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Abstract: Numerous studies have reported a correlation between gut microbiota and influenza A
virus (IAV) infection and disease severity. However, the causal relationship between these factors
remains inadequately explored. This investigation aimed to assess the influence of gut microbiota on
susceptibility to human infection with H7N9 avian IAV and the severity of influenza A (H1N1)pdm09
infection. A two-sample Mendelian randomization analysis was conducted, integrating our in-house
genome-wide association study (GWAS) on H7N9 susceptibility and H1N1pdm09 severity with a
metagenomics GWAS dataset from a Chinese population. Twelve and fifteen gut microbiotas were
causally associated with H7N9 susceptibility or H1N1pdm09 severity, separately. Notably, Clostridium
hylemonae and Faecalibacterium prausnitzii were negative associated with H7N9 susceptibility and
H1N1pdm09 severity, respectively. Moreover, Streptococcus peroris and Streptococcus sanguinis were
associated with H7N9 susceptibility, while Streptococcus parasanguini and Streptococcus suis were
correlated with H1N1pdm09 severity. These results provide novel insights into the interplay between
gut microbiota and IAV pathogenesis as well as new clues for mechanism research regarding thera-
peutic interventions or IAV infections. Future studies should concentrate on clarifying the regulatory
mechanisms of gut microbiota and developing efficacious approaches to reduce the incidence of IAV
infections, which could improve strategy for preventing and treating IAV infection worldwide.

Keywords: H7N9; H1N1; influenza A virus; Mendelian randomization; microbiota

1. Introduction

Influenza A viruses (IAVs) are primarily transmitted among aquatic birds and poultry
but can sporadically cross species barriers to infect humans. Certain subtypes, such as H1N1
and H3N2, are capable of adapting to humans, enabling person-to-person transmission
and triggering pandemics. These strains may evolve into seasonal influenza viruses [1].
However, avian IAVs, such as H5N1 and H7N9, fail to fully adapt to humans, lacking
efficient human-to-human transmission after spillover infection. Despite this, spillover
events may result in a high case fatality rate and harbor the potential for a new pandemic if
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the viruses continually evolve and adapt to humans [2]. According to the World Health
Organization, seasonal IAV accounts for an estimated one billion infections, 3 to 5 million
severe cases, and approximately 290,000 to 650,000 deaths each year [3]. Notably, avian
IAV H7N9 triggered five outbreaks in China from 2013 to 2017, resulting in 1568 confirmed
infections with a fatality rate of approximately 39%. To alleviate the public health impact of
IAVs, it is imperative to investigate host factors influencing susceptibility to avian IAVs and
the severity of seasonal IAVs. Recent research has underscored the role of innate immune
system proteins (e.g., MxA and BTN3A3) in reducing human susceptibility to avian IAV
H7N9 [4,5], while genetic variations in host genes, such as IFITM3 and IRF7, predispose
individuals to severe disease caused by H1N1pdm09 [6,7]. This emphasizes the critical role
of host factors in impeding the spread of IAV strains and underscores the potential of the
human immune system to defend against such infections.

The gut microbiota, a complex and highly diverse microbial community, serves as
an essential mediator linking diseases to human genome evolution and is closely associ-
ated with the development and progression of many diseases [8,9]. Numerous studies
have recognized the broad-reaching immune impact of the gut microbiota on pulmonary
health [10–12]. A systematic review of gut microbiota changes in respiratory tract infection
(RTI) patients consistently revealed decreased diversity, with depletion of Firmicutes, Lach-
nospiraceae, Ruminococcaceae, and Ruminococcus, and enrichment of Enterococcus [13]. Fecal
transfer experiments have indicated that gut microbes from mice surviving H7N9 infection
can confer resistance to naive recipient mice challenged with IAV [14]. Additionally, patients
with IAV infection may experience symptoms resembling gastroenteritis [15], indicating
the importance of the gut–lung axis in maintaining lung immunity homeostasis during
influenza infection. Investigations have revealed significant changes in the composition of
intestinal microbiota in individuals affected by different IAV subtypes, including H7N9
and H1N1 [16–18]. However, these studies have only established associations between gut
microbiota and various IAV subtypes. Due to the potential confounding factors and reverse
causality, the causal relationship between gut flora and IAV infection remains unclear.

Mendelian randomization (MR) provides an efficient approach to evaluating causal
effects using genetic variants as instrumental variables (IVs) [19]. Genetic variants are
randomly assigned during meiosis and not influenced by traditional confounding factors,
such as environment, socioeconomic status, and behavior. Furthermore, genetic variants
remain stable after birth, enabling the evaluation of chronologically plausible associations.
Therefore, MR can overcome confounding and reverse causality issues inherent in tradi-
tional observational studies. MR analysis has been widely applied to assess causal effects
between gut microbiota and diseases, such as autoimmune diseases and coronavirus dis-
ease 2019 (COVID-19) [20,21]. Xu et al. employed MR to investigate the causal effect of
gut microbiota on seasonal influenza and influenza-induced pneumonia in Finland. In
their study, the identification of intestinal flora was limited to the genus level [22]. In this
study, we performed a systematic two-sample MR study to explore the causal effect of
species-level gut microbiota on avian IAV H7N9 susceptibility and H1N1pdm09 severity in
Chinese. Note that genome-wide association studies (GWAS) of H7N9 susceptibility have
been restricted to Chinese populations thus far. The outcomes of this study might offer
new insights for personalized IAV treatment through the regulation of gut microbiota.

