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Abstract: Microscopic examination of acid-fast mycobacterial bacilli (AFB) in sputum smears remains
the most economical and readily available method for laboratory diagnosis of pulmonary tuberculosis
(TB). However, this conventional approach is low in sensitivity and labor-intensive. An automated
microscopy system incorporating artificial intelligence and machine learning for AFB identification
was evaluated. The study was conducted at an infectious disease hospital in Jiangsu Province, China,
utilizing an intelligent microscope system. A total of 1000 sputum smears were included in the study,
with the system capturing digital microscopic images and employing an image recognition model
to automatically identify and classify AFBs. Referee technicians served as the gold standard for
discrepant results. The automated system demonstrated an overall accuracy of 96.70% (967/1000),
sensitivity of 91.94% (194/211), specificity of 97.97% (773/789), and negative predictive value (NPV)
of 97.85% (773/790) at a prevalence of 21.1% (211/1000). Incorporating AI and machine learning into
an automated microscopy system demonstrated the potential to enhance the sensitivity and efficiency
of AFB detection in sputum smears compared to conventional manual microscopy. This approach
holds promise for widespread application in TB diagnostics and potentially other fields requiring
labor-intensive microscopic examination.

Keywords: TB smear; AI; machine learning; TB diagnosis

1. Introduction

Tuberculosis is treatable, preventable, and curable. Sustained declines in tuberculosis
deaths in many countries during the past 50 years provide evidence that ending the
pandemic is foreseeable [1]. However, tuberculosis, which has plagued humanity and has
killed hundreds of millions of people over the past two centuries, remains a global public
health threat. In 2023, 1.3 million people died from tuberculosis (95% UI: 1.18–1.43 m),
including 167,000 people with HIV, representing more deaths than any other infectious
disease [2]. World leaders in the most recent United Nations High-Level Meeting (UNHLM)
on TB made commitments and requests to address the global tuberculosis crisis [1], which
included providing comprehensive care to all people with TB, addressing the crisis of drug-
resistant TB, strengthening the engagement of civil society and communities affected by
TB, and enabling and strengthening TB research. It highlights the need for comprehensive
care, addressing drug-resistant TB, engaging civil society and communities, and promoting
TB research. The commitments made during the meeting provide a strong impetus to
accelerate the TB response and work towards ending TB.

The World Health Organization (WHO) recommends the acid-fast stain method of
sputum smears as the most robust and economical method for the first line of laboratory
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diagnosis of pulmonary tuberculosis. This method relies on the microscopic examination of
sputum samples for acid-fast mycobacteria bacilli (AFB). However, it is important to note
that the sensitivity and specificity of smear microscopy are poor, as it only detects 10 to
75% of pulmonary TB cases. Additionally, smear microscopy is labor-intensive and tedious.
While new molecular-based methods like Xpert MTB/RIF have become available, they have
not been widely deployed in rural areas due to substantially higher costs and infrastructure
constraints, which may not be affordable in many countries with high TB burden in the
foreseeable future [3,4]. Thus, despite advancements in molecular diagnostics, the acid-fast
stain method remains the recommended first-line laboratory diagnosis for pulmonary
tuberculosis due to its robustness and cost-effectiveness [5–7]. The WHO suggests the
availability of 1.1 microscopy laboratories per every 100 thousand population to enhance
the diagnostic capacity for tuberculosis [2].

The situation of unsatisfactory TB smear accuracy (sensitivity and specificity) seems
to be the same scenario as pathology. For more than 100 years, pathologists have relied
on manual microscopy, the same as microbiologists, for laboratory diagnosis. It seemed
unsolvable until the development of artificial intelligence (AI), image recognition, and
machine learning algorithms in the late 1990s. Machine learning (ML) is based on artificial
neural networks, which mimic human brain processes by passing data through hidden
layers by connected neurons, with the output layer providing the estimation or prediction.
The key advantage of ML is its ability to automatically extract features of the input informa-
tion from the iteration of calculation back and forth among input layers, the hidden layers,
and the output layer(s). These developments have motivated several large clinical trials to
use ML technologies in pathology. Digital pathology has become a trending movement
in the so-called “Smart Hospitals”, where pathology specimens can be digitalized, elec-
tronically transferred, diagnosed, reviewed, and the report issued. However, no “Digital
Microbiology” products and services have been developed accordingly.

