Symbiodiniaceae and Ruegeria sp. Co-Cultivation to Enhance Nutrient Exchanges in Coral Holobiont
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Procedures
2.2. Isolation of Bacterial Strains and Symbiodiniaceae from Corals
2.3. Functional Screening for Probiotic Bacteria Using 16S/ITS2 rDNA Gene Sequencing
2.4. Symbiodiniaceae-Bacteria Co-Culture
2.5. Labeling Bacteria with Stable Isotope 15N-NH4Cl
2.6. SIP-Bacteria and Symbiodiniaceae Co-Culture
2.7. Determination of Photosynthetic Pigments
2.8. Single-Cell Raman Spectrum Analysis
2.9. Raman Spectra Analysis
3. Results
3.1. Screening Results of Coral Symbiotic Microorganisms
3.2. Physiological and Photosynthetic Response to Co-Cultivation of Symbiodiniaceae and Bacteria
3.3. Raman Spectra of Single Microalgal Cell
3.4. Raman Spectra of Single Bacterial Cell
3.5. SCRS Dynamics of Forward 15N-Labelling in the Culture of Ruegeria sp. MR31c
3.6. Dynamics of SCRS Characteristic Bands in Algal and Bacteria Co-Culture
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef]
- Karl, D.M.; Hebel, D.V.; Björkman, K.; Letelier, R.M. The role of dissolved organic matter release in the productivity of the oligotrophic North Pacific Ocean. Limnol. Oceanogr. 2003, 43, 1270–1286. [Google Scholar] [CrossRef]
- Mague, T.H.; Friberg, E.; Hughes, D.J.; Morris, I. Extracellular Release of Carbon by Marine Phytoplankton: A Physiological Approach. Limnol. Oceanogr. 1980, 25, 262–279. [Google Scholar] [CrossRef]
- Hellebust, J.A. Excretion of some organic compounds by marine phytoplankton. Limnol. Oceanogr. 1965, 10, 192–206. [Google Scholar] [CrossRef]
- Gascuel, D.; Bozec, Y.M.; Chassot, E.; Colomb, A.; Laurans, M. The trophic spectrum: Theory and application as an ecosystem indicator. ICES J. Mar. Sci. 2005, 62, 443–452. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Mumby, P.J.; Hooten, A.J.; Steneck, R.S.; Greenfield, P.; Gomez, E.; Harvell, C.D.; Sale, P.F.; Edwards, A.J.; Caldeira, K.; et al. Coral Reefs Under Rapid Climate Change and Ocean Acidification. Science 2007, 318, 1737–1742. [Google Scholar] [CrossRef]
- Hughes, T.; Baird, A.H.; Bellwood, D.R.; Card, M.; Connolly, S.R.; Folke, C.; Grosberg, R.; Hoegh-Guldberg, O.; Jackson, J.B.C.; Kleypas, J.; et al. Climate change, human impact, and the resilience of coral reefs. Science 2003, 301, 929–933. [Google Scholar] [CrossRef]
- Haine, E.R. Symbiont-mediated protection. Proc. R. Soc. B Biol. Sci. 2008, 275, 353–361. [Google Scholar] [CrossRef]
- Kushmaro, A.; Loya, Y.; Fine, M.; Rosenberg, E. Bacterial infection and coral bleaching. Nature 1996, 380, 396. [Google Scholar] [CrossRef]
- Barott, K.L.; Rodriguez-Brito, B.; Janouškovec, J.; Marhaver, K.L.; Smith, J.E.; Keeling, P.; Rohwer, F.L. Microbial diversity associated with four functional groups of benthic reef algae and the reef-building coral Montastraea annularis. Environ Microbiol. 2011, 13, 1192–1204. [Google Scholar] [CrossRef]
- Reshef, L.; Koren, O.; Loya, Y.; Zilber-Rosenberg, I.; Rosenberg, E. The coral probiotic hypothesis. Environ. Microbiol. 2006, 8, 2068–2073. [Google Scholar] [CrossRef]