2. Materials and Methods
2.1. Study Design

First, we conducted a two-sample MR analysis to investigate potential causal rela-
tionships between gut microbial features and IAV infection. Three different MR methods
(refer to Methods further below) were performed to increase the robustness of the results
and avoid bias. The selection of IVs adhered to three critical assumptions [19]: (i) Rele-
vance: the IVs were associated with the exposure of interest; (ii) Independence: the IVs
were independent of other confounding factors that affect both the exposure and outcome;
(iii) Exclusion restriction: the IVs were required to influence the outcome solely through the
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studied exposure. The stringent criteria for IV selection were essential to ensure the validity
and robustness of the MR analysis results. Subsequently, protein–protein interaction (PPI)
and functional enrichment analyses were carried out to investigate possible biological
connections between gut microbiota and influenza infection. The study design is illustrated
in Figure 1.
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2.2. Gut Microbiome Data

The GWAS summary data for human gut microbiome composition were obtained
from an extensive study [23], involving 1539 adult Chinese individuals with both blood
and fecal samples available. Each participant underwent high-depth whole-genome and
whole-metagenomic sequencing with a mean sequencing depth of 42× for the whole
genome, ensuring precise genotyping. This dataset was composed of 500 microbial features,
including 401 taxa (248 species, 95 genera, 32 families, 14 orders, 3 classes, and 9 phyla) and
99 module functions (MFs), all integrated into the analysis. The GWAS results for microbial
features were meticulously adjusted for various factors, such as age, gender, body mass
index, defecation frequency, stool form, 12 dietary and lifestyle factors, and the top four
principal components (PCs), to minimize the effects of potential confounding factors [23].

2.3. H7N9 Susceptibility and H1N1 Severity GWAS Data

The summary statistics for H7N9 susceptibility were retrieved from a previous GWAS
involving 217 H7N9 patients and 116 healthy poultry workers, all of Chinese descent [5].
Real-time reverse transcription polymerase chain reaction (RT–PCR) was used for diagnos-
ing H7N9 infection, following the Diagnostic and Treatment Protocol for Human Infection
with Avian Influenza A (H7N9) (http://www.nhc.gov.cn/gjhzs/s7952/201304/34750c7e6
930463aac789b3e2156632f.shtml accessed on 30 May 2018). Similarly, summary statistics
for H1N1 severity were collected from another preceding GWAS involving 165 Chinese
H1N1pdm09 patients, confirmed by positive results of real-time RT–PCR [24]. Patients
with mild symptoms (n = 95) were defined as outpatients not admitted to hospitals, while
those with severe symptoms (n = 70) were hospitalized patients meeting specific criteria
outlined in the Protocol for diagnosis and treatment of influenza (2019 version) [25]. All
participants underwent high-depth whole-genome sequencing, with an average sequencing

http://www.nhc.gov.cn/gjhzs/s7952/201304/34750c7e6930463aac789b3e2156632f.shtml
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depth exceeding 30×, to detect potential variants and for genotyping. Subsequently, GWAS
summary statistics were generated using logistic regression analysis, adjusted for gender,
age, and PCs.

2.4. Selection of IVs

The single nucleotide polymorphisms (SNPs) associated with microbiome features were
chosen as eligible IVs according to several criteria. Firstly, SNPs with a p value < 1 × 10−5

were chosen to represent a broad range of microbiome [23,26]. To ensure independence,
linkage disequilibrium (LD) clumping was performed (r2 < 0.01 within a 1000 kb window)
using the 1000 Genomes EAS population as a reference. SNPs with palindromic A/T or
G/C alleles were excluded to prevent strand orientation or allele coding issues. SNPs
associated with the outcome (p < 1 × 10−4) were also excluded. The strength of IVs was
assessed using F-statistics, calculated using the formula [27]:

F = R2(N − 1 − k)/(1 − R2)k (1)

where N represents the sample size, k indicates the number of IVs, and R2 stands for the
proportion of variance explained. For a SNP, R2 was calculated using the equation:

R2 = 2 × EAF × (1 − EAF) × β2/[2 × EAF × (1 − EAF) × β2 + 2 × EAF × (1 − EAF) × N × SE2] (2)

where EAF is the effect allele frequency, β is the effect size, and SE is the standard error
of effect size. SNPs with F-statistics < 10 were deemed insufficient in strength and were
subsequently removed [28]. The independence of selected SNPs allowed for the calcula-
tion of the combined R2 as the sum of individual R2 values under the assumption of an
additive model.

2.5. Two-Sample MR Analysis

The inverse variance weighted (IVW) test served as the primary method to evaluate
causal effects, aggregating Wald ratios of IVs in a fixed-effect meta-analysis model, pro-
viding reliable results under the assumption of no horizontal pleiotropy for each IV [29].
Additionally, MR–Egger regression and the weighted median (WM) method were used for
supplementary analysis. Suppose there are M genetic variants, where j represents the jth
variant, with x denoting the exposure, and y signifying the outcome. The IVW method is a
basic model assuming that pleiotropy does not exist or is zero. It estimated the causal effect
(βxy ) by integrating the effect ratio (θj = βyj /βxj ) of genetic variant on outcome (βyj ) and
exposure (βxj ) using inverse variance weighting. IVW estimates can also be obtained using
the following weighted linear regression model without intercept terms:

β̂yj = bβ̂xj + ε j , ε j ∼ N
(

0, se
(

βyj
)2
)

(3)

The estimate of the slope parameter b is the causal effect, and the weight is the inverse
of the variance of the genetic association effect corresponding to the outcome. In order to
control the uncorrelated pleiotropy, MR–Egger identifies the violations of pleiotropy and
heterogeneity by incorporating an intercept in the IVW model [30]. The regression model
is as follows:

β̂yj = b0 + bβ̂xj + ε j , ε j ∼ N
(

0, se
(

βyj
)2
)

