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Abstract: Some sulfate-reducing bacteria (SRB), mainly belonging to the Desulfovibrionaceae family,
have evolved the capability to conserve energy through microbial extracellular electron transfer (EET),
suggesting that this process may be more widespread than previously believed. While previous
evidence has shown that mobile genetic elements drive the plasticity and evolution of SRB and
iron-reducing bacteria (FeRB), few have investigated the shared molecular mechanisms related to
EET. To address this, we analyzed the prevalence and abundance of EET elements and how they
contributed to their differentiation among 42 members of the Desulfovibrionaceae family and 23 and
59 members of Geobacteraceae and Shewanellaceae, respectively. Proteins involved in EET, such as
the cytochromes PpcA and CymA, the outer membrane protein OmpJ, and the iron–sulfur cluster-
binding CbcT, exhibited widespread distribution within Desulfovibrionaceae. Some of these showed
modular diversification. Additional evidence revealed that horizontal gene transfer was involved
in the acquiring and losing of critical genes, increasing the diversification and plasticity between
the three families. The results suggest that specific EET genes were widely disseminated through
horizontal transfer, where some changes reflected environmental adaptations. These findings enhance
our comprehension of the evolution and distribution of proteins involved in EET processes, shedding
light on their role in iron and sulfur biogeochemical cycling.

Keywords: sulfate-reducing bacteria; iron-reducing bacteria; extracellular electron transfer; mobilome

1. Introduction

Sulfate- and iron-reducing prokaryotes (SRPs and FeRPs) are microorganisms that
play a vital role in the biogeochemical cycles of sulfur and iron, two essential elements
for the functioning of life on earth [1,2]. A vast body of research highlights the impact
of the interaction of these two groups across many ecosystems, including anaerobic soils
and sediments, pristine or contaminated freshwater, groundwater and marine environ-
ments, and even intestinal systems [3–14]. The interactions between both functional groups
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have been widely reviewed in marine environments, in which their activity accounts for
most of the anaerobic organic matter degradation in sediments at the global level [15–19].
Currently, marine sulfate (~29 mM) is the largest mobile sulfur reservoir on our planet,
an oxidizing pool even greater than atmospheric oxygen [20,21]. The mechanical and
chemical weathering of continental rocks releases sulfur into the seawater column, which,
in turn, continuously supplies sulfate to marine snow and sediments, where it is reduced
by SRPs [16,20,22]. Analogously, iron enters the ocean from different sources, mainly
remaining as a redox-active element in sediments, where FeRPs use it as an electron accep-
tor [3,23,24]. H2, formate, acetate, and other volatile fatty acids produced by hydrolysis
or fermentation are used as electron donors for both dissimilatory processes, making the
biogeochemical cycling of carbon, iron, and sulfur tightly linked [10].

Major determining factors contribute to the balance of how iron and sulfate reduction are
spatially and temporally organized [25]. First, there is a competition for electron donors that
was initially addressed by studying the concept of competitive exclusion [11,26–30]. Second,
these biogeochemical processes are constrained to those metabolisms that include dissimi-
latory pathways capable of interacting with insoluble (iron) and soluble (sulfate) electron
acceptors and by the free energy released by each redox reaction. While dissimilatory
iron-reducing metabolisms, which demand that electrons must be effectively transported
from cytoplasmic donors to extracellular space and generate higher free energy, dominate
surface environments where Fe (III) is available, reductions in sulfate, yielding less energy,
are restricted to deeper layers of sediments [3,23,31]. Third, several chemical reactions
regulate the bioavailability or toxicity of both substrates and by-products. For instance,
Fe(II) produced by dissimilatory iron reduction tends to diffuse to an oxic/anoxic interface,
where it is reoxidized back to Fe(III) [23,32]. In contrast, Fe(III) works as an oxidant for
sulfide that is produced by deeper SRPs, producing iron sulfide (FeS) and, lately, pyrite [33],
which competes with the incorporation of sulfide into organic matter [34–36].

Based on this evidence, it was initially assumed that iron and sulfate reductions
occur in discrete zones [27,37,38]. However, more recent observations have challenged
this notion, revealing that both processes can coexist simultaneously [3,13,14,39] and even
interplay along different stages of mineral transformation [40]. Phylogenetically diverse
species of SRPs can reduce Fe(III) and Mn(IV) as well as electrodes of bioelectrochemical
systems, suggesting that these capabilities may be widespread in various clades, although
few of them can conserve energy to support growth [23,41–48]. Several SRP strains have
been involved in the corrosion of Fe-containing metals by a combination of different
mechanisms, suggesting many possible pathways of interactions with extracellular electron
donors/acceptors [49,50]. In addition, comparative genomic studies have shed light on the
lasting role that genetic mobile elements play in the plasticity and evolution of genomes
of members of the Desulfovibrionaceae, Geobacteraceae, and Shewanellaceae families [51–56].
Recent investigations have reported that genes encoding transmembrane electron conduits
in Shewanella, MtrCAB and OmcA, have been disseminated through horizontal gene transfer
within the same species [57], genus [58], and across distantly related genera [59], suggesting
that the mobilome may play a role in acquiring sophisticated metabolic processes such
as extracellular electron transfer (EET). This juxtaposition led to the hypothesis that as a
result of co-localization, collaboration, and competition, as well as their metabolic plasticity,
several SRPs may have also evolved the capability to reduce insoluble Fe(III) oxides coupled
with the oxidation of low-concentration electron donors.

The Geobacteraceae and Shewanellaceae families are FeRPs that are well known for their
EET capabilities. The mechanisms of their model bacteria, G. sulfurreducens PCA and
S. oneidensis MR-1, have been extensively studied by combining genomic, transcriptomic,
and proteomic approaches coupled with functional genetic experiments, and they have
been expanded to other strains [60–65]. Based on these well-studied mechanisms, we
conducted a search to understand the prevalence of the orthologs of EET-related proteins in
forty-two genomes of SRB belonging to the Desulfovibrionaceae family. The analysis included
130 proteins that encode c-type cytochromes, such as porin–cytochrome complexes (Pcc),
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b-type cytochrome complexes (Cbc), riboflavin biosynthesis genes, chemotaxis-related
genes, and cell membrane components, and explored the mobilome of the three groups to
assess the impact of horizontal gene transfer (HGT) on the acquisitions and losses of genes
critical for EET by members of the Desulfovibrionaceae family.

