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Abstract: In this study, we explore how transformer models, which are known for their attention
mechanisms, can improve pathogen prediction in pastured poultry farming. By combining farm
management practices with microbiome data, our model outperforms traditional prediction methods
in terms of the F1 score—an evaluation metric for model performance—thus fulfilling an essential
need in predictive microbiology. Additionally, the emphasis is on making our model’s predictions
explainable. We introduce a novel approach for identifying feature importance using the model’s
attention matrix and the PageRank algorithm, offering insights that enhance our comprehension of
established techniques such as DeepLIFT. Our results showcase the efficacy of transformer models in
pathogen prediction for food safety and mark a noteworthy contribution to the progress of explainable
AI within the biomedical sciences. This study sheds light on the impact of effective farm management
practices and highlights the importance of technological advancements in ensuring food safety.

Keywords: food safety; pathogen; transformer; PageRank

1. Introduction

The growing concern over Salmonella, Listeria, and Campylobacter in poultry presents
a pressing public health issue, as these pathogens lead to significant food-borne illnesses
globally [1–3]. Addressing the challenge of detecting and managing these bacteria in
pastured poultry farms calls for innovative strategies to ensure food safety and protect
public health. Our paper introduces a machine-learning-based approach to improving the
detection and control of pathogens in poultry production environments. Additionally, we
present a new method in the field of explainable AI [4], offering a clear insight into the
complex decision-making processes of advanced transformer models.

At the heart of our research is the microbiome—the diverse community of microorgan-
isms inhabiting specific environments such as the gut of poultry. These microbial populations
are pivotal in determining the health and disease susceptibility of their hosts. Some microbiota
clusters can affect pathogen levels either by maintaining a balance that inhibits pathogenic
growth or by fostering conditions conducive to an increase in pathogens [5]. Understanding
these complex interactions is essential for effective pathogen risk management.

Recent research in the field of food safety and microbiome has focused on predictive
microbiology [6,7] and understanding the decision-making processes of machine learn-
ing models. Standard methods for assessing feature importance, such as SHAP [8] and
DeepLIFT [9], are commonly used across various datasets. However, these methods often
overlook interactions within the microbiota, which can significantly influence the out-
comes of these models. Consequently, simple feature importance analyses may not fully
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explain the underlying biological processes. By employing transformer models, which
are renowned for their ability to detect complex data patterns through attention mecha-
nisms [10], we aim to identify microbiota clusters that indicate the presence or absence of
pathogens. These models are particularly adept at uncovering data patterns and dependen-
cies [10], making them well suited for analyzing microbiome data relationships that impact
pathogen prevalence.

This study not only aims for improved pathogen prediction accuracy but also high-
lights the critical role of model explainability in biomedical applications. Explainability
ensures the trustworthiness, transparency, and reliability of AI predictions for both poultry
farmers and biologists. Our method analyzes the model’s attention matrix and applies the
PageRank algorithm [11] to clarify feature significance. Furthermore, we extend explainable
AI techniques by applying spectral clustering for data cluster analysis and transforming
attention matrices into adjacency matrices for graph-based visualizations, improving our
interpretive capabilities for AI decision making.

While exploring attention weights in transformer models to demystify their “black-
box” nature is not entirely new [12–14], we recognize the substantial potential of these
weights. Although past studies suggest that attention weights should not be directly
equated with explanations [15], the more recent literature suggests that these values can
indeed be utilized for explanation [16,17]. Our approach also does not view them as direct
interpretations or explanations; instead, we consider attention values as a step towards
explaining a model.

By proposing the pathogen prediction method for pastured poultry farming, our paper
contributes to the fields of predictive microbiology and food safety. It also paves the way
for future research in explainable AI within biomedical sciences, using attention matrices
to unveil the reasoning behind model decisions. The broader implications of our findings
offer crucial insights into farm management practices that can drive the establishment of
an optimal host microbiome that does not support food-borne pathogens and underscores
the importance of novel analytical approaches in promoting food safety.

In summary, the primary objective of our study is to develop machine learning mod-
els with enhanced explainability for food safety. This research describes highly accurate
machine learning models utilizing transformer architectures and introduces a novel model
explanation technique that complements existing interpretation methods and shows signif-
icant promise for future applications.

