.220

	
8

	
0.734

	
0.793

	
0.821




	
IVW

	
5.294

	
9

	
0.808




	
s_Roseburia_intestinalis

	
MR–Egger

	
1.476

	
5

	
0.916

	
0.331

	
0.873




	
IVW

	
2.636

	
6

	
0.853




	
s_Streptococcus_parasanguinis

	
MR–Egger

	
12.312

	
18

	
0.831

	
0.528

	
0.862




	
IVW

	
12.726

	
19

	
0.852




	
s_Streptococcus_suis

	
MR–Egger

	
7.267

	
13

	
0.888

	
0.754

	
0.914




	
IVW

	
7.369

	
14

	
0.920




	
s_Treponema_vince

	
MR–Egger

	
14.963

	
15

	
0.454

	
0.147

	
0.413




	
IVW

	
17.306

	
16

	
0.366




	
s_Turicibacter_sanguinis

	
MR–Egger

	
3.302

	
5

	
0.653

	
0.382

	
0.671




	
IVW

	
4.219

	
6

	
0.647




	
s_Veillonella_atypica

	
MR–Egger

	
9.639

	
12

	
0.648

	
0.217

	
0.584




	
IVW

	
11.338

	
13

	
0.583




	
MF0032:glutamate_degradation_III

	
MR–Egger

	
8.588

	
17

	
0.952

	
0.294

	
0.948




	
IVW

	
9.761

	
18

	
0.939








Abbreviations: IVW, inverse variance weighted; MR–PRESSO, MR–pleiotropy residual sum and outlier. “s_”, “g_”, “f_” are species, genus, family, order, class, and phylum, respectively.



















	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.











© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).








Check ACS Ref Order





Check Foot Note Order





Check CrossRef













media/file4.png
Exposure Method NSNP F Beta (95% CI) P
VW 14  26.748 —— 0.614 (0.193, 1.035)  0.004
f_Coriobacteriaceae MR-Egger 14  26.748 ® 0.710 (-0.242,1.662) 0.170
Weighted median 14  26.748 r—— 0.468 (-0.117,1.054) 0.117
VW 11 24.304 —— 0.366 (0.048, 0.684) 0.024
f_Leuconostocaceae MR-Egger 11 24.304 ——— 0.366 (-0.269, 1.001) 0.288
Weighted median 11 24.304 D — 0.325(-0.133, 0.783) 0.164
VW 19  30.063 ——t 0.572 (0.090, 1.053)  0.020
g_Mobiluncus MR-Egger 19  30.063 ® 0.541 (-0.750, 1.833) 0.423
Weighted median 19  30.063 —— 0.833 (0.275, 1.392)  0.003
VW 12 25.535 —— 0.302 (0.032, 0.572)  0.028
g_Rahnella MR-Egger 12 25.535 —_— -0.443 (-1.289, 0.402) 0.328
Weighted median 12 25.535 —e— 0.342 (-0.039, 0.722) 0.078
VW 12 26.321 —o— -0.258 (-0.497, -0.019) 0.034
s_Citrobacter_youngae MR-Egger 12 26.321 — -0.603 (-1.464, 0.258) 0.200
Weighted median 12 26.321 —e— -0.211 (-0.526, 0.105) 0.191
VW 11 24.378 —e— -0.335 (-0.622, -0.049) 0.022
s_Clostridium_hylemonae MR-Egger 11 24.378 ® ' -0.917 (-1.785, -0.049) 0.068
Weighted median 11 24.378 —e— -0.244 (-0.622, 0.133) 0.204
VW 15  26.712 —— -0.390 (-0.684, -0.096) 0.009
s_Clostridium_ramosum MR-Egger 15 26.712 —— -0.381 (-1.105, 0.343) 0.321
Weighted median 15  26.712 —_ -0.390 (-0.795, 0.015) 0.059
VW 15 27.470 —— 0.696 (0.058, 1.333)  0.032
s_Coprococcus_catus MR-Egger 15  27.470 ® ' -0.395 (-1.762, 0.972) 0.581
Weighted median 15 27.470 —— 0.758 (-0.057, 1.574) 0.068
VW 8 23.797 — 0.350 (0.011,0.689)  0.043
s_Desulfovibrio _alaskensis MR-Egger 8 23.797 ® 0.379 (-1.131,1.890) 0.640
Weighted median 8 23.797 —— 0.312 (-0.113,0.738) 0.150
VW 4 22.445 —— 0.454 (0.014,0.894)  0.043
s_Eubacterium_cellulosolvens MR-Egger 4 22.445 ' ® 0.604 (-0.396, 1.605) 0.358
Weighted median 4 22.445 —— 0.412 (-0.105,0.930) 0.118
VW 14  25.687 —— 0.313 (0.074, 0.552)  0.010
s_Slackia_exigua MR-Egger 14  25.687 —— 0.554 (-0.027, 1.135) 0.086
Weighted median 14  25.687 +o— 0.184 (-0.132, 0.499) 0.254
VW 14  25.403 ——i 0.504 (0.022, 0.986)  0.041
s_Streptococcus_mitis MR-Egger 14  25.403 ' 1.291 (0.095, 2.488) 0.056
Weighted median 14 25.403 —_— 0.367 (-0.309, 1.044) 0.287
VW 8 24.483 —— -0.327 (-0.648, -0.006) 0.046
s_Streptococcus_peroris MR-Egger 8 24.483 ® -1.004 (-2.006, -0.001) 0.097
Weighted median 8 24.483 —— -0.350 (-0.762, 0.062) 0.096
VW 11 24178 —e— -0.552 (-1.017, -0.087) 0.020
s_Streptococcus_sanguinis MR-Egger 11 24.178 ® -1.167 (-2.708, 0.375) 0.172
Weighted median 11 24178 —— -0.670 (-1.291, -0.048) 0.035