Through phylogenetic and orthology analyses, we identified key proteins involved in
EET that are widely distributed across these three families. Most of these proteins display
modular diversification, serving as components of multiple complexes engaged in respi-
ratory mechanisms. We believe this pool may include the essential core features required
for the proper physiological functioning of EET and could constitute a crucial aspect of
evaluating its expansion to other SRPs. These findings enhance our understanding of the
evolution and distribution of proteins related to extracellular electron transfer processes,
shedding light on their role in microbial communities actively participating in iron and
sulfur biogeochemical cycles.

2. Materials and Methods
2.1. Genome Selection and Phylogenomic Analysis

A collection of already-sequenced genomes from both sulfate-reducing bacteria (SRB)
and Fe-reducing bacteria (FeRB) were analyzed to investigate the shared genomic charac-
teristics and the evolutionary relationships between the two groups. The selected genomes
span 23 and 59 strains of the Geobacteraceae and Shewanellaaceae families, respectively, rep-
resenting the FeRB, in addition to 42 genomes of SRB belonging to the Desulfovibrionaceae
family (Table S1). The sequence data for all of the bacterial genomes were retrieved from
the NCBI RefSeq database (query date: March 2022). The quality of the genomes was ana-
lyzed with CheckM [66], using completeness > 98% and contamination < 5% as the cutting
parameters. In order to perform a genome-wide phylogenetic analysis between all selected
genomes, OrthoFinder [67] was used to perform a DIAMOND-based all-versus-all gene
search on amino acid levels and identify clusters of orthologous genes (OGs). From this
analysis, 109 single-copy OGs were aligned by MAFFT [68] and concatenated to construct
a phylogenomic tree with FastTree [69] under the maximum-likelihood method. For the
visualization of the tree, MEGA X [70] and iTOL v5 [71] were used.

2.2. Creation of Custom Databases: Genes Related to Extracellular Electron Transfer (EET)

To identify EET-related genes in the selected genomes, a custom database was gen-
erated using 130 gene sequences reported to be involved in EET from two known FeRB:
Geobacter sulfurreducens PCA and Shewanella oneidensis MR-1 (Table S2). This database in-
cludes several genes encoding c-type cytochromes, both outer-membrane and periplasmic;
genes encoding porin–cytochrome complexes (Pcc) and b-type cytochrome complexes (Cbc);
and genes related to riboflavin biosynthesis, chemotaxis, and cell membrane components,
among others. The sequences were retrieved from the UniProt and NCBI NR databases
(query date: January 2022).

2.3. Ecophysiological Analysis of SRB and FeRB

In order to relate and discover connections between the genomic and physiological
characteristics of the bacteria analyzed, an extensive compilation of their ecophysiolog-
ical information was carried out through a literature review, following and expanding
what was previously described [53,72–198]. This analysis included the following pa-
rameters for each strain: (i) sources of isolation classified into the following categories:
“Freshwater sediments”, “Brackish water/sediments”, “Marine water/sediments”, “Soil”,
“Engineered/Impacted system”, “Plant/Algae-associated”, “Animal/Human-associated”,
“Food”, and “Unknown”; (ii) growth conditions, such as pH and temperature growth ranges
(with the terms “mesophile”, “psychrophile”, and “psychrotolerant” used as descriptors),
and salinity tolerance, which was classified according to the maximum value of % NaCl in
which growth was observed, or, if such information was not found, according to the source
of isolation of each strain, classified as low (<1% NaCl, freshwater sediments/human-
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associated), medium (1–3% NaCl, brackish water/sediments/marine animal-associated),
or high (>3% NaCl, marine water/sediments); and (iii) metabolic traits such as oxygen
tolerance (with the terms Anaerobe, Facultative anaerobe, or Aerobe), electron acceptors
and donors used for growth (using the terms complete or incomplete oxidation), growth
rate estimations based on duplication capacity under optimum conditions (as fast-growing:
in ≤12 h, or slow-growing: in >12 h), and iron reduction capacity. This information was
later connected to phylogenomic and similarity network analyses.

2.4. Comparative Genomics

To investigate the shared genomic features related to EET between the SRB and FeRB,
a search was performed for the OGs inferred by Orthofinder containing sequences from
our custom database. The presence or absence of proteins from each strain was evaluated
by determining whether or not the genome possessed the correspondent OG. The inferred
OGs containing the EET-related sequences of each genome were sorted according to the
phylogenomic tree to generate a heatmap on the R platform with the gplots package v.3.0.3.
The detected proteins were subsequently analyzed to predict their cellular localization
using the PSORTb web server [199].

Multi-heme c-type cytochromes (≥3 CXX(X)H motifs) were identified with a Perl
script [200]. The subcellular localization prediction for genes containing heme motifs was
performed using PSORTb v3.0.3 [199]. The predicted categories were extracellular, outer
membrane, periplasmic, cytoplasmic membrane, and unknown. In addition, a search for
prophage-like sequences was carried out in all the analyzed genomes using the PHAge
Search Tool Enhanced Release (PHASTER) web server (http://phaster.ca/ (accessed on
1 June 2022)) with default parameters for closed and WGS data [201]. Histograms with
this information were performed using GraphPad Prism (version 8.2.1), and incorporated
into the phylogenomic tree. The presence of CRISPR elements in the closed and WGS data
of each strain was analyzed with the CRISPRCasFinder web server (https://crisprcas.i2
bc.paris-saclay.fr/ accessed on July 2022) using the default parameters [202]. To quantify
the number and type of insertion sequences (ISs) present in the genomes of each strain,
the web server of ISFinder was used (https://isfinder.biotoul.fr/ (accessed on 30 July
2023)), using the default parameters for a blastn and an E-value of 0.000001 [203]. The
ISs were considered if they had an alignment length over 700 bp. For the detection of
integrons in the closed and WGS data of each strain, the program IntegronFinder was used
in the open platform Galaxy@Pasteur (https://galaxy.pasteur.fr/ (accessed from July to
September 2023)), using the default parameters with the addition of the option of local
detection and a search of promoter and attI sites [204]. The 3 types of elements recognized
by IntegronFinder were complete integrons (integrons with an integron–integrase near attC
site(s)), In0 elements (integron–integrase only, without any attC site nearby), and CALIN
elements (cluster of attC sites lacking a nearby integrase). To detect the number of types of
ICEs present in each strain (including the ones in the chromosomes and plasmids sequences
if they were available), the CONJScan models in MacSyFinder were used [205,206]. This
was individualized by checking the number of proteins and the types of conjugation system
for each strain.

