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Abstract: It is known that SARS-CoV-2 can translocate via membrane ACE2 exopeptidase into
the host cells, and thus hypomethylation of ACE2 possibly upregulates its expression, enhancing
the risk of SARS-CoV-2 infection. This study investigated if DNA methylation levels of the ACE2
promoter are associated with the development of post-COVID-19 symptomatology in a cohort of
COVID-19 survivors who had been previously hospitalized. Non-stimulated saliva samples were
obtained from 279 (51.5 male, mean age: 56.5 £ 13.0 years old) COVID-19 survivors who were
hospitalized during the first wave of the pandemic. A face-to-face interview in which patients
described the presence of post-COVID-19 symptoms (defined as a symptom that started no later
than three months after SARS-CoV-2 infection) that they suffered from to an experienced healthcare
trainer was conducted. Methylation of five CpG dinucleotides in the ACE2 promoter was quantified
using bisulfite pyrosequencing. The percentage of methylation (%) was associated with the presence
of the following reported post-COVID-19 symptoms: fatigue, dyspnea at rest, dyspnea at exertion,
brain fog, memory loss, concentration loss, or gastrointestinal problems. Participants were assessed a
mean of 17.8 (SD: 5.3) months after hospitalization. At that time, 88.1% of the patients experienced
at least one post-COVID-19 symptom (mean number for each patient: 3.0; SD: 1.9 post-COVID-19
symptoms). Dyspnea at exertion (67.3%), fatigue (62.3%), and memory loss (31.2%) were the most
frequent post-COVID-19 symptoms in the sample. Overall, the analysis did not reveal any difference
in the methylation of the ACE2 promoter in any of the CpG locations according to the presence or
absence of fatigue, dyspnea at rest, dyspnea at exertion, memory loss, brain fog, concentration loss,
and gastrointestinal problems. This study did not find an association between methylation of ACE2
promoter and the presence of post-COVID-19 fatigue, dyspnea, cognitive or gastrointestinal problems
in previously hospitalized COVID-19 survivors.
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1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2), challenged all healthcare systems around
the world and a deeper understanding of the biological mechanisms behind individual
responses to the virus was clearly needed. Building on this, the field of epigenetics might
provide insights into how COVID-19 induces lasting changes in gene activity, potentially
influencing long-term health outcomes. Epigenetics are those molecular processes reg-
ulating gene expression without modifying DNA sequence and phenotype and that are
influenced by several factors, e.g., environmental exposures, stress, and nutrition [1]. Sev-
eral epigenetic processes including methylation, histone protein modification, or the action
of non-coding RNA (ncRNA) are described [2]. The effects of epigenetic changes induced
by SARS-CoV-2 have been of interest from the beginning of the outbreak [3] but are still
under investigation with research looking into possible systemic and cellular changes
induced by COVID-19 [4]. DNA methylation is an epigenetic mark involved in gene expres-
sion regulation, catalyzed by a family of DNA methyltransferases that transfer a methyl
group from S-adenyl methionine onto the DNA cytosine to form 5-methylcytosine [5]. In
fact, some studies investigating methylation patterns in COVID-19 patients have revealed
hypermethylation patterns in interferon-related genes and hypomethylation patterns in
inflammatory-associated genes, supporting the presence of a dynamic epigenetic regulation
(up or down) of genes in COVID-19 [6,7].

Several studies focusing on the viral mechanisms of SARS-CoV-2 infection have
pointed to the importance of the surface receptor for the viral spike 1 protein (S1) of the
angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine-2 (TMPRSS2)
receptor in COVID-19 [8]. It is known that SARS-CoV-2 can translocate via membrane ACE2
exopeptidase into the host cells, and thus hypomethylation of ACE2 possibly upregulates
its expression, enhancing the risk of SARS-CoV-2 infection [9]. Similar results were found
in a previous study, where acute respiratory issues were associated with hypomethylation
in the ACE2 promoter in blood [10]. Further, a study involving 500 COVID-19 patients
showed that the involvement of the ACE2 gene depends on multiple individual variables
such as sex, age, body mass index, smoking, and the presence of comorbidities, confirming
hypomethylation in the ACE2 gene’s promoter [11].

