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Abstract: The Intermediate Disturbance Hypothesis (IDH) posits that maximal plant biodiversity is
attained in environments characterized by moderate ecological disturbances. Although the appli-
cability of the IDH to microbial diversity has been explored in a limited number of studies, there
is a notable absence of experimental reports on whether soil microbial ‘activity’ demonstrates a
similar response to the frequency or intensity of environmental disturbances. In this investigation,
we conducted five distinct experiments employing soils or wetland sediments exposed to varying
intensities or frequencies of disturbances, with a specific emphasis on disturbances associated with
human activity, such as chemical contamination, hydrologic changes, and forest thinning. Specifically,
we examined the effects of bactericide and heavy metal contamination, long-term drainage, tidal
flow, and thinning management on microbial enzyme activities in soils. Our findings revealed that
microbial enzyme activities were highest at intermediate disturbance levels. Despite the diversity
in experiment conditions, each trial consistently demonstrated analogous patterns, suggesting the
robustness of the IDH in elucidating microbial activities alongside diversity in soils. These outcomes
bear significant implications for ecological restoration and management, as intermediate disturbance
may expedite organic matter decomposition and nutrient cycles, crucial for sustaining ecosystem
services in soils.

Keywords: Intermediate Disturbance Hypothesis; extracellular enzyme activities; bactericide

1. Introduction

The Intermediate Disturbance Hypothesis (IDH) posits that maximum species diver-
sity is attained when ecological disturbances occur at an intermediate frequency or intensity,
avoiding extremes of rarity or frequency. Although its efficacy has faced scrutiny from
some researchers [1], the IDH has undergone thorough empirical and theoretical scrutiny
by others [2–5]. Empirical studies have extensively examined how disturbances, such
as forest fires, deforestation, diseases, grazing, and flooding, impact plant diversity [6].
Conventional IDH asserts that optimal plant diversity is achieved at intermediate distur-
bance levels. Low frequency or the absence of disturbance fosters resource monopolization
by a few dominant species, yielding low diversity, while high disturbance levels favor
colonizing-resistant species only, again leading to reduced diversity. Hence, intermediate
disturbance levels are theorized to maximize species diversity. Although initially proposed
to elucidate plant diversity, the IDH has found application in diverse ecosystems, including
invertebrate diversity in tropical streams [7] and biodiversity along salinity gradients [8].

Microorganisms in soils are pivotal in organic matter decomposition and mineral-
ization at local and global scales. While extensive research has elucidated their role in
global nutrient cycles and environmental sustainability [9], microbial ecology has diverged
somewhat from plant or animal ecology in theoretical development. This divergence is
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attributed to the inherent challenges in observing microorganisms in their natural environ-
ments and the reductionist approach commonly employed by microbiologists [10]. In this
context, the IDH presents an intriguing theoretical framework for better understanding the
connection between environmental factors, microbial diversity, and microbial activity.

Recent research has sought to integrate the IDH into microbial ecology to interpret vari-
ations in microbial diversity in response to environmental disturbances. Studies exploring
diverse disturbances, including mercury contamination [11], viral infections in marine bac-
teria [12], spring ecosystems [13], and animal trampling [14], have confirmed that microbial
community structure aligns with the IDH, exhibiting maximal diversity under mid-range
disturbances [15].

However, previous investigations have predominantly focused on microbial diversity,
overlooking the significance of microbial activities in ecological processes [16]. Given the
pivotal role of microbial activities in ecosystem processes such as biogeochemical cycles,
nutrient cycles, and virulence of medically important microbes, understanding their response
to disturbances is crucial [15]. Additionally, microbial diversity does not always correlate
directly with activity or process rates due to potential redundancy among microbial taxa [16].
While various approaches have been proposed to assess microbial activities, soil enzymes
have emerged as a popular method to assess microbial activity in soils due to their central
role in decomposition processes [17] and operational advantage. They mainly originate
from microorganisms and function either freely or in association with soil organic matter
or minerals, contributing to the mineralization of organic matter. Soil enzymes have been
widely assessed across various ecosystems as they indicate decomposition rates of organic
matter, rate-limiting steps in nutrient cycles, and overall ecosystem health, and serve as an
index of restoration. Consequently, they are key indicators in environmental microbial ecology.
In particular, linking IDH and enzyme activity could be valuable in agricultural, food, and
medical microbiology applications, as disturbances in these areas could either activate or
deactivate target microorganisms in a given condition.