2. Dataset

In the introductory section, it was highlighted that our research methodology was
tested by combining two distinct datasets: the Farm Management Practices dataset and the
Microbiome dataset, both of which were sourced from pastured poultry farms. These datasets
were acquired from the foundational work of Hwang et al. and Rothrock et al. [18,19].

2.1. Farm Management Practices Dataset

This dataset is based on a longitudinal study conducted from March 2014 to November
2017, which covered 42 broiler flocks across 11 pastured poultry farms in the southeastern
United States with flock sizes varying between 25 and 1500 birds. The data encompassed
both pre-harvest (Feces and Soil) and post-harvest (Ceca, WCR-F, and WCR-P) samples.
Documented by Xinran Xu et al. in 2021 [20], the study collected data on poultry farms
using movable pens, which were shifted to new pastures daily. The configuration, number,
and application of temporary fencing around the pens varied across the farms.

The data collection encompassed 40 key farm practice variables across the lifecycle of
a flock, totaling 160 variables, including metadata. The dataset includes variables for the
presence of Salmonella, Listeria, and Campylobacter, which are used as the target variables for
our study.
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2.2. Microbiome Dataset

To generate the Microbiome dataset, 16S rRNA gene high-throughput Illumina se-
quencing was applied to analyze temporal pre-harvest samples, including feces and soil,
from the same 41 pastured poultry flocks. This sequencing facilitated the determination
of the relative abundance of operational taxonomic units (OTUs). The unique genera
identified within the OTUs served as machine learning predictors for assessing the preva-
lence of food-borne pathogens—Salmonella, Campylobacter, and Listeria—at various growth
stages of poultry, categorized as START (2–4 weeks old), MID (5–7 weeks old), and END
(8–11 weeks old).

Microbiome Analysis

DNA Extraction: DNA was extracted from samples according to a semi-automated
hybrid DNA extraction protocol [21]. An enzymatic method based on the QIAamp DNA
Stool Mini Kit (QIAGEN, Valencia, CA, USA) was combined with a mechanical method
with the FastDNA Spin Kit for Feces (MP Biomedicals, Solon, OH, USA). A QIAcube
Robotic Workstation was used to purify DNA using the DNA Stool-Human Stool-Pathogen
Detection Protocol. Using a Take3 plate and the Synergy H4 multimode plate reader
(BioTek, Winooski, VT, USA), the DNA concentration of each sample was determined
spectrophotometrically after purification.

Illumina MiSeq Library Analysis: A dataset from the Earth Microbiome Project Labo-
ratory at the U.S. Department of Energy, Argonne National Laboratory (Argonne, IL, USA)
was used for library construction and sequencing. The hypervariable V4 domain of the
bacterial 16S rRNA gene was amplified using the F515 (5′-CACGGTCGKCGGCGCCATT-3′)
and R806 (5′-GGACTACHVGGGTWTCT AAT-3′) primer set, with each primer containing
Illumina adapter regions (Illumina, Inc., San Diego, CA, USA) and the reverse primer
containing the Golay barcodes to facilitate multiplexing [22]. The Illumina MiSeq plat-
form was used to obtain raw reads. The QIIME v1.9.1 pipeline (Quantitative Insights Into
Microbial Ecology) generated and processed 3,297,242 raw sequence reads [23]. R1 reads
were filtered for quality, and libraries were split according to the Golay barcode sequences
(split library f astq.py script, default parameters). With the usearch option [24] and the
pick _otus.py script (-m usearch, all other parameters were set to the default), sequences
were chimera checked against the gold.fa database (http://drive5.com/uchime/gold.fa,
accessed on 20 May 2024) and clustered based on their sequence similarity (97%) into
operational taxonomic units (OTUs). For each OTU, a representative sequence was selected
using the pick_rep_set.py script (utilizing the most abundant method for picking, all other
parameters were set to the default) and used for taxonomic assignment with UCLUST and
the Greengenes 13_8 database [25] using assign_taxonomy.py (default parameters). Using
PyNAST (http://pynast.sourceforge.net, accessed on 10 December 2014) [26], sequences
were aligned (align_seqs.py script, default parameters) and filtered ( f ilter_alignment.py).
Following this, a phylogenetic tree was generated using make_phylogeny.py (using the
default settings and FastTree).