2.5. Similarity Network

To search for evidence of the extracellular electron transfer potential in the groups
of bacteria analyzed, a similarity network analysis was performed using the sequences of
potential cytochromes (sequences containing greater than or equal to three heme motifs)
predicted as the extracellular or outer membrane, according to the analysis using the
PSORTb web server. For this purpose, all protein sequences from the OGs that contained at
least one extracellular or outer-membrane cytochrome were extracted and used to perform
a BLAST all-vs-all analysis. The network was generated with 1807 putative cytochrome
sequences belonging to the Desulfovibrionaceae (125), Geobacteraceae (918), and Shewanellaceae
(764) families. Each node in the network represents a single protein sequence and each

http://phaster.ca/
https://crisprcas.i2bc.paris-saclay.fr/
https://crisprcas.i2bc.paris-saclay.fr/
https://isfinder.biotoul.fr/
https://galaxy.pasteur.fr/
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edge represents an alignment hit with an E-value of 10−40 or better. As filters for the
network construction, an identity percentage of at least 30% and a minimum coverage of
70% were considered. The similarity networks were obtained using Gephi v.0.9.2 [207] with
a combination of the Fruchtermann–Reingold [208] and Yifan Hu [209] layout algorithms.
Community detection was performed using a weighted Louvain algorithm with a default
resolution parameter of 1 [210].

2.6. Phylogenetic Analysis and Comparison of Genetic Contexts

The evolutionary relationship of the most prevalent EET-related genes shared between
Desulfovibrionaceae, Geobacteraceae, and Shewanellaceae families was investigated using a
phylogenetic analysis and the comparison of their genetic contexts. All the amino acid
sequences of the OGs related to PpcA, OmpJ, CymA, CbcT, and CbcC were retrieved
from the orthology analysis using Orthofinder. The gene trees of the selected OGs were
recovered and visualized using iTOL v5 [71]. In addition, to facilitate the analysis of
each OG, a sequence from each bacterium was chosen through local BLAST against the
target protein, either from Geobacter sulfurreducens PCA or Shewanella oneidensis MR-1,
and the visual comparison of their genetic contexts, giving greater priority to the latter.
The selected amino acid sequences of each OG evaluated were aligned using MAFFT
v7.511 [68]. The alignments were manually trimmed using the alignment editor AliView
version 1.28 [211]. The phylogenetic reconstruction was determined by means of Bayesian
Markov Chain Monte Carlo (MCMC) inference as implemented in MrBayes v3.2.7 [212].
Two independent runs were performed using a mixed amino acid substitution model
where each run comprised 500,000 generations (two chains each run, sampling frequency of
every 1000 generations). To construct the consensus tree, 25% of the trees were eliminated
following a burn-in process. Posterior probabilities were used to support the internal
branches. The visualization and editing of phylogenetic trees were performed using
FigTree v. 1.4.4 software (http://tree.bio.ed.ac.uk/software/figtree/ accessed on 22 August
2024). Gene contexts were visualized using GeneSpy v1.2 [213], based on the GFF files from
the NCBI RefSeq database.

2.7. Statistical Analysis

To understand how ecophysiological and genomic traits may influence the prevalence
of elements related to microbial extracellular electron transfer (EET) in all the analyzed
strains, we employed the statistical technique known as Principal Component Analysis
(PCA). PCA is used for dimension reduction when dealing with numerous variables [214].
This analysis allowed us to use all the information provided by the various metrics without
being biased by just a few aspects. Genomic traits (genome size and GC content), mobile
genetic elements (number of prophages, CRISPR arrays, insertion sequences, integrons,
and integrative and conjugative elements), and the number of copies of genes encoding
proteins associated with EET-related elements (Cbc, CymA, Rib, OmpJ, and PpcA) were
included in the analysis. Thus, PCA effectively splits genomes into groups reflecting
both their sequence similarity and ecological distribution. PCA was performed using R
software (version 4.3.1), selecting the first two principal components that captured most of
the variance.

3. Results and Discussion
3.1. Phylogenomic Analysis of Sulfate-Reducing and Iron-Reducing Metabolism

To identify the shared genomic features between SRPs and FeRPs, a phylogenomic
analysis including 124 genomes belonging to the Desulfovibrionaceae, Geobacteraceae, and
Shewanellaceae families was reconstructed using 109 single-copy orthogroups (Figure 1).
The analysis revealed that out of a total of 458,646 genes, 97.7% (448,320) were assigned
to 15,156 orthologous groups (OGs). Of these, 289 OGs were present in all species, while
546 OGs were specific to certain species (Figure S1). The remaining unassigned genes
and species-specific orthogroups represented the unique genetic traits of each species.

http://tree.bio.ed.ac.uk/software/figtree/
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It was also found that the Desulfovibrionaceae, Geobacteraceae, and Shewanellaceae families
share 2372 species-shared OGs and have 3300, 1737, and 4707 specific OGs, respectively.
Interestingly, the Desulfovibrionaceae family shares a greater number of exclusive OGs with
the Shewanellaceae family (1301) compared to the Geobacteraceae family (1088) (Figure S1).
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strain classified according to its cellular localization. Geobacter sulfurreducens PCA and Shewanella 
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circles of variable diameter in the respective node. 