A growing healthcare problem associated with COVID-19 is the presence of long-
lasting symptoms after the infection. The presence of a long-lasting symptomatology
after COVID-19 has been called long COVID [12] or post-COVID-19 condition [13]. More
than 100 long-lasting post-COVID-19 symptoms affecting respiratory, cardiovascular, im-
mune, neurological, gastrointestinal, or musculoskeletal systems can be attributed to
SARS-CoV-2 infection [14]. The Global Burden of Disease Long COVID study (which
included 1.2 million of COVID-19 survivors) found that around 15% of individuals who
had surpassed a SARS-CoV-2 infection experience post-COVID-19 symptoms up to one
year after [15]. Thus, a recent meta-analysis found that up to 25-30% of patients reported
post-COVID-19 symptoms two years after infection [16].

The underlying mechanisms explaining the development of post-COVID-19 symp-
tomatology are still unknown and epigenetics have emerged as one potential crucial factor
in elucidating them [17]. The fact that methylation changes identified during the acute
COVID-19 phase persist one year after acute infection [18] can open a door for exploring an
epigenetic relevance in the development of long-lasting post-COVID-19 symptoms. Thus,
Nikesjo et al. described a specific DNA methylation signature in ten COVID-19 survivors
suffering from post-COVID-19 symptoms lasting up to 10 months [19]. However, the
processes by which epigenetics might fine tune the presence of long-lasting post-COVID-19
symptoms remain a major challenge, particularly in humans.
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Therefore, the aim of this study was to investigate if DNA methylation pattern of the
ACE2 promoter is associated with the presence of post-COVID-19 symptomatology in a
cohort of individual who were hospitalized due to an acute SARS-CoV-2 infection.

2. Methods
2.1. Participants

A cohort of individuals who were hospitalized due to an acute SARS-CoV-2 infection
during the first wave of the COVID-19 pandemic (March-May 2020) at four different urban
hospitals in Madrid (Spain) were invited to participate in this study. To be included, a
diagnosis of SARS-CoV-2 infection at hospital admission should have been confirmed
by reverse transcription-polymerase chain reaction (RT-PCR) assay of nasopharyngeal
and oral swab sample as well as clinical /radiological findings. The study was approved
by the Ethics Committees of all involved institutions and hospitals (URJC0907202015920;
HUFA 20/126; HCSC20/495E, HS025112020; HUIL/092-20). All participants provided
their written informed consent prior to the collection of any data.

2.2. Genome DNA Collection

Unstimulated whole saliva samples were collected into collection tubes according to
standardized procedures: 1, patients were seated; 2, data collection was always conducted
during the morning; and 3, patients were asked not to eat, drink, or chew gum for 1 h
before sample collection. Saliva samples were centrifuged at 3000 rpm for 15 min to obtain
the cell sediment and a self-collection procedure was carried out immediately afterwards
and the samples were stored at —20 °C until the analysis. Saliva was used instead of whole
blood because it is non-invasive, stress-free, and ethically suitable assessment method.

Genomic DNA was extracted from 500 mL of saliva using a MagMAX™ DNA Multi-
Sample Ultra 2.0 Kit (Thermo Fisher Scientific Inc., Hemel Hempstead, Hertfordshire, UK)
according to the manufacturer’s protocol. We automatically extracted DNA using the
King Fisher Flex purification robot (Thermo Fisher). The resulting DNA was assessed for
purity and concentration using Quant-iT™ PicoGreen™ dsDNA reagent” (Thermo Fisher,
Waltham, MA, USA).

2.3. Differentially Methylation Profiling

Genomic DNA was bisulfite converted using the Epitech Fast 96 Bisulfite Kit (Cat
n° 50959720, Werfen Esparia, Barcelona) following the manufacturer’s instructions. As
a measure of successful conversion, the overall percentages of non-cytosine-phosphate-
guanine (CpG) dinucleotides methylation varied from 0.03 to 0.06% among all loci and
samples. Analyses of ACE2 promoter methylation were amplified using tailed oligos, i.e., a
unique amplicon-specific part, fused to a 5'-tail comprising sequences necessary for library
preparation and sequencing reactions. A web-based program (http:/ /www.urogene.org/
methprimer, accessed on 1 February 2024) was used to identify CpG sites in the ACE2
promoter. Accordingly, five CpG sites of interest (CpG1, CpG2, CpG3, CpG4, CpG5) within
the ACE2 promoter were selected according to the general rules and advice for primer
design that were previously described [20,21] (Figure 1). The scores (percentage) were
calculated by the PyroMark Assay Design, version 2.0.1.15 (Qiagen GmbH).