(4)

Because some IVs may be pleiotropic, the WM method estimates the causal effect from
the weighted median of the effect ratio (θj). The WM method offers consistent estimates
even when up to 50% of the IVs are invalid [31]. Following the application of the Bonferroni
correction, we established a statistically significant threshold of p = 1 × 10−4 (0.05/500).
The associations with p < 0.05 but above 1 × 10−4 were considered nominally significant.
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2.6. Sensitivity Analysis

Sensitivity analyses were conducted to assess the robustness of the MR analysis.
MR–Egger intercept tests and MR–Pleiotropy Residual Sum and Outlier (MR–PRESSO)
global tests were used to examine horizontal pleiotropy [32,33]. Additionally, Cochran’s Q
statistic and a funnel plot were used to examine heterogeneity [34]. A leave-one-out analysis
was conducted to demonstrate that inferred causal relationships were not influenced by a
single SNP [32]. All MR analyses were carried out using R software (version 4.1.2) and the
“TwoSampleMR” package (version 0.5.6).

2.7. Biological Annotation

ANNOVAR (version 20180416) was used to functionally annotate variants with p < 1 × 10−4

in H7N9 susceptibility and H1N1 severity GWAS, and variants with p < 1 × 10−5 in the gut
microbiome GWAS [35]. PPI networks were constructed using shared positional mapped
genes between IAVs and the gut microbiome. These networks were predicted using
the Search Tool for the Retrieval of Interacting Genes (STRING, version 12.0) online
database [36]. A combined score ≥ 0.4 was chosen for construction of the PPI networks.
We also extracted the functional enrichment results for human phenotype (Experimental
Factor Ontology [37] and Human Phenotype Ontology [38]) from STRING, which could
provide insight into the associations of genes with various phenotypes. The connected PPI
networks were visualized using Cytoscape software (version 3.8.0) [39]. The top 10 nodes
were identified as hub genes using the Maximal Clique Centrality (MCC) method with
the CytoHubba plug-in (version 0.1) [40]. The effect of hub genes on multiple phenotypes
was evaluated through Phenome-Wide Association Study (PheWAS) by examining the
pleiotropy of hub genes in the summary statistics for 4756 complex traits and diseases
across 28 domains using the GWAS ATLAS [41]. PheWAS offered a more comprehensive
understanding of the biological significance of these genes and helped elucidate the MR
results. The statistically significant threshold was defined as 1.05 × 10−5 (0.05/4756).
IVs for pairs of microbial features and IAVs with significant causality were annotated
using ANNOVAR. Additionally, Gene Ontology (GO) [42,43] and Kyoto Encyclopedia of
Genes and Genomes (KEGG) [44] pathway enrichment analyses were performed for the
positional mapped genes using DAVID (https://david.ncifcrf.gov/tools.jsp accessed on
21 January 2024) [45,46] to reveal the potential underlying biological pathways or functions
of causal associations. GO is utilized as a bioinformatics tool for annotating genes and
analyzing the biological processes they are involved in. It classifies gene functions into
biological processes (BP), molecular functions (MF), and cellular components (CC). KEGG
is a database for analyzing molecular signaling pathways and interactions in biological
systems. A significance threshold of p < 0.05 and Fold Enrichment > 2.5 was considered
statistically significant. The enrichment analysis results are visualized by SRplot web server
(http://www.bioinformatics.com.cn/SRplot accessed on 21 January 2024) [47].

3. Results
3.1. Effect of Gut Microbiota on H7N9 Susceptibility

The results of the MR analysis concerning H7N9 susceptibility are detailed in Figure S1.
The genetic IVs varied from 2 to 29 across different gut microbiome features. F-statistics
for the human gut microbiota ranged from 20.17 to 37.02, all surpassing 10, indicating
a reduced susceptibility to weak instrument bias. Initially, the IVW method identified
14 gut bacterial taxa associated with H7N9 susceptibility (Figure 2, Table S1). The effect
directions estimated by MW were consistent with those derived from IVW. However, the
MR–Egger method revealed inconsistent directions for two gut bacterial taxa, including
the genus Rahnella and Coprococcus catus. Subsequently, 12 gut bacterial taxa were found to
be nominally causally associated with H7N9 susceptibility with statistical significance. It is
worth noting that Clostridium hylemonae (β = −0.335, 95% CI: −0.622 to −0.049, p = 0.022)
and Clostridium ramosum (β = −0.390, 95% CI: −0.684 to −0.096, p = 0.009), known for
synthesizing short-chain fatty acids (SCFAs), exhibited a negative correlation with the

https://david.ncifcrf.gov/tools.jsp
http://www.bioinformatics.com.cn/SRplot
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susceptibility to H7N9. Additionally, Streptococcus peroris (β = −0.327, 95% CI: −0.648
to −0.006, p = 0.046) and Streptococcus sanguinis (β = −0.552, 95% CI: −1.017 to −0.087,
p = 0.020)) were associated with a reduced risk of H7N9 susceptibility, while Streptococ-
cus mitis (β = 0.504, 95% CI: 0.022 to 0.986, p = 0.041) showed an increased risk of H7N9
susceptibility. Scatter plots are displayed in Figure S2.
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Figure 2. Causal effects of gut microbiota on H7N9 susceptibility. Summary of Mendelian random-
ization (MR) estimates derived from inverse variance weighted (IVW), weighted median (WM),
and MR–Egger analyses. CI denotes confidence interval; OR, odds ratio; SNPs, single nucleotide
polymorphisms. “s_”, “g_”, “f_” are species, genus, and family, respectively.