- Barott, K.L.; Rodriguez-Mueller, B.; Youle, M.; Marhaver, K.L.; Vermeij, M.J.; Smith, J.E.; Rohwer, F.L. Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae. Proc. R. Soc. B Biol. Sci. 2011, 279, 1655–1664. [Google Scholar] [CrossRef]
- Kuhl, M.; Cohen, Y.; Dalsgaard, T.; Jørgensen, B.B.; Revsbech, N.P. Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar. Ecol. Prog. Ser. 1995, 117, 159–172. [Google Scholar] [CrossRef]
- Muscatine, L.; McCloskey, L.R.; Marian, R.E. Marian, and Oceanography, Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration 1. Limnol. Oceanogr. 1981, 26, 601–611. [Google Scholar] [CrossRef]
- Fine, M.; Loya, Y. Endolithic algae: An alternative source of photoassimilates during coral bleaching. Proc. R. Soc. B Biol. Sci. 2002, 269, 1205–1210. [Google Scholar] [CrossRef]
- Lema, K.A.; Willis, B.L.; Bourne, D.G. Corals Form Characteristic Associations with Symbiotic Nitrogen-Fixing Bacteria. Appl. Environ. Microbiol. 2012, 78, 3136–3144. [Google Scholar] [CrossRef]
- Mouchka, M.E.; Hewson, I.; Harvell, C.D. Coral-Associated Bacterial Assemblages: Current Knowledge and the Potential for Climate-Driven Impacts. Integr. Comp. Biol. 2010, 50, 662. [Google Scholar] [CrossRef]
- Amin, S.A.; Hmelo, L.R.; van Tol, H.M.; Durham, B.P.; Carlson, L.T.; Heal, K.R.; Morales, R.L.; Berthiaume, C.T.; Parker, M.S.; Djunaedi, B.; et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 2015, 522, 98–101. [Google Scholar] [CrossRef]
- de-Bashan, L.E.; Mayali, X.; Bebout, B.M.; Weber, P.K.; Detweiler, A.M.; Hernandez, J.-P.; Prufert-Bebout, L.; Bashan, Y. Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical association (Fluorescent in situ hybridization). Algal Res. 2016, 15, 179–186. [Google Scholar] [CrossRef]
- Jarvis, R.M.; Goodacre, R. Goodacre, Discrimination of Bacterial Using Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2004, 76, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Song, Y.; Tao, Y.; Muhamadali, H.; Goodacre, R.; Zhou, N.-Y.; Preston, G.M.; Xu, J.; Huang, W.E. Reverse and Multiple Stable Isotope Probing to Study Bacterial Metabolism and Interactions at the Single Cell Level. Anal. Chem. 2016, 88, 9443–9450. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Zhang, D.; Halas, N.J.; Hartgerink, J.D. Aromatic Amino Acids Providing Characteristic Motifs in the Raman and SERS Spectroscopy of Peptides. J. Phys. Chem. B 2008, 112, 9158–9164. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.E.; Bailey, M.J.; Thompson, I.P.; Whiteley, A.S.; Spiers, A.J. Single-Cell Raman Spectral Profiles of Pseudomonas fluorescens SBW25 Reflects in vitro and in planta Metabolic History. Microb. Ecol. 2007, 53, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Rösch, P.; Harz, M.; Schmitt, M.; Peschke, K.-D.; Ronneberger, O.; Burkhardt, H.; Motzkus, H.-W.; Lankers, M.; Hofer, S.; Thiele, H.; et al. Chemotaxonomic Identification of Single Bacteria by Micro-Raman Spectroscopy: Application to Clean-Room-Relevant Biological Contaminations. Appl. Environ. Microbiol. 2005, 71, 1626–1637. [Google Scholar] [CrossRef] [PubMed]