Analysis was performed using real time PCR with TB Green Premix Ex Taq II master-
mix (Takara, France). Following ACE2-specific amplification, amplification products were
purified from agarose gels, titrated, and diluted for further processing. NGS libraries were
made using a collection of Illumina-compatible PCR primers including a 10 bp barcode
identifier (MID) which was used to identify each sample within the pool. The products of
this second amplification were evaluated using Bioanalyzer chips (Agilent, Santa Clara,
CA, USA), titrated, and pooled, followed by additional bead-based purification and quan-
tification. Finally, samples were subjected to Illumina sequencing in MiSeq (2 x 250 reads)
(IIlumina, Cambridge, UK).
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ACE2 gene: Chromosome X: 15.579.156-15.620.192

Exon2HExon1|Pmmohr| [}

CpGlslands

G::} FORWARD PRIMER: ACACTGACGACATGGTTCTACA (CS1) GGGTAGATTAAGAGGTTAGAAG

( CTGCGCATGGTGGCGGGCGCCTGTAGTCCCAGCTACTCGGGAGGCCGAGG ( )
CpG1 CpG2 CpG3 CpG4 CpG5
REVERSE PRIMER: TACGGTAGCAGAGACTTGGTCT (CS2) ATTCACCCCATTCTCCTA

Figure 1. The CpG island sequence in the promoter region of human ACE2. A total of 5 CpG sites

were analyzed. CpG sites are in bold. The primers used for DNA methylation sequencing are shown.
Forward primer is shown in green color and reverse primer is shown in blue color. Both primers
were fused to a 5'-tail comprising sequences (CS1 and CS2) necessary for library preparation and
sequencing reactions.

The sequencing run yielded over 840,000 filtered, quality reads, an average of about
1800 reads per amplicon per sample (range 500 to 5000).

Bisulfite conversion, amplification of target sequences and sequencing were carried
out at Fundacién Parque Cientifico de Madrid (FPCM), ¢/Faraday 7, Madrid, Spain). Reads
obtained were filtered and sorted according to their MID and the reference sequence. Align-
ments and calculation of the percentage methylation were subsequently performed using
the freely available software Bismark (version 22.3). The percentage of methylation per sam-
ple within each CpG was calculated as the percentage C/C+T and used in the correlation
analyses, the mean value of all CpG dinucleotides per amplicon was calculated to represent
the methylation value of a particular locus. We analyzed the methylation percentage (%) of
each position (CpG1, CpG2, CpG3, CpG4, CpG5) separately for the analysis

2.4. Collection Data

Data related to hospitalization due to COVID-19 were collected from hospital medical
records: previous medical conditions, admission to intensive care unit (ICU), hospitalization
stay (days).

Participants were scheduled for a face-to-face interview conducted by a healthcare
professional. We used the definition proposed by Soriano et al. [13]: “post-COVID-19
condition occurs in people with a history of probable or confirmed SARS-CoV-2 infection,
usually three months from the onset of infection, with symptoms that last for at least two
months and cannot be explained by an alternative medical diagnosis. Common symptoms
include, but are not limited to, fatigue, shortness of breath, and cognitive dysfunction,
and generally have an impact on everyday functioning” [13]. Accordingly, patients were
specifically asked to report the presence of any particular symptom that appeared in the
following three months after their hospitalization due to SARS-CoV-2 infection and if that
particular symptom still persisted at the time of the appointment. A predetermined list of
symptoms (e.g., fatigue, dyspnea, brain fog, memory loss, anosmia, ageusia, hair loss, skin
rashes, concentration loss, pain) was systematically used, although participants were free
to report any symptom that they suffered from and attributed to the infection.

2.5. Statistical Analysis

Data were collected with STATA 16.1 and processed using Python’s library pandas
0.25.3. Mean and standard deviation (SD) are presented for quantitative data and num-
ber of cases (percentages) are presented for categorical data. Differences in methylation
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percentages (%) according to the presence/absence of post-COVID-19 symptomatology
were analyzed with one-way-ANOVA tests. The Shapiro-Wilk test was used to assess
the assumption of normality. For all inferences, the level of significance was set at priori
0.05 with p-values from all tests being corrected (Holm-Bonferroni correction).