Figure 1. Phylogenomic cladogram of the analyzed genomes belonging to the Desulfovibrionaceae,
Geobacteraceae, and Shewanellaceae families. Phylogeny was inferred using Orthofinder v2.5.4, identify-
ing 109 single-copy orthogroups with all species present. Clades of each family are shown in colors.
Blue scale rectangles beside the strains indicate a genome size from 2.9 to 6.4 Mbp. The adjacent
squares represent the isolation sources. Red and white triangles indicate strains capable of/incapable
of Fe(III) reduction in experimental assays. The absence of triangles indicates that no studies are
available. The stacked bar graph shows the number of multi-heme c-type cytochromes (≥3 Cxx(x) H
motifs) of each strain classified according to its cellular localization. Geobacter sulfurreducens PCA and
Shewanella oneidensis MR-1 strains are shown in bold font. Bootstraps between 0.5 and 1 are indicated
as purple circles of variable diameter in the respective node.
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The resulting phylogenomic reconstruction revealed three major clades, each cor-
responding to each family. The Desulfovibrionaceae clade includes 42 genomes, most of
which have been isolated or recovered from pristine and contaminated ecosystems, as
well as from a broad range of aquatic environments, from marine sediments to freshwater
(Tables S1 and S3 and Figure S2A). The Desulfovibrionaceae clade contains strains with an
average genome size of 3.9 Mbp and a G+C content of 60.8%, with the smallest genome
corresponding to Desulfovibrio piger ATCC 29098 (2.87 Mbp) and the largest to Desulfovibrio
inopinatus DSM 10711 (5.77 Mbp). The Desulfovibrionaceae clade is divided into two distinct
subclades. Subclade I mainly comprises strains living in marine and estuarine ecosys-
tems, whereas subclade II comprises strains from freshwater and engineered ecosystems
(Figure S2B). The Geobacteraceae clade includes 23 species of the Geobacter genus, a group of
genomes belonging to species that have been isolated or recovered from soil and freshwater
sediments as well as polluted sites, where Geobacter species play an important role in the
regulation of biogeochemical cycles [215–219]. The Geobacteraceae clade contains strains
with an average genome size of 4.0 Mbp and a G+C content of 58.3%. The smallest genome
of this clade is Geobacter benzoatilyticus Jerry-YX (3.58 Mbp), and the largest genome is
Geobacter uraniireducens Rf4 (5.14 Mbp). The Geobacteraceae clade is divided into two sub-
clades. Geobacter strains isolated/found in soils, sediments, groundwater, and engineered
environments belong to subclade I, while strains isolated from polluted sites and freshwater
ecosystems belong to subclade II (Figure S2C). The third clade comprises 59 species of
the Shewanella genus, with genomes with remarkably low values of G+C content (45.3%)
and an average genome size of 4.8 Mbp. The Shewanella clade includes genomes ranging
from 3.9 Mbp to 6.4 Mbp of Shewanella aestuarii JCM 17801 and Shewanella psychrophila WP2,
respectively. Unlike the Desulfovibrionaceae and Geobacteraceae clades, 56% (33) of the species
belonging to this clade have been isolated or recovered from marine ecosystems, and
secondly, from samples derived from soils and sediments (subclade I) as well as freshwater
and human- and animal-associated environments (subclade II), where Shewanella has been
recently found (Figure S2D) [52,220].

As anticipated, our findings revealed variations in genomic traits, including GC con-
tent and genome size, among genomes from different subclades (Figure S3). In agreement
with previous studies, the genomic GC content of strains of Shewanellaceae, a family within
the class Gammaproteobacteria, was found to be lower than that of Desulfovibrionaceae and
Geobacteraceae, which belong to Deltaproteobacteria [221]. Also, previous evidence has shown
that genomes with higher GC content have more N in their proteomes [222]. Therefore,
the lower GC content of Shewanellaceae strains may also be partially explained by the fact
that several strains are primarily found in the ocean, an environment with a persistent
limitation of N [223]. Another study reported that in the genome of Desulfovibrio vulgaris,
mutations that convert GC to AT (GC->AT) were the most common, suggesting that a loss
of GC content in this genome is slowly occurring [224].

In total, 34 strains out of the 124 surveyed had been implicated in some form of
electron transfer to extracellular compounds, most of which belong to Geobacteraceae and
Shewanellaceae clades. Both families have been the focus of a great extent of experimental
evidence regarding their capabilities of extracellular electron transfer, which mainly relies
on two types of mechanisms for electron transport across the outer surface. In Shewanella
strains, substances that act as electron shuttles allow electrons to be transported from
an intracellular enzymatic complex to the extracellular electron acceptor. This is the
case with Shewanella oneidensis MR-1, which secretes small redox-active molecules for
electron shuttling back and forth between cells and external electron acceptors [225]. In
contrast, direct EET, which is prevalent in Geobacter strains, depends on the availability
of redox-active enzymes and conductive appendages attached to the outer surfaces of
the cells [226]. Four strains of the Desulfovibrionaceae clade, including Maridesulfovibrio
frigidus DSM 17176 [46], Desulfocurvibacter africanus PCS [45], Desulfovibrio vulgaris str.
Hildenborough [227], and Desulfovibrio desulfuricans DSM 642 [41], were shown to reduce
Fe(III) and use it as an electron acceptor under experimental conditions. The extent to
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which this process takes place under environmentally relevant conditions as well as their
molecular mechanisms remain to be explored.

3.1.1. Abundance of Multi-Heme Cytochromes

Multi-heme c-type cytochromes (c-Cyts) are proteins that harbor three or more hemes
that have a central coordinated Fe atom that allows for the transfer of electrons. In species
like Shewanella oneidensis MR-1 and Geobacter sulfurreducens PCA, c-Cyts play a funda-
mental role in EET to solid metal (hydro)oxides [228–230] as well as direct interspecies
electron transfer [231,232]. c-Cyts are also very abundant in Desulfovibrionaceae [233]. To
assess the diversity and prevalence of c-Cyts, we searched for the motifs CXXCH and
CXXXCH across all strains, revealing a total of 9800 such proteins. On average, members of
Geobacteraceae have 125.7 heme-containing proteins per genome, whereas Shewanellaceae
and Desulfovibrionaceae have 77.1 and 56.1, respectively. The CXXCH motif was more
common than the CXXXCH motif, representing between 84.4% and 94.3% of all proteins
with heme motifs (Figure 2A). Interestingly, some c-Cyts exhibited both motifs, though this
was more prevalent in Geobacter proteins (9.6% of proteins exhibited both motifs) and rare
in Shewanella. Geobacter strains had an average of 10.6 extracellular predicted c-Cyts per
genome, compared to 1.1 c-Cyts per genome of the Shewanellaceae family, and none of the
Desulfovibrionaceae (Figure 2B). Regarding the number of motifs found per protein, most
contain only one or two motifs. This ranges between 52.5% in the Geobacteraceae family
and 77.5% in the Desulfovibrionaceae family. The abundance of multi-heme cytochromes in
Geobacteraceae strains is particularly interesting, with an average of 59.7 per genome, which
is significantly higher than other families, which contain 12.6 and 24.6 multi-heme proteins
per strain, respectively (Figures 1 and 2C). Some Geobacter strains, such as G. uraniireducens
Rf4, G. sp. OR-1, G. daltonii FRC-32, and G. sp. DSM 9736, contain proteins with more
than 40 heme motifs, whereas Shewanella and Desulfovibrio contain significantly less. In
terms of cellular localization, it has been predicted that 9.5% of Geobacter’s multi-heme
cytochromes and 0.7% of Shewanella’s are likely to be secreted from the cell. On the other
hand, Desulfovibrionaceae strains do not seem to have extracellular multi-heme proteins or
contain multi-heme proteins associated with the outer membrane (Figure 2). These findings
agree with previous reports, where Geobacter species, such as G. sulfurreducens, encode many
c-type cytochromes in their genomes compared to Shewanella and Desulfovibrio [64,233].
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Figure 2. The abundance and diversity of proteins containing heme motifs in the Desulfovibrionaceae,
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the strains of each family, classified according to (A) type of heme motif, CXXCH, CXXXCH, or with
both motifs; (B) cell localization predicted by the PSORTb web server, and (C) the number of motifs:
mono-heme (1), bi-heme (2), and multi-heme (≥3).
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3.1.2. Similarity Network Analysis of Extracellular Multi-Heme Cytochromes