| | I |

0 1
Beta (95% Cl)





nav.xhtml


  microorganisms-12-01170


  
    		
      microorganisms-12-01170
    


  




  





media/file11.png





media/file2.png
4 N

Selection of IVs (SNPs)
(1) Pvalue <1.0 x 107°
(2) LD clump r> < 0.01 within 1000kb window
(3) F-statistics > 10

X

Gut Microgenomic GWAS (Exposure) Confounders

(1) 1539 samples : L ‘. !
(2) 401 taxa (248 species, 95 genera, 32 families, :
14 orders, 3 classes and 9 phyla) and 99 module : Independencc'a,,'
functions. E . !
\_ - 5 5
. Relevance A 4 A

v IVs Exposure Outcome :

e N : SNPs Gut microbiota Influenza infection

/

IAVs GWAS (Outcomes)
(1) H7N9 susceptibility
217 cases; 116 controls
(2) HI1N1 severity
70 cases; 95 controls

Harmonization

Remove palindromics SNPs

SHEER

Y
MR analysis
IVW; MR-Egger; WM
Y \
[ Sensitivity analysis 4 N
(1) Cochran's Q test Biological annotation
(2) MR-Egger intercept analysis «| (1) PPI network analysis
(3) MR-PRESSO "1 (2) PheWAS analysis
(4) leave-one-out (3) GO/KEGG enrichment analysis
(5) Funnel plot \_ Y,