3. Results

From the 330 patients who were hospitalized due to COVID-19 in the four targeted
hospitals during the first wave of the pandemic and who were invited to participate during
the study period, 51 (15%) were excluded as follows: refused to attend the appointment
(n = 30), saliva sample was compromised during methylation analyses (n = 14), and preg-
nancy (n = 7). Finally, 279 (48.7% female, mean age: 56.4 + 12.8 years) patients were
included in the study.

At the follow-up assessment (mean: 17.8; SD: 5.2 months after hospital discharge),
246 (88.1%) patients exhibited at least one post-COVID-19 symptom (mean number of
symptoms per patient: 3.0; SD: 1.9). Dyspnea at exertion (67.3%), fatigue (62.3%), and
memory loss (31.2%) were the most prevalent post-COVID-19 symptoms. Other prevalent
post-COVID-19 symptoms were concentration loss (15%) and brain fog (14.6%).

For the main analyses, we considered the following post-COVID-19 symptoms: fa-
tigue, dyspnea at rest, dyspnea at exertion, brain fog, memory loss, concentration loss, and
gastrointestinal problems. Overall, the analysis did not reveal differences in the methy-
lation of the ACE2 promoter in any of the CpG locations according to the presence or
absence of fatigue (Table 1), dyspnea at rest (Table 2), dyspnea at exertion (Table 3), mem-
ory loss (Table 4), brain fog (Table 5), concentration loss (Table 6), and gastrointestinal
problems (Table 7).

Table 1. Demographic, clinical, and methylation percentages in COVID-19 patients with or without
post-COVID-19 fatigue.

Post-COVID-19 Fatigue = No Post-COVID-19 Fatigue

(n = 174) (n = 105) p Value
Age, mean (SD), years 57.0 (12.5) 55.7 (13.1) 0.423
Gender, male/female (%) * 74 (42.5%)/100 (57.5%) 69 (65.7%)/36 (34.3%) 0.007 *
Weight, mean (SD), kg 81.5 (18.0) 80.5 (15.0) 0.675
Height, mean (SD), cm 166.5 (11.5) 169.0 (9.2) 0.679
Number of medical conditions 1.3 (1.0) 1.1 (1.0) 0.523
Pre-existing medical conditions, n (%)
Hypertension 58 (33.3%) 37 (35.25%) 0.791
Diabetes 21 (12.1%) 8 (7.6%) 0.264
Cardiovascular Diseases 12 (6.9%) 8 (7.6%) 0.829
Asthma 20 (11.5%) 11 (10.5%) 0.805
Obesity 60 (34.5%) 25 (23.8%) 0.118
Chronic Obstructive Pulmonary Disease 3 (1.7%) 2 (1.9%) 0913
Number of COVID-19-onset symptoms, mean (SD) 3.25(1.0) 3.1(1.0) 0.218
Days at hospital, mean (SD) 7.0 (5.8) 8.6 (10.0) 0.136
Intensive Care Unit (ICU) admission
Yes/No, n (%) 8 (4.5%)/166 (95.5%) 2 (2%)/103 (98%) 0.326
CpG1 methylation (%) 93.3 (4.0) 93.7 (3.2) 0.335
CpG2 methylation (%) 404 (74) 39.4(7.3) 0.259
CpG3 methylation (%) 43.6 (9.0) 42.8 (8.1) 0.437
CpG4 methylation (%) 45.5 (8.0) 45.6 (7.8) 0.937
CpG5 methylation (%) 0.6 (0.3) 0.6 (0.4) 0.804

n: number; SD: standard deviation; * Statistically significant differences between groups (p < 0.05).
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Table 2. Demographic, clinical, and methylation percentages in COVID-19 patients with or without

post-COVID-19 dyspnea at rest.

Post-COVID-19 Dyspnea

No Post-COVID-19

at Rest (n = 36) Dyspnea at Rest (n = 243) p Value

Age, mean (SD), years 55.0 (15.5) 57.7 (12.4) 0.421

Gender, male/female (%) 11 (30.5%) /25 (69.5%) 132 (64.3%) /111 (45.7%) 0.07

Weight, mean (SD), kg 81.0 (20.0) 81.9 (16.5) 0.933

Height, mean (SD), cm 165.5 (8.7) 168.0 (9.5) 0.501

Number of medical conditions 1.3 (1.0) 1.3 (1.0) 0.724
Pre-existing medical conditions, n (%)