- Pätzold, R.; Keuntje, M.; Theophile, K.; Müller, J.; Mielcarek, E.; Ngezahayo, A.; Anders-von Ahlften, A. In situ mapping of nitrifiers and anammox bacteria in microbial aggregates by means of confocal resonance Raman microscopy. J. Microbiol. Methods 2008, 72, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Hatzenpichler, R.; Krukenberg, V.; Spietz, R.L.; Jay, Z.J. Next-generation physiology approaches to study microbiome function at single cell level. Nat. Rev. Microbiol. 2020, 18, 241–256. [Google Scholar] [CrossRef] [PubMed]
- Azemtsop Matanfack, G.; Pistiki, A.; Rösch, P.; Popp, J. Raman 18O-labeling of bacteria in visible and deep UV-ranges. J. Biophotonics 2021, 14, e202100013. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Gong, Y.; Xu, T.; Davison, P.A.; MacGregor-Chatwin, C.; Hunter, C.N.; Xu, L.; Meng, Y.; Ji, Y.; Ma, B.; et al. Revealing CO2-Fixing SAR11 Bacteria in the Ocean by Raman-Based Single-Cell Metabolic Profiling and Genomics. BioDesign Res. 2022, 2022, 9782712. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhu, P.; Zhang, L.; Gong, Y.; Wang, C.; Sun, L.; Wang, L.; Chen, R.; Mao, Y.; Fu, X.; et al. Single-Cell Identification, Drug Susceptibility Test, and Whole-genome Sequencing of Helicobacter pylori Directly from Gastric Biopsy by Clinical Antimicrobial Susceptibility Test Ramanometry. Clin. Chem. 2022, 68, 1064–1074. [Google Scholar] [CrossRef]
- Dana, J.D.; Wilkes, C. Structure and Classification Of Zoophytes, United States Exploring Expedition 1838–1842. Available online: https://www.biodiversitylibrary.org/bibliography/4789 (accessed on 30 May 2024).
- Veron, J.E.N. Corals of Australia and the Indo-Pacific. Environmental Science, Biology, Geology. 1993. Available online: https://www.semanticscholar.org/paper/Corals-of-Australia-and-the-Indo-Pacific-Veron/f236d971121dfa985122da86342eb5cae0421e89 (accessed on 30 May 2024).
- Guillard, R. Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Invertebrate Animals; Smith, W.L., Chanley, M.H., Eds.; Springer: Boston, MA, USA, 1975. [Google Scholar]
- Peixoto, R.S.; Rosado, P.M.; Leite DC, D.A.; Rosado, A.S.; Bourne, D.G. Beneficial Microorganisms for Corals (BMC): Proposed Mechanisms for Coral Health and Resilience. Front. Microbiol. 2017, 8, 236713. [Google Scholar] [CrossRef]
- Wiedenmann, J.; D’Angelo, C.; Smith, E.G.; Hunt, A.N.; Legiret, F.E.; Postle, A.D.; Achterberg, E.P. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 2013, 3, 160–164. [Google Scholar] [CrossRef]
- Muscatine, L.; Ferrier-Pages, C.; Blackburn, A.; Gates, R.D.; Baghdasarian, G.; Allemand, D. Cell-specific density of symbiotic dinoflagellates in tropical anthozoans. Coral Reefs 1998, 17, 329–337. [Google Scholar] [CrossRef]
- He, Y.; Zhang, P.; Huang, S.; Wang, T.; Ji, Y.; Xu, J. Label-free, simultaneous quantification of starch, protein and triacylglycerol in single microalgal cells. Biotechnol. Biofuels 2017, 10, 275. [Google Scholar] [CrossRef]
- Huang, W.E.; Griffiths, R.I.; Thompson, I.P.; Bailey, M.J.; Whiteley, A.S. Raman microscopic analysis of single microbial cells. Anal. Chem. 2004, 76, 4452–4458. [Google Scholar] [CrossRef]