- J






media/file5.jpg
= g __vene T T
" = s ol oo

P P cracanowy ore
Wi 19 0 [ oo o

o e & prriversingii

Pp— [Pili et et v o
T—— 13 4 I mcaunonn owt

o n e - inom o o

- [l e o o
T 1 o Scomsaom o

o w mw ] Sesrsnarm oo

J— e 1o m el Srcsom o a2
Vo 13 T ] Surawame oo

S e 9 cimoz 1y o0

s R —= amtromrion oo
e s o 7 ccaum g o

o ] S5 o0 o

s ton Wt > oL o o
Vg wm ot o o

T 3 R o] Tt o
T e S— o s o
Wisitneo il v Imsiamene ue

e = Drtorn o

o Couno o BB R W — Soom2v 220 0w
Mo B 3k Smconnaan o

e s emoonen oo

5 Euboctonom oo MR-Eger 24 2472 —— 0200(-0449,0629) 0502
Weomrmein 5 19 masmorm o

- o Breoowniivn

U i W = Proyviapeiiived
el i e s niemom 0w

o e g Sy oom

pS— [P I Popiprtyiives
il 3 [ v oo

T gl o1t o) 100

PO 7 Am oo o
v 7 wm ol Swsirmr.one ow

s &7 Soeiaro atu oo

oS o e 201 = ey s
Wi 27 = P

s S| Sasioms o o

Jr— e s e I Smmmany o
i o = Semianaom o

o w oA e Sanivooa om

v ot [ pan i om
oo Rl e R Smmer o

w7 e [ i 1 00

i s e 7 T v
Mo s = amam om0 o

i e - Soiomioem oa

s [ = mcansoss ose
Wiy o oo ot

e e = Totaomosmm oms

ot s et w0 > e Tosiare o oo
Vg 1o = conman o






media/file3.jpg
Exposure othod d oo 5% ____P
o e T 0719310000

Conmmacorocasn w-Eoper i o710¢022 168 0110
Woghoamodan 14 28748 ouss (0117 1054 0117

w2 03660048068 0021

[rree— ke 11 e o368 (-0, 100) 0208
Wogiodmodin 11 24304 o328 01,0789 0168

w19 3008 057200000 1089) 0020

o Maincss W 19 3008 051 (0750,1839 0423
Wogramadan 19 20063 om0 13 0000

W s 0302(0032.0572) 0028

o_Romneta e 12 258% 02 (-1200,0902) 0328
iogrmamosin 2 25556 osuz(-00s0,07221 0078

W u ma 0258 (-0497,-0019) 00%

5 Ctrnocryurgso e 7 man -o0s(-1464,0288) 0200
Wogpudmosn 12 26321 -0211(0526,0109 0391

W -0 (082, -0049) 0022

o Comsun toross W 11 24 0017 (-1785,-0010) 0058
Wogioamodin 11 24378 o2u4(0622,013 0208

W s mre -0300(-0584,-0066) 00%

[ S—— kg 15 72 ot (-1105,036) 0321
ogrwamedan 15 26712 “ox0(0795.0015) 005
Wz oo (00s.138) 0o

5 Coprococus_catis oo 15 21410 o105 (-1762,097) 0801
ogramosin 527470 o758 caosr, 1574 0068

o oz 03s0(001,0688) 0083

5 Ousutorsuskos MR-t 8 23707 081151, 1890) 0840
ogadmodion 8 23757 o320 0ne) 0150

o o s 04540014089 0083

« Butocrn cotsosoburs WR-Eager 4 225 oo (03 1605 0358
oariamodin & 22445 0412(0105,09%01 0118

e mses 0513(0074,0552) 0010

. Socki_ouio W 268 o584 (0027 1139 0006
g mosin 14 25687 o184 (0152 099 0258

o 2500 0504(0022,0088) 0081

r— g 2500 129100005 2488) 0058
ogmedmodion 14 25413 o367 (08, 1084 027

w o 027 048, -0006) 0045

s S poois Mg 8 244 10042005, -0001) 0097
Wesodmodan & 24403 -0160(-0762.00) 009

W 02 (-1017,-0087) 0020

o Srupcocus s WREagor 11 4178 167(2700,075) 0372
wogios modan 1124178 o670 (1201 -0048) 003






media/file1.jpg
Gt Microgenomic GWAS Exposure)
() 1308 st
21501 o (248 spacis, 5 onor, 32 e,