Recently, some automated TB smear microscopy systems have been developed that
take advantage of artificial intelligence (AI) and big data analysis, which may significantly
increase the sensitivity of TB smear microscopy [8–21]. However, most of the research
focused on algorithms and deep learning model building, with less focus on system
integration (e.g., evaluation of hardware and software together). Such an integrated system
may include a motorized stage to load the smear slides into a bright-field microscope
(hardware). Then, the system performs auto-focus, digitally captures the smear images,
analyzes the images, and classifies smear slides as positive or negative (software). Although
all these studies reported better performance than human examination, most are still in
development or just “proof-of-concept” systems. Until 2022, an integrated microscopic
system was commercialized for automatic detection of AFB, which has received medical
device registration in several countries [22,23]. This is a continuation study to describe the
performance characteristics and medical technician’s workload of a diagnostic algorithm
for the identification of AFB under a microscope using image recognition technology.

2. Materials and Methods

Study Hospital: The Study Hospital was formerly an infectious diseases specialty
hospital located in Southern Jiangsu, China. The hospital has 900 beds, of which, 210
are in the respiratory department. An average of 80 smears are tested for mycobacteria
in the laboratory. At least three technicians are on duty daily to perform TB smear mi-
croscopy. All specimens in the study were processed by liquid-base culture method for
MTB identification.

Specimen: This study initially included 1150 smears. One hundred fifty smears were
rejected due to incomplete stain removal (n = 60), smear location shift (n = 8), smear being
too thick (n = 3), smear being too thin (14), smear dropped off (n = 4), and slide size too big
or too small for the system (n = 21). The remaining 1000 smears were enrolled.

Smear Stain: We followed the standardized protocol for the modified Kinyoun acid-fast
stain of smears. All specimens were processed with N-acetyl-L-cysteine-sodium hydroxide
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for decontamination. A smear was then made by spreading a thin layer of the processed
sputum sample onto a glass slide and allowing it to air dry, followed by heat fixation 2
to 3 times. Then, the slide was flooded with Kinyoun carbolfuchsin stain for 5 min after
1 min with absolute methanol for 1 min. The slide was rinsed briefly (3 to 5 s) with 50%
ethanol, followed by water rinsing. Moreover, the slide was decolorized with 1% sulfuric
acid for 2 min or until no more color runs from the slide. Afterward, the slide was rinsed
with water, counterstained with methylene blue for 1 min, and rinsed to air dry. After the
technicians examined the smears with a manual microscope and issued the test results
in the laboratory report, the same set of slides was transferred to another technician for
comparison by the automated system.

Image Recognition Model for TB Bacillus: The machine learning model applied in
this study for TB bacilli detection utilizes a hybrid approach, combining supervised and
unsupervised learning algorithms. The model building started with supervised learning,
where the system is trained to identify candidate TB objectives based on their morphological
characteristics. The convolutional neural network (CNN), a class of deep learning models
particularly effective in image recognition tasks, was trained on more than 100,000 TB
smears, learning to distinguish the distinctive bacillus-shaped morphology of acid-fast
bacilli (AFB) from other cellular debris and artifacts in the sputum smear, similar to
approaches used in other medical imaging applications [24]. Once potential bacilli were
identified, the model transitions to an unsupervised learning phase. This stage employed
another CNN model to refine the classification. The unsupervised model is exposed to
a diverse set of image objects containing TB-positive and TB-negative bacilli with labels
by medical technicians. Through this process, the model learns to identify subtle features
and patterns that distinguish positive TB bacilli from other similar-looking objects. This
unsupervised approach is particularly valuable as it allows the model to discover complex,
non-linear relationships in the data that might not be apparent to human observers or
easily codified in rule-based systems. Following the unsupervised learning phase, the
model undergoes a refinement step where the image objects classified as TB-negative by
the unsupervised model are removed from further consideration. This step effectively
prunes the candidate pool, leaving only the objects that the model considers highly likely
to be TB bacilli. This refinement process significantly enhances the model’s precision,
reducing the likelihood of false positives in the final output, a technique that has shown
promise in other medical imaging applications [25]. The overall architecture of this hybrid
model allows for continuous improvement and adaptation. As new data become available,
both the supervised and unsupervised components can be fine-tuned, enhancing the
model’s performance over time. The use of deep learning techniques, particularly in the
unsupervised phase, enables the model to capture complex, high-dimensional features
that may not be apparent to human observers, potentially leading to improved sensitivity
compared to traditional manual microscopy.