In the sensitivity analysis (Table 1), both the MR–PRESSO Global test and MR–Egger
intercept test indicated a limited impact of horizontal pleiotropy. Furthermore, Cochran’s
Q test suggested no significant heterogeneity. The leave-one-out analysis indicated that no
SNPs significantly influenced the overall result (Figure S3). Most funnel plots demonstrated
symmetry (Figure S4), reinforcing the robustness and reliability of the MR analysis results.
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Table 1. Sensitivity analysis of the causal effect between gut microbiota and H7N9 susceptibility.

Exposure Method
Heterogeneity Pleiotropy Egger

Intercept Pval
MR–PRESSO

Global Test PvalQ Q_df Q_pval

f_Coriobacteriaceae MR–Egger 9.371 12 0.671
0.830 0.754IVW 9.419 13 0.741

f_Leuconostocaceae MR–Egger 8.736 9 0.462
1.000 0.592IVW 8.736 10 0.557

g_Mobiluncus MR–Egger 28.293 17 0.042
0.961 0.083IVW 28.298 18 0.058

g_Rahnella MR–Egger 6.428 10 0.778
0.098 0.600IVW 9.751 11 0.553

s_Citrobacter youngae MR–Egger 6.861 10 0.738
0.433 0.766IVW 7.529 11 0.755

s_Clostridium hylemonae MR–Egger 3.534 9 0.939
0.198 0.858IVW 5.469 10 0.858

s_Clostridium ramosum
MR–Egger 6.906 13 0.907

0.978 0.930IVW 6.907 14 0.938

s_Coprococcus catus MR–Egger 13.319 13 0.424
0.106 0.347IVW 16.410 14 0.289

s_Desulfovibrio alaskensis MR–Egger 3.362 6 0.762
0.970 0.878IVW 3.364 7 0.849

s_Eubacterium cellulosolvens
MR–Egger 0.018 2 0.991

0.773 0.983IVW 0.127 3 0.988

s_Slackia exigua MR–Egger 5.910 12 0.921
0.390 0.913IVW 6.706 13 0.917

s_Streptococcus mitis MR–Egger 7.813 12 0.800
0.184 0.701IVW 9.798 13 0.710

s_Streptococcus peroris MR–Egger 5.576 6 0.472
0.213 0.430IVW 7.515 7 0.377

s_Streptococcus sanguinis MR–Egger 4.667 9 0.862
0.433 0.862IVW 5.339 10 0.867

Abbreviations: IVW, inverse variance weighted; MR–PRESSO, MR–pleiotropy residual sum and outlier. “s_”,
“g_”, “f_” are species, genus, family, order, class, and phylum, respectively.

3.2. Effect of Gut Microbiota on H1N1 Severity

Causal effects of all gut microbiota on H1N1 severity are presented in Figure S5.
The genetic IVs for each gut microbiome feature ranged from 7 to 31, with F-statistics
ranging from 23.38 to 30.70, surpassing the empirical threshold of 10. The IVW analysis
identified 18 gut bacterial taxa associated with H1N1 severity. However, alternative MR
analysis methods revealed inconsistent effect directions for three bacterial species: Roseburia
intestinalis, Treponema vincentii, and Veillonella atypica. Ultimately, 15 gut bacterial taxa met
the criteria as significant contributors to the development of H1N1 severity (Figure 3,
Table S2). In particular, Faecalibacterium prausnitzii (β = −0.394, 95% CI: −0.774 to −0.013,
p = 0.043), playing a key role in the biosynthesis of SCFAs, exhibited a negative association
with the risk of H1N1 severity. Moreover, Streptococcus parasanguinis (β = −0.574, 95% CI:
−1.004 to −0.144, p = 0.009) and Streptococcus suis (β = −0.455, 95% CI: −0.865 to −0.044,
p = 0.030) were also correlated with a reduced risk of H1N1 severity. Scatter plots are
available in Figure S6.



Microorganisms 2024, 12, 1170 8 of 19Microorganisms 2024, 12, 1170 9 of 20 
 

 

 
Figure 3. Causal effects of gut microbiota on H1N1 severity. Summary of Mendelian randomization 
(MR) estimates obtained from inverse variance weighted (IVW), weighted median (WM), and MR–
Egger analyses. CI, confidence interval; SNPs, single nucleotide polymorphisms. “s_”, “g_”, “f_” are 
species, genus, and family, respectively. 

Based on the results of sensitivity analysis, no significant horizontal pleiotropy or 
heterogeneity was detected using the MR–Egger intercept test, MR–PRESSO global test 
and Cochran’s Q test (Table 2). Furthermore, the leave-one-out analysis and funnel plots 
demonstrated the stability of the findings (Figures S7 and S8). 

  

Figure 3. Causal effects of gut microbiota on H1N1 severity. Summary of Mendelian randomization
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Based on the results of sensitivity analysis, no significant horizontal pleiotropy or
heterogeneity was detected using the MR–Egger intercept test, MR–PRESSO global test
and Cochran’s Q test (Table 2). Furthermore, the leave-one-out analysis and funnel plots
demonstrated the stability of the findings (Figures S7 and S8).
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Table 2. Sensitivity analysis of the causal effect between gut microbiota and H1N1 severity.