In the context of machine learning, the dataset incorporates input features derived from
two distinct sources: the Farm Management Practices dataset and the Microbiome dataset.
Specifically, the Farm Management Practices dataset contributes 157 input features, while
the Microbiome dataset provides 1823 input features. The model targets three outcome
variables, corresponding to the prevalence of three food-borne pathogens: Salmonella,
Campylobacter, and Listeria.

3. Method

The methodology of this study is structured into three primary stages: data pre-
processing, model architecture design and training, and model decoding. While these stages
are commonly found in any machine learning project, our approach necessitates further
elaboration due to the specific adaptations made to accommodate the transformer model.

http://drive5.com/uchime/gold.fa
http://pynast.sourceforge.net
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3.1. Data Pre-Processing

In addressing the farm management data, which comprise both categorical and contin-
uous variables, a critical step in our data pre-processing involved encoding these variables
into fixed-dimension vectors. This encoding is essential for facilitating the computation
within the attention mechanism of the transformer model. Drawing insights from the work
of Xin Huang [27], we observed that traditionally, attention mechanisms in the context of
tabular data primarily accommodated categorical features, leaving continuous features to
bypass the attention blocks.

To effectively incorporate continuous features into the attention mechanism, we de-
veloped a new encoding technique named “scalar-to-vector encoding”. The details of this
method are provided below.

Given a scalar value S, a maximum value max, a minimum value min, and a target
vector dimension n, we first define the bin size as follows:

binsize =
max − min

n − 1

The bin boundaries spanning the complete range of our data are set according to this
binsize. The scalar value S is then mapped to a corresponding n-dimensional vector V
where all elements are initially set to zero. To embed S into V, we identify the immediate
lower L and upper U bin boundaries that S falls between. The vector V is then updated at
indices corresponding to L and U as follows:

VL =
U − S
U − L

VU =
S − L
U − L

All other elements in V remain at zero, ensuring that V represents the scalar value S
with respect to its position within the specified range.

This method allows continuous variables to be transformed into a fixed-dimensional
vector format, making them compatible for processing through the attention mechanism.
This extends the capabilities of the transformer model to accommodate scalar contin-
uous values as well. Our design builds upon the foundational principles outlined by
Xin Huang [27], expanding its utility to include continuous data alongside categorical inputs.

3.2. Model

Utilizing the scalar-to-vector encoding mentioned in the previous subsection, we
merged categorical features from the Farm Management Practices dataset and contin-
uous features from both the Farm Management Practices dataset and the Microbiome
dataset, preparing them for introduction into the transformer model, as shown in Figure 1.
Adopting the transformer encoder architecture outlined in “Attention is All You Need” by
Vaswani et al. (2017) [10], we applied it to predict the binary presence of pathogens.

3.3. Model Decoding

In the field of model explanation, Shapley Additive Explanations (SHAP) [8] and Deep
Learning Important Features (DeepLIFT) [9] are established methods. Our motivation
for creating a new model explainability approach stems from two factors. Firstly, the
performance of transformers across different data types has been better, a benefit linked to
their attention mechanism. This mechanism implies that analyzing the attention matrix can
unlock various possibilities in Explainable AI.
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Figure 1. Illustration of the architecture of the transformer model highlighting the integration of
both categorical (via one-hot encoding) and continuous (via scalar-to-vector encoding) features into
the transformer’s encoder blocks. Panel (a) shows the encoding processes, and Panel (b) shows the
transformer model’s encoder architecture.

Our transformer model features multiple layers of multi-head attention networks in
series, with each layer’s output feeding into the subsequent layer’s input. For our purposes
in explainable AI and to keep the complexity manageable, only the attention weights from
the first block were used for further analysis. Thus, minor modifications in the formula for
computing attention [15] allow us to derive the attention matrices for our analysis; these
are represented as follows:

A(Ql1, Kl1, Vl1) = so f tmax(
Ql1KT

l1√
dk

)Vl1

Here, A represents the attention value, and Q, K, and V denote the Query, Key, and
Value, respectively, with the subscript l1 signifying that these components are exclusively
derived from the first layer. This approach is used to construct the attention matrix essential
for our model decoding and is utilized for three distinct analyses.