A similarity network analysis was conducted to determine the phylogenetic rela-
tionships between the predicted multi-heme cytochromes located outside of cells. The
analysis found 1807 sequences associated with 35 OGs (including some sequences that had
not passed the extracellular localization filter). Geobacter strains had the majority of the
sequences (918), followed by Shewanella strains (764) and Desulfovibrionaceae family strains
(125). The similarity network had 130 sets of highly interconnected nodes (E-value thresh-
old of 10−40), known as communities, with 71 containing two or more nodes (Figure 3).
The network clusters exhibited a clade-specific pattern, indicating closer relationships
based on their family of origin. Despite no clear correlation between the isolation source
and clusters, it is evident that cluster proteins related to Shewanella strains are adapted
to high-salinity conditions due to their origin from marine sources (Figure S15). Some
cytochromes involved in EET, including OmcA and MtrC from S. oneidensis MR-1, and
OmcA, OmcS, OmcZ, and CbcA from G. sulfurreducens PCA, are exclusively grouped with
cytochromes of the same family. However, the OmcI cytochrome of G. sulfurreducens PCA,
and the DsmE and MtrA cytochromes of S. oneidensis MR-1, were grouped in the same
cluster along with other cytochromes of the Shewanellaceae and Geobacteraceae families. On
the other hand, the Desulfovibrionaceae family presents nodes related to six clusters, three
of which contain at least two cytochromes belonging to Desulfovibrionaceae strains capable
of Fe reduction. The first of these clusters (community N#37, Figure 3B) is comprised
exclusively of proteins of this family, whose products correspond to cytochrome c family
proteins containing ten heme motifs. The second cluster (Figure 3C) contains 65 sequences
(community N#33) encoding for a cytoplasmic membrane-bound cytochrome ubiquinol
oxidase subunit I or c-type cytochromes. Both clusters related to OG 517 and OG 1638
also contain some Geobacter and Shewanella cytochromes predicted to be extracellular, and
therefore, exploring their function in future studies may be interesting.

3.1.3. Comparative Genomic Analysis of Genes Related to Extracellular Electron
Transfer Mechanisms

Since several molecular mechanisms for which members of the Geobacteraceae and
Shewanellaceae families interact with extracellular electron acceptors have been widely
described, we analyzed the dataset of Desulfovibrio genomes to learn about the ubiquity and
abundance of proteins involved in EET (Figure 4). To conduct the analysis, we identified
EET-related proteins in each genome by checking for their presence in the corresponding
orthologous groups (OGs) from S. oneidensis MR-1 or G. sulfurreducens PCA. We evaluated
130 genes that encoded both outer-membrane and periplasmic c-type cytochromes, genes
encoding porin–cytochrome complexes (Pcc) and b-type cytochrome complexes (Cbc),
riboflavin biosynthesis genes, genes related to chemotaxis, and cell membrane components
(Table S2).