Hypertension 13 (36.1%) 82 (33.7%) 0.820

Diabetes 7 (19.4%) 22 (9.0%) 0.081

Cardiovascular Diseases 1 (2.8%) 19 (7.8%) 0.291

Asthma 4 (11.1%) 27 (11.1%) 0.636

Obesity 14 (38.9%) 71 (29.2%) 0.327

Chronic Obstructive Pulmonary Disease 1 (2.8%) 4 (1.7%) 0.636

Number of COVID-19-onset symptoms, mean (SD) 3.4 (1.0 3.2(1.0) 0.125

Days at hospital, mean (SD) 8.7 (5.8) 7.9 (9.0) 0.617
Intensive Care Unit (ICU) admission

Yes/No, n (%) 1(2.8%)/35 (97.2%) 9 (3.7%) /107 (96.3%) 0.623

CpG1 methylation (%) 93.0 (4.5) 93.5 (3.6) 0.350

CpG2 methylation (%) 37.9 (8.3) 40.3 (7.2) 0.061

CpG3 methylation (%) 40.7 (10.0) 43.7 (8.4) 0.054

CpG4 methylation (%) 44.3 (9.7) 45.7 (7.6) 0.322

CpG5 methylation (%) 0.6 (0.25) 0.6 (0.4) 0.623

n: number; SD: standard deviation.

Table 3. Demographic, clinical, and methylation pe percentages in COVID-19 patients with or without
post-COVID-19 dyspnea on exertion.

Post-COVID-19 Dyspnea No Post-COVID-19

on Exertion (n = 188) Dyspnea Exertion (n = 91) p Value
Age, mean (SD), years 56.5 (13.2) 56.5 (12.0) 0.997
Gender, male/female (%) * 82 (43.6%)/106 (56.4%) 61 (67.0%)/30 (33.0%) 0.008 *
Weight, mean (SD), kg 81.0 (17.5) 81.1 (15.0) 0.967
Height, mean (SD), cm 166.5 (9.5) 169.0 (9.6) 0.282
Number of medical conditions 1.3 (1.0) 1.1 (1.0) 0.205
Pre-existing medical conditions, n (%)
Hypertension 62 (33.0%) 33 (36.25%) 0.659
Diabetes 20 (10.6%) 9 (9.9%) 0.855
Cardiovascular Diseases 14 (7.5%) 6 (6.6%) 0.802
Asthma 24 (12.8%) 7 (7.7%) 0.233
Obesity 64 (34.0%) 21 (23.1%) 0.120
Chronic Obstructive Pulmonary Disease 3 (1.6%) 2 (2.2%) 0.727
Number of COVID-19-onset symptoms, mean (SD) 3.2 (1.0) 3.25 (1.0) 0.637
Days at hospital, mean (SD) 8.2 (9.6) 7.6 (6.2) 0.608
Intensive Care Unit (ICU) admission
Yes/No, n (%) 7 (3.7%) /181 (96.3%) 3(3.3%)/88 (96.7%) 0.538
CpG1 methylation (%) 93.2 (4.2) 94.1 (2.5) 0.052
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Table 3. Cont.

Post-COVID-19 Dyspnea No Post-COVID-19
on Exertion (n = 188) Dyspnea Exertion (n = 91) p Value
CpG2 methylation (%) 40.2 (7.6) 39.7 (6.9) 0.578
CpG3 methylation (%) 43.4 (8.9) 43.0 (8.5) 0.681
CpG4 methylation (%) 45.7 (8.1) 454 (7.5) 0.742
CpG5 methylation (%) 0.6 (0.35) 0.6 (0.35) 0.517

n: number; SD: standard deviation; * Statistically significant differences between groups (p < 0.05).

Table 4. Demographic, clinical, and methylation percentages in COVID-19 patients with or without
post-COVID-19 memory loss.