14 rdrs, 3 classes ana sy and 59 modie:
farcions

‘Seleton ot Vs (shPe)
) Pvamo<10x 10

@110 cump <001 it 1000 window
[rpe——

Senitty anatyis
(1) Caceans ot
210 g0 et anayss

(MR PAESSO
@ lavoneou
{51 Fommotpr

AV GHAS @utcomes)
O o okt
it sovrty

70 e 3l

Bilogcstannotation
()PP nowor sray

) PrawaS s

) GONEGS ometmontanayss





media/file7.jpg





media/file10.png
A

Pathways

GO Pathway Enrichment

nervous system development -

calcium-dependent cell-cell adhesion via plasma membrane cell adhesion molecules

heterophilic cell-cell adhesion via plasma membrane cell adhesion molecules -

middle ear morphogenesis -

homophilic cell adhesion via plasma membrane adhesion molecules

cellular response to organic substance -

galactosylceramide catabolic process -

neuron projection development 4

bone resorption -

cell-cell adhesion mediated by cadherin -

phosphorylation

adherens junction organization -

cell-cell adhesion via plasma-membrane adhesion molecules -

positive regulation of homotypic cell-cell adhesion -

cell-cell junction assembly 5

adherens junction -

glutamatergic synapse -

nuclear body 4

axonal growth cone 4

catenin complex

GABA-ergic synapse -

UDP-N-acetylglucosamine transferase complex -

endosome -

Schaffer collateral - CA1 synapse 4

calmodulin-dependent protein kinase activity -

14-3-3 protein binding -

galactosylceramidase activity 4

protein kinase activator activity 4

3
Ratio

—log4o(pvalue)

3.0
2.5
2.0
1.5
class
e BP
A CC
= MF
count
o 2

B adherens junction organization -

Pathways

transmembrane receptor protein tyrosine kinase signaling pathway -
cell morphogenesis -
multicellular organlsm development
cell junction assembly -
radren erglc neuron differentiation 4
posmve regulation of hormone secretion
retina layer formation
cell-cell adhesion mediated by cadherin 4
glial cell migration
response to amphetamine
commissural neuron axon guidance 4
mooth muscle contraction -
nervous system development 4
ynapse assembly
cell-cell adhesion via plasma dh n moleci Ies-

GO Pathway Enrichment

in ut bryonic devel

semaphorin—plexin signaling pathway involved in axon guidance B

homophilic cell adhesion via plasma membrane adhesion molecules

neuron projection development -

G-protein coupled serotonin receptor signaling pathway -

depend ll-cell adhesion via plasma membrane cell adhesion molecules 4

-
calcium

m
extracellular matrix organization

middle ear morphogenesis -

Ras protein signal transduction

negative regulation of cell adhesion

cellular response to human chorionic gonadotropin stimulus 4
positive regulatlon of T-helper cell differentiation

ablishment of endothelial barrier §

IIuIar response to oxidative stress -

positive regulation of smooth muscle cell proliferation

II Iar response to fatty a(:ld A

positive regulation of cyt io
developmental growth

ositive regulation of neuron apoptotic process -

endothelin receptor signaling pathway involved in heart process -
ac protein signal transduction -

protein localization to plasma membrane -

exocytosis -

respiratory gaseous exchange 4

cellular response to hydrogen peroxide -

meiotic cell cycle process involved in oocyte maturation
sympathetic neuron axon guidance -

neural crest cell fate commitment

regulation of cell proliferation 4

regulation of small GTPase mediated signal transduction
cell proliferation

positive regulation of vasoconstriction B

ponse to electrical stimulus

embryonic skeletal system development o

neuron migration -

glutamatergic synapse 4

early endosome membrane -

dendrite

[
postsynaptlc membrane -
integral component of presynaptic active zone membral
a herensjunction b
collagen trimer 4
early endosome -
extracellular matrix
dendritic spine
anchored component of membrane -
eptor complex
caveola -
sequence specmc DNA binding -
extracellular matrix structural ile strength
RNA polymerase Il transcription factor activity, ligand— act[vated sequence specific DNA blndlng b

tivity

phosphatidylinositol phospholipase C activity 4

Ratio

—log4o(pvalue)

4
3
2
class
e BP
A CC
= MF
count
® 4

@ s
Q-
@





media/file9.jpg





media/file0.png





media/file8.png
A Node Fill Color: Degree

. 1.0

Edge Fill Color: Combined Score

ABCA13

CLDN17

0.0

PPIP5K2

A.a1

GRIK1

. ZNF608 ‘
. AGRN .