Similarities with the EET Mechanism of G. sulfurreducens

Investigations focused on Geobacter models, such as G.sulfurreducens and G. metal-
lireducens, contributed to the comprehension of EET through multiple respiratory path-
ways [64,215,234]. These mechanisms mainly involve c- and b-type cytochromes in the
inner membrane, ImcH and CbcL. The deletion of these genes impaired the ability to reduce
electron acceptors with potentials above and below −0.1 V versus the standard hydrogen
electrode (SHE) [235,236]. While both proteins have orthologs in all tested Geobacter species,
only four Desulfovibrionaceae strains have CbcL homologs, including M. frigidus DSM 17176,
a strain capable of Fe(III) reduction, but incapable of producing enough energy to sup-
port growth [46] (Figure 4). The genome of G. sulfurreducens contains four gene clusters
encoding inner-membrane cytochromes, including Cbc3 (cbcVWX), Cbc4 (cbcSTU), Cbc5
(cbcEDCBA, where cbcC is also known as omcQ), and Cbc6 (cbcMNOPQR), that play a role
in EET [64]. The deletions of cbcV and cbcBA resulted in a considerable decrease in Fe(III)
reduction, and a transcriptional study found that cbcT was upregulated on insoluble metal
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oxides versus Fe(III) citrate [64,237,238]. All these gene clusters are conserved and widely
distributed in all Geobacter species [239], except for the Cbc6 cluster, which is incomplete
in seven strains, mainly belonging to Geobacter subclade I (Figure 5). The CbcOP subunits
are CbcVW orthologous proteins from the Cbc3 cluster and are present in all Geobacter and
Shewanella strains but only in a few strains of the Desulfovibrionaceae family.
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Figure 3. Multi-heme cytochrome similarity network. The distance network was constructed based
on the protein sequences present in OGs containing multi-heme cytochromes (1807 sequences)
predicted as extracellular from the 124 genomes of Desulfovibrionaceae (125 sequences), Geobacteraceae
(918 sequences), and Shewanellaceae (764 sequences) families. The E-value threshold of the blast
alignment for the network is 10−40. Each node represents an extracellular multi-heme cytochrome,
and the color fill indicates the origin of the sequence. The family Desulfovibrionaceae is green, the
family Geobacteraceae is blue, and the family Shewanellaceae is violet. The nodes highlighted in a larger
and more intense color show previously studied cytochromes of known metal-reducing bacteria, in
blue for G. sulfurreducens PCA and violet for S. oneidensis MR-1. Green highlights the cytochromes
of the bacteria Desulfocurvibacter africanus PCS, Desulfovibrio desulfuricans DSM 642, Desulfovibrio
vulgaris str. Hildenborough, and Maridesulfovibrio frigidus DSM 17176, which have also been reported
to show Fe(III) reduction. These cytochromes are highlighted by their initial letters, DA, DD, DV,
and MF. (A) Entire network. (B–D) Zooming into particular network clusters possessing at least two
cytochromes of the metal-reducing bacteria of the Desulfovibrionaceae family mentioned above.
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Among the periplasmic cytochromes, PpcA, MacA, and PccF have been characterized
in more detail. It has been proposed that PpcA transfers electrons from the cytoplasmic
membrane to the outer membrane, while MacA acts as a hydrogen peroxide reductase
and transfers electrons to PpcA [240,241]. The expression of the gene encoding PccF was
upregulated during growth on insoluble metal oxides, suggesting a possible role during
EET [237]. Homologs of these three genes were heterogeneously distributed across the
members of the three families. While several genes encoding PpcA were highly abundant
in Geobacter (average of 4.9 genes per genome) and Desulfovibrio (average of 3 genes per
genome), the gene encoding MacA was mostly shared between Shewanella and Geobacter
strains (Table S2). A porin–cytochrome complex (Pcc) capable of transferring electrons
across a liposomal membrane is encoded by a periplasmic c-type cytochrome (OmaB/C),
a porin-like protein (OmbB/C), and a reductase (OmcB/C). The Pcc protein complex
reduces ferric citrate and ferrihydrite, similar to the MtrABC complex in S. oneidensis [242].
Three additional gene clusters encoding putative “electron conduits” involved in EET,
including the porin–cytochrome (Pcc) complex extABCD, the porin–cytochrome (Pcc)
complex extEFG, and the porin–cytochrome (Pcc) complex extHIJKL [243], were found
to be highly prevalent in Geobacter species. However, no homologs were found in the
Shewanellaceae and Desulfovibrionaceae family members (Figure 5). A similar distribution was
found in the plethora of multi-heme c-Cyts associated with the outer membrane, including
OmcS, OmcZ, OmcE, OmcT, and PgcA, which play different roles along the EET for both Fe
(III) and Mn(IV) oxide reduction and electrode respiration (Figures 5 and S4) [237,244–249].
In contrast, genes encoding the outer-membrane c-Cyts OmcI, a homolog of the CbcA
subunit of G. sulfurreducens, and the outer-membrane protein J (ompJ), a channel known
to influence the quantity and localization of cytochromes in the outer membrane [250],
were found to be present in all the strains of Geobacteraceae and Desulfovibrionaceae, and
partially in Shewanellaceae strains. Xap, an extracellular anchoring polysaccharide protein,
has a crucial role in metal oxide attachment, cell–cell agglutination, and localization of
essential c-Cyts. It possesses averages of 35, 29, and 23, high numbers of homologs, in the
Desulfovibrionaceae, Geobacteraceae, and Shewanellaceae families, respectively [251]. Although
recent evidence has highlighted the role of secreted riboflavins during DIET in Geobacter
cocultures [252], this mechanism was not added to our analysis.
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Figure 5. The presence/absence matrix of genes in OGs related to the EET mechanisms of S. oneidensis
MR-1 y G. sulfurreducens PCA. On the left, the phylogenomic cladogram is presented with the isolation
source. Boxes indicating the presence or absence of genes in the OGs involved in EET mechanisms are
colored according to cell localization as follows: purple for outer-membrane cytochromes/proteins,
green for cytochromes and proteins located in the periplasm, orange for porin–cytochrome complexes,
blue for cytochrome bc (Cbc) complexes, and yellow for genes involved in riboflavin biosynthesis.
The blue and purple triangles on the heatmap report the relevant genes in the EET mechanisms of G.
sulfurreducens PCA and S. oneidensis MR-1, respectively.

Similarities with the EET Mechanism of Shewanella oneidensis

EET is mediated by CymA, a six multi-heme c-Cyts, in S. oneidensis MR-1. CymA oxi-
dizes quinol in the cytoplasmic membrane and transfers electrons to Fcc3 and STC, which
transport electrons to MtrA [253–255]. MtrA, MtrB, and MtrC form a trans-outer-membrane
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complex to transfer electrons to the bacterial surface. MtrC and OmcA can physically interact
with each other and transfer electrons directly to Fe(III) minerals [256–258], as well as associate
with extracellular structures that were previously referred to as ‘nanowires’ [259]. S. onei-
densis MR-1 employs endogenously produced flavin electron shuttles to enhance EET to
minerals and electrodes during anaerobic respiration. Thus, released flavins are proposed
to function as diffusive electron shuttles that transport electrons from MtrC and OmcA to
mineral surfaces [225,260,261]. Homologs of CymA were found ubiquitously in all three
families analyzed, with the exception of genomes of strains belonging to Geobacter subclus-
ter I. In contrast, homologs of OmcA were found to be distributed in almost all the species
of Shewanella and a few of Geobacter (Figure 5). Whereas Fcc3 homologs were found mainly
in Shewanella strains, homologs of cctA, the gene coding the tetraheme STC, were shared by
Shewanella strains and all strains of Desulfovibrio desulfuricans (Figures 5 and S4). In addition
to that, one guanosine triphosphate (GTP) and two ribulose-5-phosphate molecules are
converted into one riboflavin molecule in a stepwise manner by the enzymes encoded by
the ribA, ribB, ribD, ribH, and ribE genes [262]. This pathway seems to be ubiquitous in
Shewanella species, although homologs of some of these genes, specifically ribB, ribD, and
ribH, are also found in all species belonging to the Geobacteraceae and Desulfovibrionaceae
families, which could imply some role of these molecules in their EET mechanisms. Further
experimental research is required to investigate if flavins play a relevant role during EET
by SRPs, as the addition of riboflavin and flavin adenine dinucleotide (FAD) showed the
accelerated corrosion of carbon steel and stainless steel by D. vulgaris [263,264].