Exposure Method
Heterogeneity Pleiotropy Egger

Intercept Pval
MR–PRESSO

Global Test PvalQ Q_df Q_pval

f_Sutterellaceae MR–Egger 10.309 17 0.890
0.612 0.911IVW 10.576 18 0.911

g_Acetivibrio MR–Egger 8.999 11 0.622
0.894 0.725IVW 9.018 12 0.701

g_Ethanoligenens MR–Egger 4.722 9 0.858
0.593 0.894IVW 5.029 10 0.889

g_Subdoligranulum MR–Egger 4.104 13 0.990
0.611 0.992IVW 4.375 14 0.993

g_Yersinia MR–Egger 2.935 6 0.817
0.499 0.850IVW 3.453 7 0.840

s_Bacteroides_thetaiotaomicron
MR–Egger 15.037 18 0.659

0.366 0.673IVW 15.897 19 0.664

s_Bacteroides_xylanisolvens MR–Egger 6.308 8 0.613
0.408 0.645IVW 7.071 9 0.630

s_Clostridiales_genomosp._BVAB3 MR–Egger 9.242 9 0.415
0.719 0.535IVW 9.384 10 0.496

s_Eubacterium_biforme MR–Egger 17.371 22 0.743
0.680 0.790IVW 17.546 23 0.782

s_Faecalibacterium_prausnitzii MR–Egger 24.531 29 0.702
0.203 0.706IVW 26.226 30 0.664

s_Neisseria_gonorrhoeae MR–Egger 5.220 8 0.734
0.793 0.821IVW 5.294 9 0.808

s_Roseburia_intestinalis
MR–Egger 1.476 5 0.916

0.331 0.873IVW 2.636 6 0.853

s_Streptococcus_parasanguinis MR–Egger 12.312 18 0.831
0.528 0.862IVW 12.726 19 0.852

s_Streptococcus_suis MR–Egger 7.267 13 0.888
0.754 0.914IVW 7.369 14 0.920

s_Treponema_vince MR–Egger 14.963 15 0.454
0.147 0.413IVW 17.306 16 0.366

s_Turicibacter_sanguinis MR–Egger 3.302 5 0.653
0.382 0.671IVW 4.219 6 0.647

s_Veillonella_atypica MR–Egger 9.639 12 0.648
0.217 0.584IVW 11.338 13 0.583

MF0032:glutamate_degradation_IIIMR–Egger 8.588 17 0.952
0.294 0.948IVW 9.761 18 0.939

Abbreviations: IVW, inverse variance weighted; MR–PRESSO, MR–pleiotropy residual sum and outlier. “s_”,
“g_”, “f_” are species, genus, family, order, class, and phylum, respectively.

3.3. Biological Annotation

We identified a total of 87 shared GWAS significant genes connecting H7N9 susceptibil-
ity and microbiota features (Table S3) and 30 shared genes of H1N1 severity and microbiota
features (Table S4). The PPI network analysis of both gene sets using the STRING database
revealed a significantly higher number of interactions than expected by chance. By eval-
uating the enrichment of observed edges compared to expected edges, we obtained a
PPI p-value of 8.43 × 10−8 for 87 proteins (Figure S9A) and 3.70 × 10−3 for 30 proteins
(Figure S9B), indicating a biological connection to some extent. According to STRING,
previous studies found that these genes were associated with several phenotypes at a false
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discovery rate (FDR) < 0.05. For the overlapping proteins between H7N9 susceptibility
and microbiota features, we identified a significant enrichment of 44 phenotypes (Table S5),
including gut microbiome measurement, susceptibility to infectious disease measurement,
respiratory disease biomarker, etc. In contrast, we observed a significant enrichment of only
three phenotypes among the overlapping proteins between H1N1 severity and microbiota
features (Table S6).

The connected PPI networks were visualized using Cytoscape (Figure 4), and hub
genes were screened (Tables S7 and S8). Except for ZBTB18 and C1orf100, all hub genes
were associated with multiple phenotypes (p < 1.05 × 10−5). In the PPI network linking
H7N9 susceptibility to microbiota features, PheWAS results revealed that 8 out of 10 hub
genes (LRP1B, ROBO2, USH2A, FOXP1, TENM4, CACNA1C, PCLO, and AGRN) showed
enrichment with genetic signals associated with the metabolic or nutritional domain. More-
over, 4 of the 10 hub genes (LRP1B, FOXP1, CACNA1C, and KALRN) were enriched with
genetic signals associated with the immunological domain (Figure S10, Table S9). Similarly,
8 of 10 hub genes (PTPRD, RARB, PPARGC1A, SORCS2, MED15, DLGAP1, PLCB4, and
DGKB) in the network connecting H1N1 severity to microbiota features showed enrichment
with the metabolic or nutritional domain. However, only one hub gene (PPARGC1A) was
enriched with the immunological domain (Figure S11, Table S10). In summary, PPI net-
works and PheWAS analysis uncover the connection between IAV infection and microbial
features, which are associated with hub genes, as well as the metabolic or nutritional
domain and the immunological domain.
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Figure 4. Visualization of connected protein-protein interaction networks using Cytoscape. (A) The
network of overlapped genes between H7N9 susceptibility and microbiota features. (B) The net-
work of overlapped genes between H1N1 severity and microbiota features. Node size and color
correspond to the respective degrees, while edge weight and color are proportional to the STRING
confidence score.