Feature Importance with PageRank: We initially applied this approach to calculate
feature importance, a common practice in decoding black-box models. PageRank is an
algorithm used by Google Search to rank web pages in their search engine results [11]. It
measures the importance of website pages by counting the number and quality of links
to a page to determine a rough estimate of a website’s importance. Analogously, by
using the PageRank algorithm, the significance of a feature can be calculated based on its
attention weights.

The PageRank vector, PR, was determined by solving the following eigenvalue problem:

PR = αAPR +
1 − α

N
1

where

• PR is the vector of PageRank values for all features;
• α is the damping factor;
• A is the attention matrix, where element Aij denotes the softmax attention weight of

feature i to feature j;
• N is the total number of features;
• 1 is a vector with all elements equal to 1.

Spectral Clustering to Identify the Signature of Microbiota: The attention mechanism
simplifies the process of identifying feature clusters. These clusters, which are feature
groups affecting the model’s output together, are more directly observable in the attention
matrix. The importance of identifying such clusters is particularly relevant in our data, as
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recognizing microbiota clusters is significant in microbiology. Spectral clustering utilizes
the spectral features of attention weights to achieve this goal.

Spectral clustering [28] is a technique used in machine learning and data mining to
identify clusters in data based on the spectrum (eigenvalues) of the similarity matrix of the
data. It works by transforming the data into a lower-dimensional space in which clusters
are more apparent and can be easily identified using traditional clustering techniques such
as K-means [29] or HAC (Hierarchical Agglomerative Clustering) [30], the latter of which
we used in our study.

Our method involved constructing a similarity matrix, S, from the data and then
deriving the Laplacian matrix, L, from S. HAC was then performed in the space spanned
by the eigenvectors of L corresponding to its smallest eigenvalues.

Additionally, these attention matrices can be mapped out in a graph structure to visu-
alize the interactions among the identified OTUs in the microbiota, which is an interesting
research question in microbial ecology.

4. Experiments and Results

Our investigation focused on two primary questions: whether a prediction model
using a transformer architecture, as depicted in Figure 1, outperforms multi-layer per-
ceptron (MLP) models and whether the attention matrix can offer valuable insights into
explainable AI. To address the first question, we carried out extensive testing across several
models using our dataset, applying a grid search to fine-tune the hyperparameters. The
findings from these tests were used in evaluating the Tab-transformer model’s performance
relative to that of MLP models. For the second question, we extracted and analyzed the
attention matrix from our model, and a detailed discussion of this analysis is presented in
the following sections.

4.1. Transformer Model Evaluation

For model evaluation, we conducted a series of detailed experiments involving var-
ious combinations of epochs, learning rates, test sizes, dropout values, attention layers,
and linear layers. These combinations were applied to predict pathogen presence in the
following different contexts:

• Pre-harvest Salmonella samples;
• Pre-harvest Listeria samples;
• Pre-harvest CampyCapetown samples;
• Post-harvest Salmonella samples;
• Post-harvest Listeria samples;
• Post-harvest CampyCapetown samples.

We executed the experiments across the following four distinct model architectures to
gauge their effectiveness:

• Multi-layer perceptron (MLP) - Farm Management Practice Variables.
• Multi-head transformers without scalar-to-vector embedding—Farm Management

Practice variables.
• Multi-head transformers with scalar-to-vector embedding—Farm Management

Practice variables.
• Multi-head transformers with scalar-to-vector embedding—Farm Management

Practice variables and Microbiome.

This approach allowed us to compare the efficiency and accuracy of each architecture
under similar experimental conditions.