Post-COVID-19 Memory No Post-COVID-19 Value
Loss (n = 87) Memory Loss (n = 192) P
Age, mean (SD), years 57.9 (12.3) 55.8 (13.0) 0.204
Gender, male/female (%) 8 (44.7%) /49 (56.3%) 107 (54.7%) /87 (45.3%) 0.222
Weight, mean (SD), kg 81.2 (16.9) 81.0 (16.8) 0.867
Height, mean (SD), cm 166.7 (9.5) 168.0 (9.5) 0.469
Number of medical conditions 1.45 (1.0) 1.2 (1.0) 0.07
Pre-existing medical conditions, n (%)
Hypertension 35 (40.2%) 60 (31.25%) 0.233
Diabetes * 14 (16.1%) 15 (7.8%) 0.046 *
Cardiovascular Diseases 6 (6.9%) 14 (7.3%) 0.909
Asthma * 16 (18.4%) 15 (7.8%) 0.014 *
Obesity 24 (27.6%) 61 (31.8%) 0.557
Chronic Obstructive Pulmonary Disease 0 (0.0%) 5 (2.6%) 0.132
Number of COVID-19-onset symptoms, mean (SD) * 3.4(0.8) 3.1(1.1) 0.04*
Days at hospital, mean (SD) 9.1 (12.3) 7.5(64) 0.159
Intensive Care Unit (ICU) admission
Yes/No, n (%) 4 (4.6%)/83 (95.4%) 6 (3.1%) /186 (96.9%) 0.09
CpG1 methylation (%) 93.1 (4.9) 93.6 (3.1) 0.263
CpG2 methylation (%) 41.1 (7.1) 39.5(7.4) 0.096
CpG3 methylation (%) 44.6 (8.3) 42.7 (8.7) 0.087
CpG4 methylation (%) 46.5 (7.8) 45.1(7.9) 0.177
CpG5 methylation (%) 0.6 (0.25) 0.6 (0.4) 0.086

n: number; SD: standard deviation; * Statistically significant differences between groups (p < 0.05).

Table 5. Demographic, clinical, and methylation percentages in COVID-19 patients with or without
post-COVID-19 brain fog.

Post-COVID-19 Brain Fog No Post-COVID-19 Brain

(n=41) Fog (n = 238) p Value
Age, mean (SD), years 55.1 (12.8) 56.7 (12.8) 0.459
Gender, male/female (%) 17 (41.5%) /24 (58.5%) 126 (52.9%) /112 (47.1%) 0.331
Weight, mean (SD), kg 81.6 (19.0) 81.0 (16.3) 0.805
Height, mean (SD), cm 166.5 (9.9) 167.5 (9.5) 0.580

Number of medical conditions 1.35 (1.0) 1.3 (1.0) 0.331
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Table 5. Cont.
Post-COVID-19 Brain Fog No Post-COVID-19 Brain Value
(n =41 Fog (n = 238) P
Pre-existing medical conditions, n (%)
Hypertension 11 (26.83%) 84 (35.3%) 0.390
Diabetes 6 (14.6%) 23 (9.7%) 0.361
Cardiovascular Diseases 1(2.5%) 19 (8.0%) 0.221
Asthma 7 (17.1%) 24 (10.1%) 0.215
Obesity 14 (34.1%) 71 (29.8%) 0.643
Chronic Obstructive Pulmonary Disease 0 (0.0%) 5(2.1%) 0.353
Number of COVID-19-onset symptoms, mean (SD) 3.4(0.9) 3.15 (1.0) 0.142
Days at hospital, mean (SD) 7.5 (7.0) 8.1 (9.0) 0.673
Intensive Care Unit (ICU) admission
Yes/No, n (%) 2 (4.9%)/39 (95.1%) 8 (3.3%) /230 (96.7%) 0.657
CpG1 methylation (%) 93.7 (4.4) 934 (3.7) 0.748
CpG2 methylation (%) 414 (6.6) 39.8 (7.5) 0.197
CpG3 methylation (%) 44.6 (8.1) 43.1 (8.8) 0.306
CpG4 methylation (%) 46.7 (7.5) 45.4 (8.0) 0.319
CpG5 methylation (%) 0.6 (0.4) 0.65 (0.35) 0.612

n: number; SD: standard deviation.

Table 6. Demographic, clinical, and methylation percentages in COVID-19 patients with or without

post-COVID-19 concentration loss.