Procedures for a Parallel Study: An automated intelligent medical microscope system
(“system”) (TB-Scan, Wellgen Medical, Kaohsiung, Taiwan) was installed in a negative
pressured isolation laboratory. The system consists of two components: (1) microscopic
imaging acquisition hardware with auto-focusing and slide-scanning capability to cover
the 1 cm by 2 cm specimen area based on WHO recommendation (300 fields @1000× oil
lens); (2) an image recognition algorithm for detection and classification of positive AFBs.
The image acquisition hardware is designed to refocus every field of view to overcome
the inconsistency of smear thickness. This procedure ensures that each image acquired is
on focus, though the total acquisition time could be longer. After the microscopic images
were digitally acquired and stored, candidate AFBs were detected and marked, and the
marked bacilli were differentiated from other substances and tissues in the smear based
on color and morphological features, as mentioned previously. Such a CNN model was
pre-trained with a diverse set of specimen samples, more than 100,000 TB smears from
across Asia, mostly coming from Taiwan and partially from China, India, and Japan, to
minimize the potential overfitting problem [22,23]. The results were recorded as positive
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if any AFB was identified in the image of the slide. The laboratory technician supervisor
served as the Gold Standard in evaluating the system’s performance. The whole system
was powered and controlled by a custom-made internal personal computer (CPU: Intel
Gen10 Core i7-10700TE w/16 GB RAM and an Nvidia GTX 1650 GPU w/4 GB DDR5, Santa
Clara, CA, USA).

Quality Control: All positive smears detected by TB-Scan were re-examined by a mi-
croscope (Olympus CX-21) under a 1000× oil lens for verification, and microscopic images
were captured and stored by a cellphone (iPhone 13, Apple Inc., Cupertino, CA, USA).

Data Interpretation: Test performance evaluation is based on sensitivity and specificity.
Sensitivity (also called the true positive rate) measures the proportion of positives correctly
identified as such (e.g., the percentage of positive TB smears correctly identified from the
true positives). Specificity (also called the true negative rate) measures the proportion of
actual negatives correctly identified as such (e.g., the percentage of negative TB smears
correctly identified as not having the condition). Negative predictive value (NPV) measures
the ratio of true negative to all those identified as negative. NPV is an effective indicator for
a screening test because its characteristics can predict how likely it is truly negative (e.g.,
healthy) in case of a negative test result.

3. Results

Specimen Characteristics: Of the 1150 smears for this study, 150 were rejected due to
incomplete stain removal (n = 60), smear location shift (n = 8, see Figure 1), smear being
too thick (n = 3), smear being too thin (14), smear dropped off (n = 4), and slide size too big
or too small for the system (n = 21).
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Figure 1. Examples of smear characteristics: #1 through #3 were acceptable. The #4 smear was too
thin, and #5 had incomplete stain removal. The #6 smear was too thick, and both #5 and #6 smears
were outside of the valid scanning target area.

Initial Results from the Automated System: The original hospital clinical records on
acid-fast stains indicated that there were 194 AFB-positive smears and 806 AFB-negative
smears. Based on TB-Scan’s results, there were 210 AFB-positive smears and 790 AFB-
negative smears. Of the 210 AFB-positive smears by TB-Scan, 198 smears contained AFB
under microscope examination, and AFB was not found in the remaining 12 smears. Based
on the results mentioned above, the confusion matrix is as follows in Table 1.