- Huang, W.E.; Ward, A.D.; Whiteley, A.S. Raman tweezers sorting of single microbial cells. Environ. Microbiol. Rep. 2009, 1, 44–49. [Google Scholar] [CrossRef]
- Cui, L.; Yang, K.; Li, H.-Z.; Zhang, H.; Su, J.-Q.; Paraskevaidi, M.; Martin, F.L.; Ren, B.; Zhu, Y.-G. Functional Single-Cell Approach to Probing Nitrogen-Fixing Bacteria in Soil Communities by Resonance Raman Spectroscopy with 15N2 Labeling. Anal. Chem. 2018, 90, 5082–5089. [Google Scholar] [CrossRef] [PubMed]
- Mary, Y.S.; Ushakumari, L.; Harikumar, B.; Varghese, H.T.; Panicker, C.Y. FT-IR, FT-raman and SERS spectra of L-proline. J. Iran. Chem. Soc. 2009, 6, 138–144. [Google Scholar] [CrossRef]
- Thomas, G.J.; Prescott, B.; Olins, D.E. Secondary Structure of Histones and DNA in Chromatin. Science 1977, 197, 385–388. [Google Scholar] [CrossRef]
- Cui, L.; Yang, K.; Zhou, G.; Huang, W.E.; Zhu, Y.G. Surface-Enhanced Raman Spectroscopy Combined with Stable Isotope Probing to Monitor Nitrogen Assimilation at Both Bulk and Single-Cell Level. Anal. Chem. 2017, 89, 5793–5800. [Google Scholar] [CrossRef]
- Lesser, M.P.; Mazel, C.H.; Gorbunov, M.Y.; Falkowski, P.G. Discovery of Symbiotic Nitrogen-Fixing Cyanobacteria in Corals. Science 2004, 305, 997–1000. [Google Scholar] [CrossRef]
- Lesser, M.P.; Falcón, L.I.; Rodríguez-Román, A.; Enríquez, S.; Hoegh-Guldberg, O.; Iglesias-Prieto, R. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 2007, 346, 143–152. [Google Scholar] [CrossRef]
- Paillard, C.; Le Roux, F.; Borrego, J.J. Bacterial disease in marine bivalves, a review of recent studies: Trends and evolution. Aquat. Living Resour. 2004, 17, 477–498. [Google Scholar] [CrossRef]
- Miura, N.; Motone, K.; Takagi, T.; Aburaya, S.; Watanabe, S.; Aoki, W.; Ueda, M. Ruegeria sp. Strains Isolated from the Reef-Building Coral Galaxea fascicularis Inhibit Growth of the Temperature-Dependent Pathogen Vibrio coralliilyticus. Mar. Biotechnol. 2019, 21, 1–8. [Google Scholar]
- Rees TA, V. Are Symbiotic Algae Nutrient Deficient? Proc. R. Soc. Lond. Ser. B Biol. Sci. 1991, 243, 227–233. [Google Scholar]
- Schmollinger, S.; Mühlhaus, T.; Boyle, N.R.; Blaby, I.K.; Casero, D.; Mettler, T.; Moseley, J.L.; Kropat, J.; Sommer, F.; Strenkert, D.; et al. Nitrogen-Sparing Mechanisms in Chlamydomonas Affect the Transcriptome, the Proteome, and Photosynthetic Metabolism. Plant Cell 2014, 26, 1410–1435. [Google Scholar] [CrossRef] [PubMed]
- Bottrill, D.E.; Possingham, J.V.; Kriedemann, P.E. The effect of nutrient deficiencies on phosynthesis and respiration in spinach. Plant Soil 1970, 32, 424–438. [Google Scholar] [CrossRef]
- Bongaerts, J.; Krämer, M.; Müller, U.; Raeven, L.; Wubbolts, M. Metabolic Engineering for Microbial Production of Aromatic Amino Acids and Derived Compounds. Metab. Eng. 2001, 3, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Gosset, G. Production of aromatic compounds in bacteria. Curr. Opin. Biotechnol. 2009, 20, 651–658. [Google Scholar] [CrossRef]