3.2. Mobilome Analyses across Members of Desulfovibrionaceae, Geobacteraceae, and
Shewanellaceae Families

The genetic makeup of prokaryotic genomes is composed of DNA fragments from
both vertical and horizontal gene transmission. The mobilome, a collection of mobile
genetic elements, facilitates the transfer of genes and their corresponding functions within
a community through horizontal gene transfer (HGT) [265]. Our analysis reveals that these
SRP and FeRP families host various mobile genetic elements, such as plasmids, bacterio-
phages, integrons, insertion sequences (ISs), and integrative and conjugative elements
(ICEs). According to a PHASTER search, 333 prophages were found in total, with 59 intact,
244 incomplete, and 30 questionable phages present in 122 strains (Figure 6A). The average
number of prophages per strain was 3.1, 2.7, and 2.5 in Desulfovibrionaceae, Geobacteraceae,
and Shewanellaceae, respectively. This variation is influenced by a combination of genomic,
phenotypic, and environmental factors, including genome size, physiological status, and
the specific habitat in which the strain resides [266–268]. Our findings revealed that strains
from Desulfovibrio subclade II and Geobacter subclade I, predominantly present in soils,
freshwater, subsurface, and engineered ecosystems, exhibited the highest prophage density
(prophages per Mbp genome). In contrast, strains from Shewanella subclade I and Desul-
fovibrio subclade I, more prevalent in marine environments, displayed the lowest values
(Figure S5). Clustered regularly interspaced short palindromic repeats (CRISPR) is a system
that allows the identification and cleavage of foreign DNA. The presence of CRISPR-Cas
arrays constitutes a barrier to HGT, including natural transformation, transduction and
conjugation [269–271]. Our analysis revealed a high prevalence of CRISPR arrays in the
genomes of Desulfovibrionaceae and Geobacteraceae, while a significantly lower prevalence
(less than 30%) was observed for Shewanellaceae strains (Figure 6B). This trend could be
explained by the recent identification of phages with genes encoding proteins capable
of inhibiting CRISPR-Cas function in several Shewanella strains [272–274]. Integrons are
genetic units that capture genetic material in bacteria, adding novel features to the cell that
contains it. They consist of an integron–integrase gene, an integration site, a promoter for
gene cassettes, and up to 200 gene cassettes containing open reading frames flanked by
attC recombination sites [275,276]. We found complete integrons in over 50% of strains of
Shewanellaceae and subclade II of Geobacteraceae, while they were absent in the other clades.
A similar pattern was found for the prevalence of insertion sequences (ISs), which are cryp-
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tic DNA segments containing passenger genes that contribute to the metabolic plasticity
and evolution of microbial genomes [277,278]. Our results indicate that the prevalence and
number of ISs are unevenly distributed across the different bacterial groups included in
this study. The Shewanella and Geobacter genomes contained 584 (~10.8 IS per genome) and
234 (~13 IS per genome), respectively, while the Desulfovibrio genomes contained a total of
34 ISs (~2.3 ISs per genome), with 27 out of the 42 Desulfovibrio showing no detection of
ISs (Tables S4 and S5). With few exceptions, including Desulfovibrio vulgaris str. Hildenbor-
ough, the low prevalence of ISs in Desulfovibrio species is consistent with previous studies,
suggesting limited genomic rearrangements by transposition in this genus [279,280]. This
may be explained by the fact that some of the ISs found to belong to families (i.e., ISDvu3)
in which the control of transposase expression relies on stop codon read-through and,
therefore, may be affected by other regulatory mechanisms [281]. Between 35 and 61% of
genomes were found to contain integrative and conjugative elements (ICEs). In agreement
with previous reports and in contrast to what was found with integrons and ISs, strains
belonging to Shewanellaceae registered a lower prevalence of ICEs than the other two
families [52].
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Figure 6. Violin plots representing the distribution of elements associated with the mobilome across
different subclades and families; (A) total prophages per strain, (B) CRISPR elements per strain,
(C) complete integrons per strain, (D) number of insertion sequences per strain, and (E) number of
types of ICEs per strain. The circles on the top represent the prevalence of each element found in
each family. Dots on the top represent that no strain was found to contain integrons.

The data from 124 genomes were used to conduct a Principal Component Analysis
(PCA) of thirteen genomic and mobilome variables and metrics reflecting the prevalence
of EET elements (Figure 7). The analysis clustered the strains into three big groups on the



Microorganisms 2024, 12, 1796 15 of 36

PC1-PC2 plane (accounting for 50.88% of the total data variability), revealing a stronger
correlation with the taxonomy of species than with their habitats (Figure S6). Based on
the number of copies of genes encoding CymA, PpcA, and riboflavins, the number of
CRISPR arrays and integrons per genome, genome size, and GC content, the Shewanellacea
group is farther from the Geobacteraccea and Desulfovibrionaceae groups. The latest two
groups are separated along the PC2, which includes the number of total cytochromes and
genes encoding OmpJ and Cbc-related genes, as well as PpcA, which is almost absent in
Shewanellaceae strains (Figures 5, S4 and S6). Interestingly, the number of copies of genes
encoding proteins related to EET contributes to the differentiation within the three groups.
While the number of copies of genes encoding for CymA and riboflavins contributed to
the distinction between Shewanella, the number of copies of genes encoding for OmpJ
contributed to the distinction of the Desulfovibrionaceae. In a similar manner, the number of
copies of genes encoding for Cbc and total cytochromes contributed to the distinction of the
Geobacteraceae and the other two groups. Thus, this result suggests that the prevalence and
abundance of EET elements significantly contributed to the differentiation of these groups.
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Figure 7. Principal Component Analysis of the strains from the Desulfovibrionaceae, Geobacteraceae,
and Shewanellaceae families in relation to their mobilome components, types of cytochromes, genome
size, and GC content. The strains were compared with the following parameters: genome size
(Genome_size), GC% (GC), total prophages per strain (Prophages), total cytochromes per Mbp (Total
cyt/Mbp), complete integrons per genome (Int), CRISPRs (CRISPR), number of insertion sequences
per strain (IS), types of ICEs per strain (ICEs), number of copies of PpcA per strain (PpcA), number of
copies of OmpJ per strain (OmpJ), sum of the number of copies of Cbc (Cbc_), number of copies of
CymA (CymA), and sum of the number of copies of Rib (Rib_). The shapes indicate which family the
strain is from, and the filling/color indicates the corresponding subcluster.
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3.3. Evolutionary Relationship of the Most Prevalent EET-Related Genes in SRPs

Many of the genomes belonging to the Desulfovibrionaceae family were found to possess
genes homologous to crucial proteins involved in the EET mechanisms of S. oneidensis
MR-1 and G. sulfurreducens. This includes the triheme periplasmic cytochrome PpcA, the
outer-membrane protein OmpJ, the tetraheme c-type cytochrome CymA, the iron–sulfur
cluster-binding protein CbcT (a subunit of the Cbc4 complex), and, to a lesser extent, the
cytochrome c-type CbcC (a subunit of the putative Cbc5 complex). All of these exhibited
widespread distribution within this family. To gain insights into the evolutionary relation-
ship of these shared genes among the Desulfovibrionaceae, Geobacteraceae, and Shewanellaceae
families, we conducted phylogenetic analysis and compared the genetic contexts of the
select genes associated with the orthologous groups of these candidate proteins.