Table 1. Performance of automation system and manual smear microscopy to detect AFBs (before
discrepancy resolution by gold standard).

Test Performance
AFB Record by Technicians

Positive Negative

TB-Scan Positive 177 33

Negative 17 773



Microorganisms 2024, 12, 1734 5 of 11

The accuracy was 95.00% (950/1000), with a sensitivity of 91.24% (177/194), specificity
of 95.91% (773/806), false negative rate of 8.76% (17/194), and false positive rate of 4.09%
(33/806). However, 21 smears that were previously reported as negative were found
positive by TB-Scan. The microscopic images demonstrated scanty AFBs (Figure 2).
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Discrepancy Resolution and Updated Performance: After presenting the images to the
medical technician in the study hospital (our gold standard), the technician ruled out four
smears and maintained her judgment as negative, agreeing that the remaining 17 smears
should have been recorded as positive. Therefore, the confusion matrix was re-calculated
as follows in Table 2.
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Table 2. Performance of the automation system and manual smear microscopy to detect AFBs (after
discrepancy resolution by the gold standard).

Test Performance
Gold Standard

Positive Negative

TB-Scan Positive 194 16

Negative 17 773

The accuracy was recalculated as 96.70% (967/1000), with a sensitivity of 91.94%
(194/211), specificity of 97.97% (773/789), false negative rate of 8.06% (17/211), and false
positive rate of 2.03% (16/789). The negative predictive value (NPV) was 97.8% at a
prevalence of 21.1% (211/1000).

Among the 17 smears originally found negative, there were 8 recorded as scanty, 7 as
1+, 1 smear as 2+, and 1 smear as 3+.

User Feedback and Efficiency: During the study, we also interviewed the three labora-
tory technicians about the system’s user-friendliness and the key benefit to them if they
decide to apply such a system in their routine procedures. The technicians’ reports ranged
from “above average” (4 points) to “excellent” (5 points), yielding an average of 4.67 points
in user-friendliness. The first key comment from the technicians was that the system can
help them to eliminate more than 85% of negative smears and only focus on reviewing the
remaining 15% of slides. Their average time spent in the manual microscopic examination
per smear per person was reduced from 5 min to around 2 min if using the automated
system based on a 100-smear workload every day. This is equivalent to a time saving of
5 person-hr per day that the technicians can work on other important laboratory errands
while the automated system reads the smears in parallel. Secondly, the technicians were
surprised how the image recognition software could detect scanty acid-fast bacilli (Figure 2),
which was too difficult for human eyes. Lastly, reading TB smears under microscopy for 4
to 5 h per day is unhealthy for human eyes. The automated system can significantly reduce
the eye fatigue associated with manual microscope examination.

One of the key obstacles to applying digital solutions in microscopic systems is the
image/data size, which could be a major cost concern. In this study, images generated
for each smear covering 300 fields @1000× oil lens is about 60 MB on average, which is
significantly smaller than the images generated from the whole slide scanner (WSI), which
could be as big as 4 to 6 GB.

4. Discussion

The most economical, rapid, and readily available method for laboratory diagnosis of
TB is acid-fast staining of sputum smear to identify mycobacterial acid-fast bacilli (AFB).
However, the sensitivity of smear microscopy is highly variable [26] due to less experienced
or trained staff, long hours of workload, and no presence of quality assurance [27–31]. New
technologies, such as the Xpert and TB-LAMP, based on molecular methods, are becoming
available. In addition, the fluorescence in situ hybridization (FISH) tests were also used for
directly detecting mycobacteria in sputum, which has been successfully implemented in
India [32–34]. However, it is unlikely that these technologies will be affordable replacements
for smear microscopy in many high-burden countries without subsidy from the WHO or
Gates Foundations. Thus, if automation, AI, and machine learning can be applied to TB
smears, such a system may significantly increase the sensitivity of TB smear microscopy.
Then, one may re-evaluate the pros and cons of TB smear microscopy and TB molecular
methods, given the trial data that the test sensitivity and specificity are equivalent between
TB smear microscopy and TB molecular methods.