NDST4

PROKR2
ITPR1

CACNB2 .

TENM2

DAPK1

ARID1B

MED13L ’

SEMA3E

RARB

PPARGC1A





media/file6.png
Exposure Method NSNP F Beta (95% ClI) P
VW 19 29.439 o 0.345 (0.022, 0.669) 0.036
f_Sutterellaceae MR-Egger 19 29.439 —— 0.140 (-0.702, 0.983) 0.748
Weighted median 19 29.439 —o— 0.285 (-0.146, 0.715)  0.195
VW 13 25.979 —— 0.409 (0.035, 0.782) 0.032
g_Acetivibrio MR-Egger 13 25.979 —— 0.332 (-0.824, 1.489) 0.585
Weighted median 13 25.979 —e— 0.385 (-0.140, 0.910)  0.151
VW 11 25.946 —o— -0.409 (-0.789, -0.029) 0.035
g Ethanoligenens MR-Egger 11 25.946 —_— -0.113 (-1.227,1.001) 0.847
Weighted median 11 25.946 —e— -0.482 (-0.982, 0.019) 0.059
VW 15 27.137 —— -0.843 (-1.562, -0.125) 0.021
g_Subdoligranulum MR-Egger 15 27.137 ® -1.347 (-3.371,0.678) 0.215
Weighted median 15 27137 —— -0.896 (-1.818, 0.026) 0.057
VW 8 23.380 —e— 0.578 (0.082, 1.074) 0.022
g_Yersinia MR-Egger 8 23.380 0.038 (-1.515,1.591)  0.963
Weighted median 8 23.380 —e— 0.459 (-0.187,1.105) 0.164
VW 20 29.778 —— -0.685 (-1.318, -0.052) 0.034
s_Bacteroides_thetaiotaomicron MR-Egger 20 29.778 ® -1.687 (-3.899, 0.524) 0.152
Weighted median 20 29.778 —— -0.736 (-1.644,0.172) 0.112
VW 10 28.979 —— -0.945 (-1.831, -0.059) 0.037
s_Bacteroides_xylanisolvens MR-Egger 10 28.979 -0.010 (-2.288, 2.268) 0.994
Weighted median 10 28.979 ——— -0.795 (-2.000, 0.410) 0.196
VW 11 25.021 —e— -0.461 (-0.883, -0.039) 0.032
s_Clostridiales_genomosp._BVAB3 MR-Egger 11 25.021 -0.038 (-2.315,2.239) 0.975
Weighted median 11 25.021 —e— -0.264 (-0.838, 0.309) 0.366
VW 24 24.972 —e— 0.366 (0.015, 0.718) 0.041
s_Eubacterium_biforme MR-Egger 24 24.972 —— 0.240 (-0.449, 0.929) 0.502
Weighted median 24 24972 o— 0.260 (-0.228, 0.748)  0.296
VW 31 30.701 —0— -0.394 (-0.774, -0.013) 0.043
s_Faecalibacterium_prausnitzii MR-Egger 31 30.701 —e— -0.001 (-0.704, 0.703) 0.999
Weighted median 31 30.701 —o— -0.403 (-0.929, 0.122) 0.133
VW 10 37.559 —o— 0.604 (0.155, 1.053) 0.008
s _Neisseria_gonorrhoeae MR-Egger 10 37.559 ® 0.411 (-1.059, 1.880)  0.599
Weighted median 10 37.559 —_— 0.643 (0.035