In this context, the purpose of this study is to elucidate the effects of disturbance in-
tensity and frequency on microbial enzyme activities using samples from forest soils, marsh
sediments, tropical peatlands, and coastal mud flats. The hypothesis is that microbial activities
will peak under mid-range disturbance, extending the Intermediate Disturbance Hypothesis
to microbial activities. The study focuses on common human activities, such as chemical
contamination, hydrologic alteration, and forest thinning, as the sources of disturbance.

2. Materials and Methods

The IDH was tested with five different types of soil and wetland sediments, which
were exposed to different environmental disturbances: chemical contaminations (i.e., bacte-
riocide additions and cadmium additions), hydrologic changes (i.e., long-term drainage and
tidal wave), and forest thinning (i.e., control on the number of trees per unit area) (Table 1).

Table 1. Types of disturbances, target enzymes, and sources of the samples.

Disturbance Target Enzymes Sample Sources

Chemical
contaminations

Bacteriocide Dehydrogenase
β-glucosidase Forest soil

Cd addition Dehydrogenase,
β-glucosidase Marsh sediment

Hydrological
stress

Drought
β-glucosidase

N-acetylglucosaminidase
β-xylosidase

Tropical peatland

Tidal flow
β-glucosidase

N-acetylglucosaminidase
β-xylosidase

Mud-flat sediment
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Table 1. Cont.

Disturbance Target Enzymes Sample Sources

Management Thinning

β-glucosidase
Cellobiohydrolase

N-acetylglucosaminidase
β-xylosidase

Forest soils

2.1. Chemical Contaminants

Two experiments were conducted to examine the effects of chemical contaminations
(i.e., bacteriocide or cadmium additions). Dehydrogenase and β-glucosidase activities in
forest soils which were exposed to different frequencies of bacteriocide additions were
compared. We collected soil samples from Autumn Hill Reservation (40◦22′ N, 74◦38′ E),
Princeton, NJ, USA. The main vegetation consists of Quercus bicolar and Acer Saccharinum,
the organic matter content of soil is 9.8%, and soil texture is sandy loam. Soils were collected
to 10 cm depth from the surface and sieved with a 2 mm sieve to remove root debris and
large particles prior to being placed in vials. In each vial, 1 g of soil was placed and 0.15 mL
of water or benzalkonium chloride solution was added daily for 10 days. Each group
was treated with water only (control), twice with benzalkonium chloride (low frequency),
four times with benzalkonium chloride (mid frequency) or ten times with benzalkonium
chloride (high frequency). Three replicate samples were prepared for each treatment.
Dehydrogenase activity was measured on day 10 using INT (Iodonitrozotetrazolium) as a
model substrate, while β-glucosidase was measured using MUF-β-glucopyranoside [18].
For the dehydrogenase assay, 5 g of soil was incubated with 10 mL of INT solution for
1 h, followed by termination of the reaction by centrifugation. β-glucosidase activity was
measured using 1 g of soil amended with 400 µmoles of MUF-β-glucopyranoside. The
fluorescence of the product was measured at excitation and emission wavelengths of
360 nm and 460 nm, respectively.

To assess effects of cadmium (Cd) addition, marsh sediment was exposed to different
concentrations of Cd. Two hundred grams of fresh marsh sediment collected from a Siwha
marsh (37◦15′ N, 126◦51′ E) in Korea was placed in a jar, and water was added to the
surface. The microcosm was amended with cadmium of 0, 1, 10, and 102 mg kg−1 and
incubated for 10 days at 15 ◦C. Two grams of sub-samples were collected at day 1 and
day 10, and dehydrogenase and β-glucosidase activities were determined using INT and
MUF-β-glucopyranoside as model substrates, respectively.

2.2. Hydrological Changes

Effects of water level fluctuations were assessed with tropical peats and coastal mud
flat. Peat cores were collected from three locations at different water regimes in central
Kalimantan (1◦88′ N, 113◦53′ E), Indonesia. The sites were (1) a ditched site with at
least a six-year drainage history, (2) an edge site at the margin of a pristine area with
an intermediate water regime, and (3) an undisturbed site located near the center of a
pristine peatland with no history of water drainage. The partial data from the sites have
already been published [18]. The soils are peat with organic matter content of 92.7%, and
detailed information about the site has previously been reported [19]. The activities of
three enzymes, β-glucosidase, N-acetylglucosaminidse, and β-xylosidase, were measured
using methylumbelliferyl compounds as a model substrate. To reveal effects of tidal
flows, we collected intact mud-flat sediment cores and sea water samples at Kanghwa
area (37◦26′ N, 126◦27′ E) in South Korea. The soil texture was silty clay loam and organic
matter content was 20%. Collected sediment cores with three replicates were then exposed
to different frequencies of tidal flows: high frequency (every 12 h), mid frequency (every
24 h), and low frequency (every 48 h) over a five-week period. Filtered sea water (salinity
of 30 ppt) was introduced to each treatment using a peristaltic pump. β-glucosidase,
N-acetylglucosaminidse, and phosphatase activities were measured at the end of the
incubation using MUF compounds as model substrates.
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2.3. Thinning Management