In this on-site test, the test system achieved an accuracy of 96.70% (967/1000), sen-
sitivity of 91.94% (194/211), specificity of 97.97% (773/789), false negative rate of 8.06%
(17/211), and false positive rate of 2.03% (16/789). The system performed more than 90%
in both test sensitivity and specificity, well above previous studies. Due to more consistent
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specimen preparation, the overall detection performance was better than the previous
two studies [22,23]. This is competitive with Xpert, which has a sensitivity of around 90%
as well [2]. In addition, regardless of the costs and resource issues with molecular methods,
TB smear microscopy continues to play a role in TB diagnosis in monitoring the treatment
of TB cases [2,6,7]. It is noteworthy that 17 smears were false negatives based on TB-Scan
analysis. After carefully examining each scanned image, both technicians in this study
could not find images with AFB. A smear that contains AFB may be outside of the scan
area. Thus, to minimize such false negative results, smear preparation should follow a
standardized procedure, and the specimen area should be in accordance with TB-Scan’s
scan area.

One of the important pieces of feedback from the medical technicians in the study
hospitals is that they spent significantly less time, an average reduction of 5 person-hour per
work day, in reading the microscope. The literature has documented the health hazards of
prolonged microscopic work [35–37]. In a study with 450 enrolled study pathologists, 84.8%
complained of musculoskeletal disorders (MSD), with the neck being the most common
location of pain [35]. Furthermore, 74.8% reported visual refractive errors, among which
myopia took the highest place [36]. Another study, with 163 pathologists participating in the
study, showed that 40% of responders reported musculoskeletal problems in the previous
month [37]. Almost 90% of pathologists had visual refraction errors, mainly myopia [37].
Using the automated system in our study may save three-fifths of the time spent reading
smears on the microscope, improving the medical technicians’ work morale. Furthermore,
the medical technicians in the study hospital reported that the system usability ranged
from “above average” to “excellent”. We would like to credit the company that hired our
in-house medical technicians who participated in the user interface design process. It is
important that our user interface is compatible with the laboratory’s existing workflow and
standard operating procedures as closely as possible, so no ambiguity and confusion occur.

Current guidelines and recommendations state that smear microscopy alone can-
not differentiate Mycobacterium tuberculosis complex and non-tuberculous mycobacteria
(NTM) [2,30,38]. While culture is considered the gold standard diagnostic method for TB
due to its high specificity and sensitivity, it is not commonly used due to cost, infrastructure
requirements, and the long turnaround time for results [39–41]. Huang et al. hypothesized
that for performance evaluation of smear microscopy automation systems, the gold stan-
dard should be the consensus of expert technicians rather than culture [22]. The rationale
behind this hypothesis is that smear microscopy inherently cannot distinguish between M.
tuberculosis and NTM. Using culture as the gold standard for evaluating smear microscopy
automation systems may lead to false negatives when NTM is present, which would be
detected as positive by the automation system. Therefore, we support the hypothesis that
the performance evaluation of smear microscopy automation systems should use a panel
of experienced medical technicians as the reference standard rather than culture. This
approach would provide a more accurate and fair assessment of the system’s ability to
detect TB bacilli in smear microscopy images, as it aligns with the inherent limitations of
smear microscopy in differentiating between M. tuberculosis and NTM.

Lastly, when considering the field deployment of an automated microscope system for
clinical laboratories, several issues are noteworthy and could be considered as weaknesses:
(a) Slide size compatibility: While the slide tray design of the automated system can
accommodate most commercial slides, some slides may be too large to fit into the tray
slots or too small and prone to falling out of the slide tray. This could impact the system’s
ability to process certain slide formats effectively. (b) Stain quality: The quality of the
manual staining technique can influence the performance of the automated system, as
the recognition software relies on color as an important parameter for detecting acid-fast
bacilli (AFB). Inconsistent or suboptimal staining may compromise the system’s ability
to accurately identify AFB. We suggest that the use of commercially available automatic
stain systems may well resolve the problems. (c) Image size: Most studies use whole slide
scanners (WSIs) from digital pathology trying to capture mycobacteria at 400×. Regardless
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of whether the image quality is acceptable for detecting mycobacteria, the image size could
be an issue. The large image size of a WSI, ranging from 4 to 6 GB for the whole 1 cm
by 2 cm area, could be costly in data storage and network transfer. In this study, the test
system takes each field of view into a compressed image file (i.e., JPEG), and the total data
size for one smear is only 60 MB on average, which is a cost advantage for users when
considering the digital solution.