A total of 170 IVs for the 12 pairs of microbial features and H7N9 susceptibility with
potential causality were mapped onto 216 genes (Table S11), and 232 IVs for the 15 pairs of
microbial features and H1N1 severity were mapped onto 304 genes (Table S12). The GO
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analysis showed that both gene sets were significantly enriched in several terms, including
cell–cell junction assembly, adherens junction organization, cell–cell adhesion mediated by
cadherin, cell–cell adhesion via plasma-membrane adhesion molecules, calcium-dependent
cell–cell adhesion via plasma membrane cell adhesion molecules, and homophilic cell
adhesion via plasma membrane adhesion molecules. Additionally, the 216 mapped genes
were significantly enriched in galactosylceramide catabolic process, phosphorylation, while
the 304 mapped genes were significantly enriched in transmembrane receptor protein
tyrosine kinase signaling pathway, Ras protein signal transduction, positive regulation of
T-helper cell differentiation, etc. (Figure 5, Tables S13 and S14). In the KEGG analysis, the
216 mapped genes did not show significantly enriched pathways, whereas the 317 mapped
genes were significantly enriched in the Rap1, Apelin, and calcium signaling pathways
(Figure S12, Table S15).
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Figure 5. Gene Ontology pathway enrichment analysis performed on (A) 216 genes annotated from
instrumental variables for pairs of microbial features and H7N9 susceptibility with potential causal
relationships in Mendelian randomization (MR), and (B) 314 genes annotated from IVs for pairs
of microbial features and H1N1 severity with potential causal relationships in MR. BP: biological
process, CC: cellular component, MF: molecular function.

4. Discussion

Our research revealed that 12 specific bacterial features were causally associated
with H7N9 susceptibility, while 15 bacterial features were causally associated with the
severity of H1N1, underscoring the significance of the gut–lung axis in regulating immune
responses during IAV infections. We also provided a possible biological interpretation of
the association between gut microbiota and IAV infection using gene- and gene-set-based
analyses on multi-omics data.

The complex and diverse microbial ecosystem in the gastrointestinal tract plays a
pivotal role in maintaining human health. Recent studies have demonstrated the in-
tricate interplay between gut microbiota and immune system regulation, extending its
impact beyond the gut to encompass the entire body, including distant organs such as
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the lungs [48–50]. The gut–lung axis, representing the interaction between gastrointestinal
bacteria and the pulmonary system, can modulate inflammatory activity at both local and
systemic levels [51]. Notably, in the treatment of IAV-induced viral respiratory infections,
the significant disruption of the gut microbial ecosystem by antibiotics can compromise the
innate and adaptive defenses of the host, emphasizing the essential role of the gut–lung
axis in IAV infection [52,53]. Furthermore, emerging evidence has underscored the critical
role of microbiota composition in regulating the development of virus-specific CD4 and
CD8 T cells, as well as antibody responses, in respiratory influenza virus infections [53].
Disruptions in gut microbes could potentially impair immune cell migration to the lungs,
thereby increasing susceptibility to respiratory tract infections [54,55]. This observation
emphasized the pivotal role of gut microbiota in shaping host immune responses and
underscored the potential for modulating microbiota composition as a new therapeutic
approach for treating influenza and other respiratory viral infections.

There is mounting evidence linking the composition of gut microbiota to IAV in-
fections, with the fecal microbiomes of H1N1 and H7N9 patients showing a noticeable
decrease in bacterial diversity [16,17]. It is worth noting that gut dysbiosis, often charac-
terized by reduced microbial diversity, is commonly associated with inflammatory and
autoimmune disorders [51]. In patients with laboratory-confirmed H1N1, a reduction in
the phyla Actinobacteria and Firmicutes, along with the genera Faecalibacterium and Strep-
tococcus, was observed compared to healthy controls [16]. Similarly, in a study involving
26 patients infected with H7N9, a decrease in the phyla of Bacteroidetes and the genera of
Eubacterium, Roseburia, and Faecalibacterium, as well as the species of Roseburia intestinalis
and Faecalibacterium prausnitzii, was noted, while an enrichment was observed for the genus
of Veillonella [17].

Consistent with previous research, our study identified that six out of eight bacterial
taxa negatively associated with H1N1 severity belonged to the phylum Firmicutes, with the
exception of Bacteroides thetaiotaomicron and Bacteroides xylanisolvens. Similarly, apart from
Citrobacter youngae, the other four bacterial taxa negatively linked to H7N9 susceptibility
also belonged to Firmicutes. Previous studies have reported a reduction in Firmicutes among
patients with RTIs, including H1N1 infection, COVID-19, tuberculosis (TB), community-
acquired pneumonia, and recurrent respiratory tract infections [13]. Certain gut microbes,
notably Faecalibacterium prausnitzii and Clostridium hylemonae of the Firmicutes phylum, pos-
sess a strong ability to produce SCFAs, such as acetate, propionate, and butyrate, through
the fermentation of dietary fiber and resistant starch [56,57]. Microbiota-derived butyrate
activates the nuclear receptor peroxisome proliferator activated receptor γ in colonic ep-
ithelial cells, shifting their energy metabolism towards fatty acid oxidation and oxidative
phosphorylation in mitochondria, which consumes high levels of oxygen [58–60]. This
suggests that SCFAs promote gut homeostasis through a positive feedback loop by limit-
ing the luminal bioavailability of oxygen. SCFAs can also signal through the membrane
receptor G protein-coupled receptor (GPR) to activate signaling pathways that regulate
immune functions [61]. Research has shown that acetate could protect against respiratory
syncytial virus-induced disease by activating GPR43 and modulating type 1 responses in
lung epithelial cells [62]. Moreover, SCFAs can induce both effector and regulatory T cells
to regulate the immune system by inhibiting the direct histone deacetylase (HDAC) in T
cells and enhancing the mTOR-S6K pathway [63]. In our study, Faecalibacterium prausnitzii,
a representative bacterium of the phylum Firmicutes, was also found to be negatively corre-
lated with H1N1 severity. Faecalibacterium prausnitzii is considered as an anti-inflammatory
probiotic that provides defense against various gastrointestinal disorders [64]. Reduced
levels of Faecalibacterium prausnitzii have been observed in patients with COVID-19, TB,
asthma, and cystic fibrosis [65–68]. Additionally, a study investigating the correlations
between gut microbiota and persistent symptoms in recovered COVID-19 patients revealed
a negative correlation between chest tightness after activity and the relative abundance of
Faecalibacterium prausnitzii [69].
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Our results indicated that the species Streptococcus peroris and Streptococcus sanguinis,
as well as Streptococcus parasanguinis and Streptococcus suis, were negatively correlated
with H7N9 susceptibility and H1N1 severity, respectively. However, concerning the genus
Streptococcus, different outcomes were observed in individuals infected with H1N1 and
H7N9 compared to the control group, showing decreased levels for H1N1 and elevated
levels for H7N9 [16,17]. Animal studies have indicated that pre-exposure to Streptococcus
suis improved survival in mice co-infected with the influenza virus, with the upregu-
lated innate immunity potentially playing a significant role in reducing mortality when
the bacteria were administered before viral infection [70]. Furthermore, a clinical trial
demonstrated that the estimated risk of respiratory failure during the course of COVID-
19 was significantly lower by eightfold in the group receiving oral bacteriotherapy with
streptococcal-containing preparations compared to the untreated group. Conversely, the
incidence of ICU admission and mortality was higher among patients not treated with oral
bacteriotherapy [71]. The bacterial strains present in the bacterial formulation enhanced
the production of both nuclear factor erythroid 2p45-related factor 2 and its target Heme
oxygenase-1, exerting antiviral effects through the reduction of oxidative stress [72]. In-
terestingly, Xu et al. reported that the genus Streptococcus was negatively associated with
influenza outcomes in FinnGen cohorts, consistent with our findings in the Chinese popu-
lation [22]. However, we also found that Streptococcus mitis was positively associated with
H7N9 susceptibility. Streptococcus mitis is a predominant cause of infective endocarditis and
bacteremia. It is notable that the majority of virulence factors identified in the Streptococcus
pneumoniae genome are shared with Streptococcus mitis [73]. These findings suggest that not
all Streptococcus species provide protection against influenza. In particular, Streptococcus
mitis appears to be a potential risk factor for susceptibility to H7N9.