The results of these experiments are shown in Table 1. The table presents the F1
scores for all the models tested on our dataset, demonstrating the gradual enhancement
in performance as the models evolve. Our final architecture incorporates a multi-head
transformer with scalar-to-vector encoding for continuous variables. The dataset used for
this final model combines poultry management variables and microbiome data.
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The results of these experiments demonstrate that the performance of the transformer
models is better than that of the multi-layer perceptrons. Moreover, the model gives much
better predictions of pathogen presence when the farm management data are combined
with the Microbiome dataset. With these results, we can infer that the attention mechanism
is working in our model, which is essentially the core of transformer models, and we were
ready to further investigate the attention matrix.

Table 1. F1 scores for all the models tested on the dataset.

Pre Harvest Post Harvest
Salmonella Listeria Campy Salmonella Listeria Campy

MLP 0.79 0.67 0.84 0.78 0.87 0.95
Multi-Head Transformer
w/o scalar-to-vector
embedding

0.79 0.72 0.84 0.78 0.92 0.96

Multi-Head Transformer
w/ scalar-to-vector
embedding

0.78 0.71 0.84 0.83 0.91 0.97

Multi-Head Transformer
w/ scalar-to-vector
embedding

0.86 0.79 0.86 0.89 0.92 0.97

4.2. PageRank Results and Evaluation

As described in the Methods section, we extracted the attention weights from the first
multi-head attention block’s self-attention heads for all test scenarios. We then applied the
PageRank algorithm to allocate scores to each feature, with the aggregate of these scores
equaling 1 amongst all 1823 microbiota features and around 60 farm variable features.
The top PageRank-valued features were identified for validation. The top 10 microbiota
features identified by the method for post-harvest Salmonella are shown in Figure 2 as an
example. Similar tables were generated for pre-harvest and post-harvest Salmonella, Listeria,
and CampyCapetown.

Figure 2. Top 10 most important features recognized by PageRank for post-harvest Salmonella.
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The outcomes were verified through both qualitative and quantitative means. For
the qualitative evaluation, we cross-referenced the top microbiota features identified by
our approach with the existing literature to confirm their associations with probiotic or
pathogenic characteristics, as discussed in detail in Section 5. For quantitative evaluation,
we used DeepLIFT to rank all features in the dataset and then compared the top 100 features
identified by both our method and DeepLIFT. This comparison revealed a significant
concurrence between the two methods, with approximately 35% of the top features being
recognized by both. The Venn diagram in Figure 3 illustrates some of these results. For a
comprehensive view of the findings, please refer to the Appendix A.

Figure 3. Comparison of the DeepLIFT and PageRank results for post-harvest Salmonella. The top
100 features from a total of 1824 were chosen to construct the Venn diagram, which reveals a notable
level of agreement between the two methods.

4.3. Spectral Clustering Results

To determine microbiota clusters within the six experimental scenarios (Section 4.1), we
utilized attention matrices. The selection of the number of clusters, a critical hyperparameter
in our clustering approach, necessitated a methodical decision-making process. We opted
for Hierarchical Agglomerative Clustering (HAC) over K-means due to the clarity provided
by HAC’s dendrograms in determining the optimal number of clusters. For each scenario,
a dendrogram was generated to establish the number of clusters. Subsequently, we applied
HAC with average linkage for feature classification into clusters. With this approach, we
were able to identify clusters composed of microbes with similar ecological properties.
An example of two clusters identified through this method is shown in Table 2. In one
of the clusters, the majority of species, including Actinobacteria, Acidobacteria, Bacteroidetes,
Rhodoplanes, Bacillus, Myxococcales, and Candidatus Nitrososphaera, are non-pathogenic and
beneficial microorganisms primarily distributed in soil and water environments. These
groups play crucial roles in ecosystem functioning, such as in nutrient cycling and organic
matter decomposition. In contrast, the Lactobacillales found in the other cluster are typically
associated with environments rich in carbohydrates, including dairy products, fermented
foods, the gastrointestinal tract of humans and animals, and plant surfaces.
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Table 2. Evaluation of two clusters identified through HAC. Microbes usually found in soil (cluster
B/2) and gut (cluster A/1) are accurately identified and grouped separately.