5. Conclusions

This study demonstrated the potential of an automated intelligent microscopy system
incorporating deep learning to improve the diagnosis of pulmonary tuberculosis through
the detection of acid-fast bacilli (AFB) in sputum smears. The system achieved an overall
accuracy of 96.70%, with a sensitivity of 91.94% and specificity of 97.97%. These results
indicate a significant improvement over conventional manual microscopy, particularly in
detecting scanty AFB that may be missed by human observers. In addition, the negative
predictive value (NPV) of 97.85% at a prevalence of 21.1% is particularly noteworthy. This
suggests that the system could be an effective tool for screening, as it reliably identifies
negative samples. In resource-limited settings with high TB burdens, this could reduce
the workload on laboratory technicians by allowing them to focus their attention on the
smaller number of potentially positive samples. The system’s ability to detect previously
missed positive cases (17 out of 211 total positives) highlights its potential to improve case
detection rates. This is crucial in the global fight against TB, where early and accurate
laboratory diagnosis is key to effective treatment and prevention of transmission.

From an operational perspective, the feedback from laboratory technicians regarding
the system’s user-friendliness and efficiency improvement is encouraging. The reported
time savings of approximately 5 person-hours per day for a 100-smear workload represent
a significant improvement in laboratory efficiency. This could allow for increased testing
capacity or reallocation of human resources to other critical tasks. Moreover, the reduction
in eye strain and fatigue for technicians is an important occupational health benefit that
should not be overlooked. Prolonged microscopy work can lead to various health issues,
and any system that can alleviate this burden is valuable. Furthermore, the relatively
small file size of the digital images (average 60 MB per smear) compared to whole slide
imaging (WSI) systems is another advantage. This makes the system more feasible for
implementation in resource-limited settings where data storage and transfer capabilities
may be constrained.

However, it is important to note this study’s limitations. The rejection of 150 smears
due to various quality issues highlights the need for standardized sample preparation and
potential training requirements for optimal system use. Future studies should address
these issues and explore ways to minimize sample rejection rates.

While the performance of this system is promising, it is crucial to consider its place
within the broader context of TB diagnostics. Molecular methods like Xpert MTB/RIF and
TB-LAMP offer rapid results and can detect drug resistance, which this system cannot.
However, the cost and infrastructure requirements of these molecular methods may limit
their widespread adoption in high-burden, low-resource settings. Thus, this automated
system could potentially bridge the gap between conventional microscopy and molecular
methods. It offers improved sensitivity over manual microscopy while being more cost-
effective and easier to implement than molecular tests. In a tiered diagnostic approach, this
system could serve as an enhanced initial screening tool, with positive or uncertain results
then confirmed by molecular methods.

Looking forward, further research is needed to validate these results in diverse settings
and populations. Multi-center studies comparing this system directly with both manual
microscopy and molecular methods in terms of diagnostic accuracy, cost-effectiveness,
and operational feasibility would be valuable. Additionally, exploring the potential of this
technology for other diseases requiring microscopic examination could broaden its impact
on global health.
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Lastly, this automated intelligent microscopy system represents a significant advance-
ment in TB diagnostics. By combining the traditional method of sputum smear microscopy
with cutting-edge AI and deep learning technologies, it offers a promising solution to
enhance TB detection, particularly in high-burden, resource-limited settings. As we strive
to meet the ambitious goals set by the UN High-Level Meeting on TB, innovations like this
may play a crucial role in improving TB case detection, reducing diagnostic delays and
ultimately assisting in our global efforts to end the TB epidemic.
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