In our study, we identified hub genes such as LRP1B and PTPRD that serve as key
connections between IAV infection and microbiota features. LRP1B, which belongs to the
low-density lipoprotein (LDL) receptor family, plays diverse roles in normal cell function
and development by interacting with multiple ligands. The LDL receptor family has roles
related to the clearance of extracellular ligands and is proposed to be involved in extra-
cellular signal transduction [74]. A previous GWAS study demonstrated an association
between LRP1B and Influenza A (H1N1) infection [75]. Depletion of LRP1B has been shown
to reduce IAV A/Puerto Rico/8/34 H1N1 infection [76] and influenza A/WSN/33 repli-
cation [77]. PTPRD encoded a member of the protein tyrosine phosphatase (PTP) family.
PTPs are known to be signaling molecules that regulate a variety of cellular processes,
including cell growth, differentiation, mitotic cycle, and oncogenic transformation [78].
PTPRD is involved in various signaling pathways, including PTPRD/STAT3/JAK and
PTPRD/PD-1/PD-L1 axes [79–82]. These pathways are crucial in regulating IAV replication
and anti-IAV immunity [83,84]. Moreover, PheWAS analysis revealed connections between
hub genes and metabolic, nutritional, and immunological traits. GO enrichment high-
lighted a significant association between genes derived from IAVs and the BP of adherens
junctions. Adherens junctions are formed by the transmembrane adhesion molecule vascu-
lar endothelial (VE)-cadherin and its cytoplasmic tail binding molecules, like β-catenin and
plakoglobin, which anchor to actin via α-catenin and stabilize the junction [85]. The Rap1
signaling pathway, identified through KEGG enrichment, plays a critical role in regulating
cell adhesion and cell–cell junction formation by modulating the function of integrins and
other adhesion molecules in various cell types. Notably, gut microbiota could influence
endothelial cell function at distant sites, such as the liver [86]. During IAV infection, the
virus affects VE cells by inducing β-catenin degradation in adherens junctions, which is
one of the key mechanisms leading to vascular hyperpermeability in severe influenza [87].
Therefore, a plausible mechanism for the causal relationship between gut microbiota and
IAV infection may involve the regulation of adherens junctions in endothelial cells during
the course of IAV infection.

This study had several strengths. Firstly, we utilized the largest-scale metagenomics
GWAS dataset available for individuals of Chinese ancestry. Despite the relatively small
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sample size of the H1N1 and H7N9 GWAS, they represented the most extensive GWAS
study on avian IAV susceptibility conducted to date. Secondly, the application of metage-
nomic sequencing techniques allowed for precise bacterial classification down to the species
level. Through the analysis of biologically relevant samples, metagenomes provided a
comprehensive view of the gut microbial community, offering unparalleled insights into
bacterial diversity and composition. Thirdly, our study adopted a two-sample MR ap-
proach to estimate causal effects and integrated three sensitivity analysis techniques to
ensure robustness and mitigate potential pleiotropy from the IVs. By employing a rigorous
analytical framework, the study aimed to provide accurate quantitative estimates of the
causal relationship, thereby enhancing confidence in the validity of the findings. Our results
revealed the correlations between gut microbiota composition and avian IAV infection,
suggesting the potential utility of gut microbiota as a targeted risk assessment tool for the
disease and as a potential therapeutic strategy.

There were several limitations in this study. Firstly, the ethnic homogeneity of the
research population necessitates caution when extrapolating our findings to individuals
of different races. Secondly, although we adopted one of the largest gut metagenomics
and IAV GWAS datasets to date, the sample size remained modest, and the number of
loci examined was relatively limited. Therefore, further research based on larger GWAS
datasets is crucial to validate our observations and establish the generalizability of the
findings across diverse populations. Thirdly, our findings were not corroborated by in vivo
flora colonization assay.