Bacteria Cluster
g__Rummeliibacillus 2

g__Salinicoccus 2
g__Enterococcus 2
g__Streptococcus 2

f__Enterobacteriaceae;g__ 2
g__Candidatus Nitrososphaera 0

o__iii1-15;f__;g__ 0
o__RB41;f__;g__ 0
f__Ellin6075;g__ 0
f__Gaiellaceae;g__ 0

o__Solirubrobacterales;f__;g__ 0
f__Solirubrobacteraceae;g__ 0

f__Cytophagaceae;g__ 0
o__Sphingobacteriales;f__;g__ 0

f__Chitinophagaceae;g__ 0
g__Bacillus 0

g__Rhodoplanes 0
o__Myxococcales;f__;g__ 0

g__DA101 0

5. Discussion

This research aims to make powerful machine learning models more interpretable and
transparent when analyzing complex biological data. By combining techniques to explain
these models, using effective transformer neural networks, and applying algorithms such
as PageRank, we can gain deeper insights into fundamental biological processes. This
approach has wide applications to other animal production systems beyond the pastured
poultry production system used in this study. It can also be applied to drug discovery,
analyzing evolutionary relationships between species, mining agricultural/biomedical text
data, understanding gene regulatory networks, and predicting protein structures. Making
these advanced models more interpretable will help advance our understanding of biology
and lead to new applications that can improve animal and human health.

This section presents a discussion of our findings and related research, focusing on
microbiota features that have been identified as significantly associated with the presence
of food-borne pathogens. Salmonella and Campylobacter are among the most prevalent
pathogens associated with poultry and are leading causes of bacterial food-borne illness [31].
Taxonomically, Salmonella belongs to the phylum Proteobacteria, while Campylobacter belongs
to the phylum Epsilonbacteraeota [32]. Listeria, another food-borne pathogen, is a concern
not only in poultry but also in a wide range of other foods, such as dairy and ready-to-
eat products, and it belongs to the phylum Firmicutes [33]. However, the presence and
significance of Listeria in poultry production, particularly in pastured systems, is more
associated with the environment and processing facilities than with the birds themselves.

5.1. Role of Firmicutes

Our research finds Firmicutes to be one of the major influencing factors for the preva-
lence of Salmonella, Listeria, and Campylobacter in both pre-harvest (feces, soil) samples and
post-harvest (post-processing) samples. While Firmicutes is a large phylum of bacteria that
includes many non-pathogenic and beneficial organisms, the environmental dynamics of
pastured poultry systems can affect the prevalence of various pathogens, including those
not classified under Firmicutes [34]. Some beneficial Firmicutes in the gut flora of pastured
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poultry may help in competitively excluding pathogenic bacteria by competing for nutri-
ents and attachment sites in the gastrointestinal tract [35]. Studies show that inoculation
with S. Enteritidis [36] resulted in significant positive correlations with Firmicutes, notably
affecting the relative abundance of 18 genera.

We found that the family Bacillaceae, belonging to the phylum Firmicutes [32], influ-
enced the prevalence of Salmonella, Listeria, and Campylobacter in our experiments. The
ability of Bacillus strains to produce a wide array of antimicrobial peptides (AMPs) and
bacteriocins is crucial in their antagonistic effects against enteropathogenic bacteria in
the gastrointestinal tract [37]. Specifically, the growth of Listeria is inhibited in contami-
nated environments or products [38]. Bacillus subtilis PS-216 showed effective inhibition
against Campylobacter jejuni under microaerobic conditions, demonstrating its potential
as a probiotic that could integrate into the chicken intestinal microbiome and combat
campylobacteriosis [39]. Bacillus strains can produce extracellular polysaccharides, vita-
mins, and exoenzymes that support the growth of beneficial microbiota, contributing to a
healthier gut environment [40,41] and potentially reducing the colonization of pathogens
by strengthening the birds’ natural defenses against infections and possibly reducing
pathogen shedding.