- Saibi, W.; Feki, K.; Yacoubi, I.; Brini, F. Bridging Between Proline Structure, Functions, Metabolism, and Involvement in Organism Physiology. Appl. Biochem. Biotechnol. 2015, 176, 2107–2119. [Google Scholar] [CrossRef]
- Liu, W.; Hancock, C.N.; Fischer, J.W.; Harman, M.; Phang, J.M. Proline biosynthesis augments tumor cell growth and aerobic glycolysis: Involvement of pyridine nucleotides. Sci. Rep. 2015, 5, 17206. [Google Scholar] [CrossRef]
- Brennan, L.; Owende, P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Philips, S.; Laanbroek, H.J.; Verstraete, W. Origin, causes and effects of increased nitrite concentrations in aquatic environments. Rev. Environ. Sci. Biotechnol. 2002, 1, 115–141. [Google Scholar] [CrossRef]
- Williams, S.K.; Hodson, R.C. Transport of urea at low concentrations in Chlamydomonas reinhardi. J. Bacteriol. 1977, 130, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Wijffels, R.H.; Barbosa, M.J. An Outlook on Microalgal Biofuels. Science 2010, 329, 796–799. [Google Scholar] [CrossRef] [PubMed]
- Mussatto, S.I.; Dragone, G.; Guimarães, P.M.R.; Silva, J.P.A.; Carneiro, L.M.; Roberto, I.C.; Vicente, A.; Domingues, L.; Teixeira, J.A. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol. Adv. 2010, 28, 817–830. [Google Scholar] [CrossRef] [PubMed]
- Breuer, G.; de Jaeger, L.; Artus, V.G.; Martens, D.E.; Springer, J.; Draaisma, R.B.; Eggink, G.; Wijffels, R.H. Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (II) evaluation of TAG yield and productivity in controlled photobioreactors. Biotechnol. Biofuels 2014, 7, 70. [Google Scholar] [CrossRef] [PubMed]
- Dixon, G.K.; Syrett, P.J. The growth of dinoflagellates in laboratory cultures. New Phytol. 1988, 109, 297–302. [Google Scholar] [CrossRef]
- Apprill, A.; Marlow, H.Q.; Martindale, M.Q.; Rappé, M.S. The onset of microbial associations in the coral Pocillopora meandrina. ISME J. 2009, 3, 685–699. [Google Scholar] [CrossRef] [PubMed]
- Alavi, M.; Alavi, M.; Miller, T.; Erlandson, K.; Schneider, R.; Belas, R. Bacterial community associated with Pfiesteria-like dinoflagellate cultures. Environ. Microbiol. 2001, 3, 380–396. [Google Scholar] [CrossRef]
- Krohn-Molt, I.; Alawi, M.; Förstner, K.U.; Wiegandt, A.; Burkhardt, L.; Indenbirken, D.; Thieß, M.; Grundhoff, A.; Kehr, J.; Tholey, A.; et al. Insights into Microalga and Bacteria Interactions of Selected Phycosphere Biofilms Using Metagenomic, Transcriptomic, and Proteomic Approaches. Front. Microbiol. 2017, 8, 1941. [Google Scholar] [CrossRef]
Genus | No. | Name | Genbank Accession Number | Medium | Affiliated Coral Types | Identity |
---|---|---|---|---|---|---|
Vibrio | JW-1 | Vibrio owensii | CP045859.1 | LB; L1 | A. hyacinthus | (1412/1412) 100% |
JW-2 | Vibrio vulnificus | MN860081.1 | LB | A. hyacinthus | (1448/1448) 100% | |
JW-3 | Vibrio coralliilyticus | CP031472.1 | LB | A. hyacinthus | (1394/1408) 99% | |
JW-4 | Vibrio sp. Strain JC009 | CP092106.1 | L1 | A. hyacinthus | (1452/1452) 100% | |
JW-5 | Vibrio alginolyticus | CP054700.1 | MA2216E | G. fascicularis | (1389/1390) 99.9% | |
JW-6 | Vibrio rotiferianus | AP019798.1 | MA2216E | G. fascicularis | (1415/1416) 99.9% | |