We collected soil samples from forest floors with different intensities of thinning.
The study site was Gwang-neung forestry research station of Korea Forestry Agency
(37◦74′ N, 127◦15′ E), with pine trees (Pinus koraiensis) the dominant species. Samples
were collected from four different treatments, which were control (no thinning), 700 trees
ha−1, 600 trees ha−1, and 500 trees ha−1, which is in the order of disturbance intensity.
Surface soil samples (0–10 cm) were collected in summer and β-glucosidase, cellobio-
hydrolase, N-acetylglucosaminidase, and β-xylosidase activities were determined by an
aforementioned method.

2.4. Statistical Analysis

Significant differences among diverse disturbance intensities were determined by one-
way ANOVA followed by Tukey’s test. Significant differences were reported at p < 0.05.

3. Results

The addition of toxic chemicals resulted in increased enzyme activities across both
chemical types and soil variations. In the initial experiment, dehydrogenase and
β-glucosidase activities rose with increasing benzalkonium chloride addition up to the
mid-frequency level (Figure 1A). However, enzyme activity returned to control levels at the
highest frequency of addition. Notably, the mid-frequency benzalkonium chloride addition
exhibited enzyme activities over three times higher than those observed in the control or
high-frequency addition conditions. Cadmium additions showed a similar trend, whereby
low disturbance levels increased enzyme activities. Specifically, dehydrogenase activity sig-
nificantly increased with 1 mg kg−1 addition, albeit disappearing by day 10 (Figure 1B). In
this system, the intermediate levels might exist somewhere between 1 and 10 mg Cd kg−1,
which was not clearly identified in this experiment. Remarkably, additions exceeding
100 mg kg−1 dramatically decreased dehydrogenase activities by day 10, indicating the
toxic impact of Cd on microbial metabolic activity in sediment.
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Figure 1. Effects of toxic chemicals on dehydrogenase and β-glucosidase activity: (A) Effects of addi-
tion frequency of benzalkonium chloride activity in temperate forest soils. Data labeled with different
letters are significantly different at p < 0.05 (B) Effects of additions of different amount of cadmium in
a marsh sediment. D1 and D10 denote incubation period of 1 day and 10 days, respectively. Data
labelled with * are significantly different at p < 0.05 at each enzyme and incubation period.

While the initial and subsequent experiment underscored the significance of chemical
contamination as a short-term disturbance, the third experiment highlighted the enduring
legacy of hydrological disturbance, revealing a similar pattern. Enzyme activities peaked in
edge areas compared to pristine or six-year drained sites (Figure 2A). Similarly, alterations
in tidal flow frequency mirrored IDH patterns, with enzyme activities highest under
mid-range tidal flow across β-glucosidase, N-acetylglucosaminidase, and phosphatase
(Figure 2B).
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Figure 2. Effects of water level fluctuations on enzyme activities in (A) tropical peatland (long-
term effects) and (B) mud-flat sediment (short-term effects). Data labeled with different letters are
significantly different at p < 0.05.

The final dataset aimed to evaluate the impact of thinning on soil enzyme activi-
ties. All four enzymes exhibited significantly higher activities at a mid-range intensity of
600 trees ha−1 compared to the control or 500 trees ha−1 treatment (Figure 3). Both 600
and 700 trees ha−1 treatments demonstrated higher N-acetylglucosaminidase activities
compared to the other two treatments.
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Figure 3. Effects of thinning on enzyme activities in Pinus koraiensis forests. Data labelled with
asterisks are significantly different from others at p < 0.05.