Our results show that Rummeliibacillus, a Gram-positive rod-shaped bacterium, is
associated with Listeria and Campylobacter. Factors such as soil composition and microbial
diversity can either facilitate or limit the survival of Listeria [42], indicating that micro-
bial competition, potentially including competition from Rummeliibacillus, could influence
the prevalence of Listeria. Lactic acid bacteria (LAB) [43], including Lactococcus [44] and
Lactobacillus species, are known for their role in producing fermented foods and for their
ability to inhibit the growth of pathogenic bacteria through the production of lactic acid,
bacteriocins, and AMPs. Acidification of the environment due to lactic acid generation
by LAB inhibits the growth of [45,46] Listeria and Salmonella. Lactobacillus species have
been extensively studied for their probiotic properties in poultry [47], demonstrating
benefits such as reduced Salmonella contamination (https://today.uconn.edu/2021/06/
probiotic-intervention-to-prevent-salmonella-infection-in-poultry/ accessed on 8 April
2024), improved growth performance, immune enhancement, gut microbe sustainabil-
ity, and contributions to health. Lactobacillus cultures or bacteriocins could be used in
rinses or coatings for poultry meat post-processing to reduce surface contamination by
Salmonella [48].

Our results indicate the influence of Lysinibacillus species on the presence of Salmonella
and that of the Planococcaceae family on the presence of Listeria in the pre-harvest phase,
and this suggests a multifaceted approach involving the management of animal waste,
the monitoring and treatment of irrigation water, and practices to reduce contamination
in food production environments. The role of soil-dwelling or fecal bacteria, such as
Lysinibacillus [49], in influencing these processes, directly or indirectly, through effects on
microbial communities remains a critical area for further research. Another influential
genus in our findings, Solibacillus, a Gram-positive, rod-shaped, spore-forming bacteria,
could potentially compete with Salmonella for nutrients in the soil, alter soil microbial
community composition, and limit the latter’s ability to proliferate.

Anoxybacillus is a genus of thermophilic [50], facultatively anaerobic bacteria within
the Firmicutes phylum that is known for its ability to thrive at high temperatures and
for its presence in diverse environments, including hot springs and dairy products. De-
tecting Anoxybacillus in post-harvest environments indicates that higher temperatures or
specific nutrient availability could impact the survival or proliferation of pathogens such
as Campylobacter.

The class Clostridia, part of the Firmicutes phylum, includes significant food-borne
pathogens that impact poultry and can pose risks to human health [51]. Our results indicate
that Clostridia plays a critical role in the prevalence of Salmonella and Campylobacter in
soil and fecal samples. Conversely, the presence of Salmonella and Listeria was associated
Clostridia species in post-processed meat samples. By contributing to the fermentation

(https://today.uconn.edu/2021/06/probiotic-intervention-to-prevent-salmonella-infection-in-poultry/
(https://today.uconn.edu/2021/06/probiotic-intervention-to-prevent-salmonella-infection-in-poultry/
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process and production of short-chain fatty acids (SCFAs) in the gut [52], The Ruminococ-
caceae family, part of the Clostridia class, might help create an intestinal environment that is
less favorable for Salmonella and Campylobacter proliferation. The association between the
Syntrophomonas genus and Listeria contamination in our results suggests a potential role for
this group of anaerobic, syntrophic bacteria in modulating the prevalence of Listeria in the
post-processing environment, possibly due to the syntrophic degradation of butyrate in
environmental and industrial processes limiting organic waste that can support pathogens
such as Listeria [53].

5.2. Role of Proteobacteria

The phylum Proteobacteria represents a vast and diverse group of Gram-negative
bacteria that are classified into various classes. Acinetobacter can be found in soil and animal
(including human) feces, though they are not a predominant component of the gut flora [54],
so they could indicate exposure to the environment or the consumption of contaminated
food or water [55–57]. In soil, these bacteria are key players in breaking down organic
substances and nutrient recycling [58].

Our previous studies have underscored the potential role of other microbial species,
such as Acinetobacter, in the ecology of these pathogens. Specifically, our analysis indi-
cates that Acinetobacter played a critical role in pre-harvest (fecal and soil) samples where
Salmonella was detected. Detection of Salmonella and Acinetobacter from poultry operations
in Washington state was reported [59]. Understanding the nature of this relationship
and whether it is synergistic or antagonistic could inform the development of targeted
interventions and more effective pathogen control strategies on farms.