Ruegeria | JW-7 | Ruegeria conchae | CP031472.1 | MA2216E | A. hyacinthus | (1358/1358) 100% |
JW-8 | Ruegeria sp. MR31c | HQ439523.1 | MA2216E | A. hyacinthus | (1334/1348) 99% | |
JW-9 | Ruegeria sp. atlantica | MW828512.1 | MA2216E | A. hyacinthus | (1308/1308) 100 | |
JW-10 | Ruegeria sp. LR4 | KU560503.1 | MA2216E | A. hyacinthus | (1341/1354) 99% | |
JW-11 | Ruegeria sp. strain MP15.1 | OQ435566.1 | MA2216E | A. hyacinthus; G. fascicularis | (1317/1330) 99% | |
JW-12 | Ruegeria arenilitoris | MG896151.1 | MA2216E | G. fascicularis | (1309/1322) 99% | |
JW-13 | Ruegeria lacuscaerulensis | MH283799.1 | L1 | G. fascicularis | (1432/1446) 99% | |
Bacillus | JW-14 | Bacillus horikoshii | DQ289065.1 | MA2216E | G. fascicularis | (1434/1448) 99% |
JW-15 | Bacillus weihaiensis | CP016020.1 | MA2216E | G. fascicularis | (1434/1434) 100% | |
JW-16 | Bacillus coahuilensis | EF014447.1 | MA2216E | G. fascicularis | (1449/1449) 100% | |
Thalassotalea | JW-17 | Thalassotalea euphylliae | MW828496.1 | L1 | A. hyacinthus; G. fascicularis | (1379/1392) 99% |
JW-18 | Thalassomonas loyana | HQ439553.1 | MA2216E | G. fascicularis | (1408/1422) 99% | |
JW-19 | Thalassomonas agarivorans | HQ439504.1 | MA2216E | G. fascicularis | (14111425) 99% | |
Thalassospira | JW-20 | Thalassospira sp. 2ta1 | FJ952805.1 | MA2216E | A. hyacinthus | (1361/1374) 99% |
Microbulbifer | JW-21 | Microbulbifer sp. Alg-AMLN-14-8 | MK453424.1 | MA2216E | A. hyacinthus | (1406/1406) 100% |
Phaeobacter | JW-22 | Phaeobacter sp. strain 088 | MK801649.1 | MA2216E | A. hyacinthus | (1333/1333) 100% |
Alteromonas | JW-23 | Alteromonas aestuariivivens | NR157790.1 | L1 | A. hyacinthus | (1457/1517) 96% |
JW-24 | Alteromonas macleodii | OX359243.1 | L1; CDA | A. hyacinthus; G. fascicularis | (1394/1408) 99% | |
Roseovarius | JW-25 | Roseovarius sp. | MZ262971.1 | MA2216E | A. hyacinthus | (1311/1324) 99% |
Roseobacter-aceae | JW-26 | Shima sp. LR11 | KU560500.1 | NSW | A. hyacinthus | (1352/1352) 100% |
JW-27 | Shimia isoporae | MH283808.1 | L1 | G. fascicularis | (1355/1355) 100% | |
Marinobacter | JW-28 | Marinobacter sp. | MT210870.1 | MA2216E | A. hyacinthus | (1503/1503) 100% |
Labrenzia | JW-29 | Labrenzia sp. | MK493531.1 | MA2216E | A. hyacinthus | (1389/1403) 99% |
Psychrosphaera | JW-30 | Psychrosphaera sp. | MZ262895.1 | L1 | A. hyacinthus | (1385/1385) 100% |
Microbacterium | JW-31 | Microbacterium esteraromaticum | MT453933.1 | MA2216E | G. fascicularis | (1393/1393) 100% |
JW-32 | Microbacterium sp. OB57 | JN942151.1 | MA2216E | G. fascicularis | (1418/1432) 99% | |
Rossellomorea | JW-33 | Rossellomorea aquimaris | MK256784.1 | MA2216E | G. fascicularis | (1451/1451) 100% |
Tropicibacter | JW-34 | Tropicibacter sp. | MK801651.1 | MA2216E | G. fascicularis | (1336/1336) 100% |
Stutzerimonas | JW-35 | Stutzerimonas stutzeri | MT356167.1 | CDA | G. fascicularis | (1461/1475) 99% |
Acinetobacter | JW-36 | Acinetobacter seifertii | OP114754.1 | CDA | G. fascicularis | (1409/1423) 99% |
JW-37 | Acinetobacter soli | OP854766.1 | CDA | G. fascicularis | 1403/1403 100% | |