Post-COVID-19

No Post-COVID-19

Concentration Loss Concentration Loss p Value
(n=42) (n =237)
Age, mean (SD), years 54.5 (12.4) 57.0 (12.9) 0.311
Gender, male/female (%) * 16 (28.1%)/26 (61.9%) 127 (54.6%) /110 (46.4%) 0.007 *
Weight, mean (SD), kg 80.7 (16.4) 81.0 (16.9) 0.898
Height, mean (SD), cm 165.5 (9.75) 167.0 (9.5) 0.202
Number of medical conditions 1.3 (1.0) 1.3 (1.0) 0.989
Pre-existing medical conditions, n (%)
Hypertension 14 (33.3%) 81 (34.2%) 0.931
Diabetes 2 (4.8%) 27 (11.4%) 0.219
Cardiovascular Diseases 2 (4.8%) 18 (7.6%) 0.525
Asthma 4 (9.5%) 27 (11.4%) 0.737
Obesity 19 (45.2%) 66 (27.8%) 0.06
Chronic Obstructive Pulmonary Disease 0 (0.0%) 5 (2.1%) 0.346
Number of COVID-19-onset symptoms, mean (SD) 3.3(1.1) 3.2 (1.0) 0.554
Days at hospital, mean (SD) 8.5(7.7) 7.9 (8.8) 0.708
Intensive Care Unit (ICU) admission
Yes/No, n (%) 2 (4.7%)/40 (95.3%) 8 (3.4%)/229 (94.6%) 0.657
CpG1 methylation (%) 93.1 (4.5) 93.5 (3.6) 0.497
CpG2 methylation (%) 38.9 (7.6) 40.1 (7.3) 0.292
CpG3 methylation (%) 42.2 (8.6) 43.5 (8.7) 0.368
CpG4 methylation (%) 43.5 (7.6) 45.9 (8.0) 0.066
CpG5 methylation (%) 0.6 (0.3) 0.6 (0.4) 0.506

n: number; SD: standard deviation; * Statistically significant differences between groups (p < 0.05).
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Table 7. Demographic, clinical, and methylation percentages in COVID-19 patients with or without
post-COVID-19 gastrointestinal symptomatology.

Post-COVID-19 No Post-COVID-19
Gastrointestinal Symptoms  Gastrointestinal Symptoms p Value
(n=25) (n = 254)
Age, mean (SD), years 55.0 (14.1) 56.6 (12.7) 0.536
Gender, male/female (%) 11 (44.0%)/14 (56.0%) 132 (52.0%) /122 (48.0%) 0.586
Weight, mean (SD), kg 81.2 (21.2) 81.0 (16.4) 0.947
Height, mean (SD), cm 168.5 (12.7) 167.5(9.2) 0.475
Number of medical conditions 1.2 (1.0) 1.3 (1.0) 0.523
Pre-existing medical conditions, n (%)
Hypertension 10 (40.0%) 85 (33.5%) 0.593
Diabetes 1 (4.0%) 28 (11.0%) 0.299
Cardiovascular Diseases 1 (4.0%) 19 (7.5%) 0.535
Asthma 3 (12.0%) 28 (11.0%) 0.889
Obesity 50 (20.0%) 80 (31.5%) 0.320
Chronic Obstructive Pulmonary Disease 1 (4.0%) 4 (1.6%) 0.387
Number of COVID-19-onset symptoms, mean (SD) 3.35(0.8) 3.2 (1.0) 0.408
Days at hospital, mean (SD) 5.7 (2.5) 8.2 (9.0 0.168
Intensive Care Unit (ICU) admission
Yes/No, n (%) 0 (0.0%)/25 (100%) 10 (3.9%) /244 (96.1%) 0.412
CpG1 methylation (%) 91.3 (6.0) 93.7 (3.4) 0.002
CpG2 methylation (%) 40.5 (8.0) 40.0 (7.3) 0.711
CpG3 methylation (%) 42.2 (9.2) 43.4 (8.6) 0.527
CpG4 methylation (%) 44.3 (9.5) 45.7 (7.7) 0411
CpG5 methylation (%) 0.55 (0.45) 0.6 (0.35) 0.295

n: number; SD: standard deviation.

Small differences were identified depending on the presence/absence of some post-
COVID-19 symptoms. The most significant difference was that the presence of post-COVID-
19 fatigue (p = 0.007, Table 1), dyspnea on exertion (p = 0.008, Table 3), or concentration loss
(p = 0.007, Table 6) was more prevalent in females than in males. In addition, a significantly
higher proportion of patients reporting post-COVID-19 memory loss suffered from diabetes
(p = 0.046) or asthma (p = 0.014) before the infection.

4. Discussion

This study did not find an association between the methylation of the ACE2 promoter
and the presence of post-COVID-19 fatigue, dyspnea, cognitive or gastrointestinal problems
up to one year and a half after the infection in previously hospitalized COVID-19 survivors.