Despite these limitations, we believe that our findings provided new clues for further
investigation of microbial function via microbiota colonization in vivo. Focusing on gut
microbiota could represent an innovative approach to the prophylaxis and therapy of
IAV infections.

5. Conclusions

Our MR study has successfully identified the potential causal effects of 12 and 15 gut
microbial features on H7N9 infection and H1N1pdm09 severity, respectively. In particular,
Clostridium hylemonae and Faecalibacterium prausnitzii, which promote the production of
SCFAs, were negatively associated with H7N9 susceptibility and H1N1pdm09 severity
separately. These findings not only highlight the significant implications for understanding
the pathogenesis of IAV infection but also provide valuable clues for future research to
elucidate the role of gut microbiota in infectious diseases.

In summary, our study not only expands our knowledge concerning the impact of the
gut microbiota on H7N9 susceptibility and H1N1pdm09 severity but also underscores the
potential for targeting gut microbial composition based on these findings. The causally
related bacterial groups open a promising avenue for the development of novel preven-
tative and therapeutic strategies against IAV and other respiratory tract infections. An
in-depth comprehension of the foundational mechanisms will facilitate the development of
efficacious strategies to modulate the gut microbiome, thereby reducing the incidence and
severity of IAV infections.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms12061170/s1, Figure S1: The circus plot showing the
MR results of all gut microbiota on H7N9 susceptibility. Circles from outside are the p-value of IVW,
the beta for IVW, the beta for MR–Egger, the beta for WM and the F-statistics. The outermost circle is
the ID of each gut microbiota. “s_”, “g_”, “f_”, “o_”, “c_”, “p_” are species, genus, and family, order,
class, phyla respectively. IVW, inverse variance weighted; WM, weighted median; Figure S2: Scatter
plots for the significant MR associations (p < 0.05) between gut microbiota and H7N9 susceptibility.
“s_”, “g_”, “f_” are species, genus, and family, respectively; Figure S3: Forest plots for the leave-
one-out analysis of the significant MR associations (p < 0.05) between gut microbiota and H7N9
susceptibility. “s_”, “g_”, “f_” are species, genus, and family, respectively; Figure S4: Funnel plots
for the significant MR associations (p < 0.05) between gut microbiota and H7N9 susceptibility. “s_”,
“g_”, “f_” are species, genus, and family, respectively; Figure S5: The circus plot showing the MR
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results of all gut microbiota on H1N1 severity. Circles from outside are the p-value of IVW, the beta
for IVW, the beta for MR–Egger, the beta for WM and the F-statistics. The outermost circle is the
ID of each gut microbiota. “s_”, “g_”, “f_”, “o_”, “c_”, “p_” are species, genus, and family, order,
class, phyla respectively. IVW, inverse variance weighted; WM, weighted median; Figure S6: Scatter
plots for the significant MR associations (p < 0.05) between gut microbiota and H1N1 severity. “s_”,
“g_”, “f_” are species, genus, and family, respectively; Figure S7: Forest plots for the leave-one-out
analysis of the significant MR associations (p < 0.05) between gut microbiota and H1N1 severity. “s_”,
“g_”, “f_” are species, genus, and family, respectively; Figure S8: Funnel plots for the significant
MR associations (p < 0.05) between gut microbiota and H1N1 severity. “s_”, “g_”, “f_” are species,
genus, and family, respectively; Figure S9: Comprehensive overview of PPI networks, including
(A) 87 shared genes and (B) 30 shared genes predicted by STRING. Line color indicates the type of
interaction evidence; Figure S10: PheWAS plots for hub genes in the PPI network of overlapped
genes between H7N9 susceptibility and microbiota features. Bonferroni corrected p = 1.05 × 10−5;
Figure S11: PheWAS plots for hub genes in the PPI network of overlapped genes between H1N1
severity and microbiota features. Bonferroni corrected p = 1.05 × 10−5; Figure S12: KEGG pathway
enrichment analysis performed on 314 genes annotated from IVs for pairs of microbial features
and H1N1 severity with potential causal relationships in two-sample Mendelian randomization;
Table S1: Summary of causal association between gut microbial features and H7N9 susceptibility;
Table S2: Summary of causal association between gut microbial features and H1N1 severity; Table S3:
Shared positional mapped genes of H7N9 susceptibility and microbiota features; Table S4: Shared
positional mapped genes of H1N1 severity and microbiota features; Table S5: Human phenotype
enrichment analysis of 87 proteins connecting H7N9 susceptibility and microbiota features; Table
S6: Human phenotype enrichment analysis of 30 proteins connecting H1N1 severity and microbiota
features; Table S7: The hub genes ranked by MCC method in PPI network of overlapped genes
between H7N9 susceptibility and microbiota features; Table S8: The hub genes ranked by MCC
method in PPI network of overlapped genes between H1N1 severity and microbiota features; Table
S9: PheWAS results of hub genes in PPI network of overlapped genes between H7N9 susceptibility
and microbiota features; Table S10: PheWAS results of hub genes in PPI network of overlapped genes
between H1N1 severity and microbiota features; Table S11: Positional mapped genes of 170 IVs for
pairs of microbial features and H7N9 susceptibility with significant p value in two-sample MR; Table
S12: Positional mapped genes of 232 IVs for pairs of microbial features and H1N1 severity with
significant p value in two-sample MR; Table S13: GO pathway enrichment analysis of 216 mapped
genes; Table S14: GO pathway enrichment analysis of 304 mapped genes; Table S15: KEGG pathway
enrichment analysis of 304 mapped genes.
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