Enterobacter | JW-38 | Enterobacter cancerogenus | CP025225.1 | CDA | G. fascicularis | (1406/1406) 100% |
Marinomonas | JW-39 | Marinomonas sp. | MG099520.1 | CDA | G. fascicularis | (1462/1476) 99% |
Aerococcus | JW-40 | Aerococcus viridans | MT502756.1 | MA2216E | G. fascicularis | (1423/1437) 99% |
Pseudoalteromonas | JW-41 | Pseudoalteromonas shioyasakiensis | KU321310.1 | MA2216E | G. fascicularis | (1407/1421) 99% |
Component | Raman Bands (cm−1) | Assignment |
---|---|---|
unknown | 655.246 | v (C-S) gauche |
unknown | 754.235 | Symmetric breathing of tryptophan |
nucleic acids | 810.75 | C-O-P-O-C in RNA backbone |
carbohydrates | 872.62 | C-C stretching, Hydroxyproline |
carbohydrates | 943.17 | C-O stretching; C-O-C and C-O-H deformation; α-helix C-C backbone |
lipids | 972.30 | V (C-C) wagging |
proteins | 1008.68 | C-C aromatic |
unknown | 1090.82 | C-O stretching |
proteins | 1130.31 | C-N stretching |
lipids | 1269.12 | Amide III random, lipids |
lipids | 1305.86 | CH3/CH2 twisting or bending mode of lipids |
unknown | 1364.78 | vs (CH3) Adenine, guanine, tyrosine, tryptophan |
unknown | 1405.91 | v (COO-) |
lipids | 1446.82 | CH2, CH3 bending modes |
proteins | 1595.28 | C=N and C=C stretching in quinoid ring |
proteins | 1609.89 | Cytosine (NH2) |
proteins | 1643.04 | Amide I band (protein band) |
lipids | 1663.69 | (C=C) cis, lipids, fatty acids |
lipids | 2857.48 | CH2 symmetric stretch of lipids |
lipids | 3017.76 | v=CH of lipids |
Component | Raman Bands (cm−1) | Assignment |
---|---|---|
amino acid | 743.26 | C-S stretch |
amino acid | 958.87 | C-N stretching |
amino acid | 824.35 | aromatic ring vibration |
amino acid | 994.42 | C-C aromatic and symmetric ring breath |
carbohydrates | 1157.26 | C-C, C=C band stretch |
unknown | 1231.47 | Amide III, C-N stretch, N-H coupling |
unknown | 1329.66 | DNA, Phospholipids, purine |
nucleobase | 1375.36 | Thymine, adenine, guanine |
proteins | 1460.45 | CH2 bending mode, C-H vibrations |
unknown | 1573.91 | Amide II, nucleic acid, Peptidoglycan |
lipids | 2918.07 | C-H vibrations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wu, H.; Shu, Y.; Hua, Y.; Fu, P. Symbiodiniaceae and Ruegeria sp. Co-Cultivation to Enhance Nutrient Exchanges in Coral Holobiont. Microorganisms 2024, 12, 1217. https://doi.org/10.3390/microorganisms12061217
Liu Y, Wu H, Shu Y, Hua Y, Fu P. Symbiodiniaceae and Ruegeria sp. Co-Cultivation to Enhance Nutrient Exchanges in Coral Holobiont. Microorganisms. 2024; 12(6):1217. https://doi.org/10.3390/microorganisms12061217
Chicago/Turabian StyleLiu, Yawen, Huan Wu, Yang Shu, Yanying Hua, and Pengcheng Fu. 2024. "Symbiodiniaceae and Ruegeria sp. Co-Cultivation to Enhance Nutrient Exchanges in Coral Holobiont" Microorganisms 12, no. 6: 1217. https://doi.org/10.3390/microorganisms12061217
APA StyleLiu, Y., Wu, H., Shu, Y., Hua, Y., & Fu, P. (2024). Symbiodiniaceae and Ruegeria sp. Co-Cultivation to Enhance Nutrient Exchanges in Coral Holobiont. Microorganisms, 12(6), 1217. https://doi.org/10.3390/microorganisms12061217