We observed that up of 90% of our cohort of COVID-19 survivors who were hospital-
ized during the first wave of the pandemic reported post-COVID-19 symptomatology up
to 18 months after hospital discharge because SARS-CoV-2. Previous meta-analyses have
reported that 25-30% of COVID-19 survivors exhibit post-COVID-19 symptoms one or
two years after an acute SARS-CoV-2 infection [15,16]; thus, our prevalence rate was much
higher than that in the published literature. Different features of our cohort of COVID-19
survivors could explain the differences in prevalence rates of post-COVID-19 symptoms.
First, the sample included in our study were patients infected with the historical strain
(i.e., during the first wave of the pandemic). Current data suggest that the prevalence
rate of post-COVID-19 symptoms is higher in patients infected with the historical strain
than in those individuals infected with the Alpha, Delta, or Omicron variants [22,23].
Second, all participants in our study had been infected and developed post-COVID-19
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symptoms before vaccination. Evidence supports that vaccination is able to decrease the
risk of post-COVID-19 symptomatology if administered before SARS-CoV-2 infection and
before the development of post-COVID-19 symptoms, but its effects on those with ongoing
symptomatology is still not clear [24]. Third, the current study included a cohort of previ-
ously hospitalized patients with, therefore, moderate to severe COVID-19. Although it has
been suggested that hospitalized and non-hospitalized patients develop post-COVID-19
symptoms, a meta-analysis has found that COVID-19 survivors who had been hospitalized
are at a higher risk of suffering from some post-COVID-19 symptoms such as dyspnea or
pain than COVID-19 survivors who are not hospitalized [25].

It seems that the post-COVID-19 condition has multifactorial and multiple mecha-
nisms, e.g., viral persistence, long-lasting inflammation, endothelial dysfunction, reactiva-
tion latent infections, immune system dysregulation, and alteration in gut microbiota have
been proposed [17]. Our study did not find an association between methylation of ACE2
promoter and the presence of long-lasting post-COVID-19 fatigue, dyspnea, cognitive or
gastrointestinal problems. The present results are contrary to those found by Nikesjo et al.
who described a specific DNA methylation signature in ten COVID-19 survivors with post-
COVID-19 symptomatology 10 months after the acute infection [19]. Similarly, Balnis et al.
identified a hypermethylation pattern in interferon-related genes and a hypomethylation
pattern in inflammatory-related genes not only at the acute COVID-19 phase [7] but also
one year after the infection [18] in a sample of 15 patients. Differences in DNA methylation
techniques and specific gene promoters could explain discrepancies among the studies.
It is possible that DNA methylation of gene promoters related to the pro-inflammatory
response associated with SARS-CoV-2 could be revealed to have some associations with
post-COVID-19 symptomatology. In addition, the small sample size and the lack of a com-
parative group of COVID-19 survivors without post-COVID-19 symptoms in previously
published studies also limit their comparability with the current one.

An important topic to consider is that no timeframe can currently be made for DNA
methylation, since this is variable [26]. In fact, no longitudinal studies have investigated the
possible variations of DNA methylation throughout time. It is possible that SARS-CoV-2
can lead to DNA methylation changes in some genes at the acute phase of the infection but
these changes reverse with time. The fact that DNA methylation alterations are reversible
opens the possibility of using DNA methylation or demethylation as targets for therapeutic
treatments [27].

Finally, the results of the current study should be analyzed considering its potential
limitations. First, we included a cohort of patients who were hospitalized due to COVID-
19 during the first wave of the pandemic, when the historical SARS-CoV-2 strain was
predominant; hence, an extrapolation of our results should be performed with caution.
Second, the cross-sectional design did not permit to identify the longitudinal evolution of
DNA methylation alterations and the fluctuating nature of these changes. Third, the current
study focused solely on DNA methylation changes in the ACE2 promoter. Population-based
studies that include whole DNA methylation analyses could help to identify epigenetic
changes associated with post-COVID-19 symptomatology.

5. Conclusions

This study did not find an association between methylation of ACE2 promoter and
the presence of post-COVID-19 fatigue, dyspnea, cognitive or gastrointestinal problems
up to one and a half years after an acute SARS-CoV-2 infection in a cohort of COVID-19
survivors who required hospitalization during the first wave of the outbreak.
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