The higher activities observed at mid-intensity disturbance in our study may be at-
tributed to several mechanisms (Figure 4). High disturbance levels may inhibit microbial
activities but induce faster turnover of microbial cells, providing labile carbon sources for
remaining viable cells and resulting in overall higher activity. Intermediate disturbance
may also promote higher microbial diversity, increasing support for specific groups of
microorganisms with higher activities. Additionally, cooperation among different taxa
of microorganisms may peak at intermediate disturbance, leading to higher enzyme ac-
tivities. Certain stresses induced by intermediate disturbance may modify physiological
responses of existing microorganisms, resulting in enzyme induction or increased metabolic
rates. Moreover, certain disturbances at mid-range intensity may maximize nutrient avail-
ability, oxygen penetration, light intensity, or understory vegetation, facilitating higher
enzyme activities.
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4. Discussion

This study represents a pioneering effort to establish a link between the IDH and
microbial enzyme activities in soil ecosystems, building upon similar approaches applied
in aquatic ecosystems [20]. Soil microbial activities play a fundamental role in numerous
ecological functions, including nutrient cycling and organic matter decomposition, through
the release of extracellular enzymes. This process is critical for sustaining life on Earth,
as organic matter decomposition provides essential nutrients for plants and energy for
microbes, and aids in pollutant removal from the environment.

Previous research has shown that benzalkonium chloride addition leads to progres-
sively stronger inhibition of dehydrogenase [21]. However, these studies typically em-
ployed higher chemical dosages and pure cultures of microorganisms, limiting observations
of intermediate disturbance. Contrary to these findings, our study observed higher dehy-
drogenase and β-glucosidase activity resulting from intermediate frequencies of benzalko-
nium addition. This increase may be explained by several mechanisms. Benzalkonium
chloride could act as a selective pressure, fostering the development of a resistant or
benzalkonium-chloride-degrading microbial community [22]. Additionally, the destruc-
tion of a portion of microbes may provide labile carbon for remaining microorganisms,
stimulating active metabolism [23]. Soil bacteria may also enhance their metabolic rates
to cope with physiological stress induced by the disinfectant. Furthermore, cooperation
among different microbial groups may peak at intermediate disturbance, leading to maxi-
mal biomass at mid-frequency disturbance, as suggested by Brockhurst et al. [24]. Similar
mechanisms may account for the elevated activities of dehydrogenase and β-glucosidase
under 1 mg Cd Kg−1 addition compared to other concentrations, as was noted in a Cu
application experiment [25].

Peatlands typically develop under water-logged and ombrotrophic conditions where
water is supplied solely by precipitation, resulting in low decomposition rates due to oxygen
deprivation and low pH [26]. Water level fluctuations in peatlands can activate enzyme
activities and accelerate decomposition by allowing oxygen penetration. Conversely, severe
or prolonged drainage may limit microbial activities by restricting water supply. Coastal
wetlands may experience inhibited enzyme activities due to lack of oxygen penetration
and high salinity during frequent flooding, while extended exposure to air can lead to
soil drying and immense stress for microorganisms. Our findings support the notion that
intermediate intensity or frequency of hydrological disturbances activates enzyme activities
in soils compared to absence or too-frequent flooding [27].

Thinning, a common forest management technique, involves selective removal of
suppressed trees to enhance timber production [28]. Previous studies have suggested that
intermediate thinning sites exhibit higher microbial biomass and enzyme activity than non-
thinned control or heavily thinned sites, similar to our finding. For example, Wu et al. [29]
found higher enzyme activities in light- or mid-intensity thinning sites compared to control
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or high-intensity thinning sites in Larix forests in China. Similarly, Zhou et al. [30] con-
ducted a meta-analysis across global forests, revealing higher carbon-related oxidase and
hydrolase activities in moderately thinned forests. Thinning can increase soil temperature
and moisture content by reducing canopy cover, thereby enhancing enzyme activities. Ad-
ditionally, mid-range thinning may promote understory vegetation growth, compensating
for reduced carbon supply from leaf litter and fine roots.

In addition to extending the IDH concept to microbial activities in soil ecosystems,
our findings have implications for other microbial systems, such as medical and food
microbiology. Incomplete sterilization may induce stronger virulence or activity of harmful
microorganisms under medium-range disturbance conditions. This concept also applies
to ecosystem restoration and conservation [31], where appropriate disturbance levels can
enhance soil microbial process rates. Proper disturbance intensity can accelerate ecosystem
restoration or maintenance of critical functions, particularly relevant for wetland restoration,
where specific water level fluctuations are necessary to maintain biogeochemical processes
and ecosystem functions.

5. Conclusions

Our study demonstrates that the IDH, originally developed for plant ecology, can be
applied to microbial ecology, particularly concerning microbial activities in soil ecosystems.
This finding underscores the potential for ecological theory-driven research to provide
valuable insights into the complex interactions between microorganisms and their envi-
ronment. Future studies employing high-resolution community analysis and chemical
analysis may elucidate the underlying mechanisms driving microbial activity patterns
under different disturbance regimes. Overall, this study contributes to our understanding
of microbial ecology and emphasizes the importance of considering microbial communities
in ecosystem management and conservation efforts.
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