5.3. Clustering to Uncover the Microbial Community Structure
ClusterA

Rummeliibacillus is a part of the Firmicutes phylum, and these Gram-positive bacte-
ria are known to form endospores, which allow them to survive in harsh environmental
conditions. Streptococcus is another member of the Firmicutes phylum; these are Gram-
positive cocci known for their role in both health (as part of the normal microbiota) and
disease (causing various infections). Enterococcus, Streptococcus, and members of the En-
terobacteriaceae family are primarily associated with the gastrointestinal tract of animals
and humans [60], playing roles that range from benign colonization to causing serious
infections. Salinicoccus is a genus of Gram-positive, halophilic bacteria that belong to
the family Staphylococcaceae [61]. These bacteria are typically found in environments with
high salt concentrations [62], such as salt lakes, saline soils, and salted food products, and
they have potential applications in biotechnology, including the biodegradation of pollu-
tants in saline conditions and the production of enzymes and other bioactive compounds.
Enterococcus, including species such as Enterococcus faecalis, is a genus of bacteria that
are part of the natural microbiota of the human gastrointestinal tract [63] but can also be
found in soil, water, food, and decaying vegetation [64]. In soil, Enterococcus species may
be introduced through the application of animal manure as fertilizer, contributing to the
microbial diversity of agricultural soils.

ClusterB

All of the groups in this cluster are ubiquitous in the environment and are found
in a wide range of habitats from soil and water to extreme environments such as hot
springs (Crenarchaeota) and acidic mines (Acidobacteria). This distribution underlines their
adaptability and the vast diversity of metabolic strategies that they have evolved to exploit
different ecological niches. They play crucial roles in their respective ecosystems and are
involved in nutrient cycling, decomposing organic matter, and, in some cases, forming
symbiotic relationships with plants [65] (e.g., certain Alphaproteobacteria, such as Rhizobia)
or animals. Their metabolic diversity allows them to perform a variety of biochemical
processes critical to Earth’s biogeochemical cycles, such as carbon and nitrogen cycling.
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6. Conclusions

In this study, we set out to investigate two main questions: firstly, whether incor-
porating a transformer model into our unique framework would significantly enhance
our ability to predict pathogen presence in poultry production environments; secondly,
whether we could introduce a novel method for determining feature importance using the
attention matrix and PageRank. Although our final model showed modest improvements
in predictive performance over previous models applied to our dataset, this improve-
ment was attributed more to the inclusion of microbiome data than to the transformer
model itself. However, the primary goal of implementing the transformer model was to
facilitate our second objective, which indeed yielded promising results. The method of
computing feature importance through the attention matrix and PageRank aligned well
with DeepLIFT’s findings and was validated as biologically relevant. Additionally, our
study introduced an effective method for identifying microbiota signatures using the same
attention matrices, yielding meaningful outcomes. Consequently, we view our contribution
as a positive step forward in the field of explainable AI, and we anticipate that it will inspire
further research in this direction.
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Appendix A

Appendix A.1. Transformer Model Performance

The performance of the prediction models tested on our dataset through the evolution
of our models is shown in Figure A1.



Microorganisms 2024, 12, 1274 13 of 18

Figure A1. Comparison of the average F1 scores on the test set for predictions made by the different
models.

Appendix A.2. PageRank Results

The top 10 features identified with the PageRank method for different scenarios are
shown in Figures A2 and A3. Figures A4 and A5 show the agreement in results for both
DeepLIFT and our method across different scenarios for the microbiota features. A similar
agreement was also found in the variables of theFarm Management Practices dataset, and
this is shown in Figure A6.

Figure A2. Top 10 features identified with PageRank for post-harvest Salmonella, Listeria, and
CampyCapetown.
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Figure A3. Top 10 features identified with PageRank for pre-harvest Salmonella, Listeria, and Campy-
Capetown.

Figure A4. Comparison of DeepLIFT and PageRank. The feature importance identification across
different post-harvest scenarios shows a notable agreement.
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Figure A5. Comparison of DeepLIFT and PageRank. The feature importance identification across
different pre-harvest scenarios shows a notable agreement.

Figure A6. Comparison of DeepLIFT and PageRank. The feature importance identification across all
scenarios for farm management features shows a notable agreement.
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