3.3.1. The Periplasmic Cytochrome PpcA, an Intermediary in Extracellular Electron Transfer

PpcA is a periplasmic cytochrome that acts as an intermediary electron carrier for EET.
Genetic studies have found that PpcA acts as a terminal reductase for anthraquinone-2,6-
disulfonate (AQDS), Fe(III)-citrate, and Ferric nitrilotriacetate (Fe-NTA), although this gene
was not differentially expressed when G. sulfurreducens was grown with Fe(III) citrate and
Fe(III) oxide [240,282,283]. The genetic context of ppcA in G. sulfurreducens includes several
adjacent genes encoding c-type cytochromes, as well as genes involved in their biogenesis,
such as ResB and CcsB [284], and genes involved in the biosynthesis of menaquinones
and ubiquinones, redox-active compounds involved in respiratory networks [285,286]
(Figure S7). The genomic context remains largely invariant across different species, and its
phylogenetic relationship aligns with the species’ phylogenomic tree, suggesting vertical
transmission rather than horizontal gene transfer.

PpcA is part of a family of five periplasmic triheme cytochromes (including PpcB,
PpcC, PpcD, and PpcE). Thermodynamic characterization of those cytochromes revealed
differences in their heme reduction potentials, allowing for a wider range of redox part-
ners and enhancing the adaptability of the respiratory mechanism [287,288]. Our findings
revealed that ppcA homologs are prevalent in Geobacter species, with most strains contain-
ing between 5 and 6 homologous genes, averaging 4.9 genes per strain. Notably, ppcA
homologs were also present in all examined members of the Desulfovibrionaceae family, with
the majority of those having between 3 and 4 homologous genes (averaging about 3.4 genes
per strain) (Tables S2 and S6).

The phylogenomic analysis identified four primary clades within the PpcA protein
family (Figure 8). Clade 1 exclusively consists of proteins from Geobacter strains. Notably,
the five known homologous proteins from G. sulfurreducens (PpcA, PpcB, PpcC, PpcD, and
PpcE) are distributed across different subclades within this group. Proteins similar to PpcA
from the Desulfovibrionaceae family, found in the remaining three clades, exhibit signifi-
cant diversification within their respective subclades. Similar to Geobacter, the presence of
multiple variants and their diversification is likely the result of functional diversification
associated with heme reduction. One example of evolutionary divergence is the gene encod-
ing for the PpcA protein of Pseudodesulfovibrio mercurii (WP_014320801.1), which, based on
genomic context, falls outside the four main clades (Figures S7 and S8). The unique environ-
mental characteristics of the mid-Chesapeake Bay estuarine sediments where P.mercurii was
isolated, including complex geochemical processes, nutrient-rich reducing waters, and the
presence of rare earth elements (REEs), such as Cerium (Ce) and Europium (Eu), might have
been significant factors driving this divergence [289,290]. In contrast, homologs of ppcA
in two Shewanella strains, S. atlantica HAW-EB5 and S. sediminis HAW-EB3, both isolated
from marine sediments near Halifax Harbour, Canada [291,292] suggest a horizontal gene
transfer (HGT) event from another bacterium in this geographical region. Furthermore,
clade 2 mainly comprises homologous proteins from members of the Desulfovibrionaceae,
except for a PpcA homologous from Geobacter sp. SVR (WP_239077329.1), suggesting
potential horizontal gene transfer events based on an interruption in the phylogenetic tree
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topology. These assumptions are supported by the presence of transposase-encoding genes
in the vicinity of these genes [293,294].
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Figure 8. Phylogenetic tree of proteins homologous to PpcA. The phylogenetic tree was inferred
using Orthofinder v2.5.4, and corresponds to the orthologous group where the periplasmic triheme
cytochrome PpcA is present. The tree is composed of 257 protein sequences: 112 from Geobacter
strains, 2 from Shewanella, and 143 from members of the Desulfovibrionaceae family. Each clade/branch
is colored according to its family of origin. In the figure, the positions of PpcA and its homologs PpcB,
PpcC, PpcD, and PpcE in G. sulfurreducens PCA are indicated.

3.3.2. OmpJ, an Integral and Widespread Outer Membrane Protein in the
Desulfovibrionaceae Family

Homologs of OmpJ were found to be widely distributed in the Desulfovibrionaceae
family. Similar to Geobacter species, most of these strains have between one and two
homologous ompJ genes. Interestingly, Desulfovibrio desulfuricans strains and those from
the Solidesulfovibrio genus stand out, with most of their members having between eight
and ten genes homologous to ompJ (Tables S2 and S6). This substantial prevalence of
OmpJ-like genes suggests that this protein may have a role in the physiology, adaptation,
and capabilities of participating in sulfate reduction and metallo-reduction processes [41].
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The distribution of the ompJ phylogenetic tree shows three clear groups: one from
Geobacter and two from the Desulfovibrionaceae family (Figure S9A). The two branches of
the Desulfovibrionaceae family consist mainly of species isolated from marine environments,
pollution events, or industrial activity, while the other group primarily comprises species
isolated from soil, freshwater, or animal sources (Figure S10). One exception is Halodesul-
fovibrio aestuarii DSM 17919, isolated from shoal mud in Germany [295], which stands out
as it harbors two similar proteins that are significantly different from the other genes. This
discrepancy in the species tree may suggest a horizontal transmission event, since near
these ompJ-homologous genes, several tRNA sequences are found. To date, there have
been limited reports regarding the function of OmpJ. Therefore, it would be of interest to
assess its potential role in signaling mechanisms and its impact on EET mechanisms.

3.3.3. CymA, a Common Branch Point in the Electron Transport Chain

The c-type cytochrome CymA seems to be essential for facilitating the anaerobic res-
piratory adaptability of Shewanella. CymA plays a key role in transferring electrons from
menaquinol to various systems responsible for reducing terminal electron acceptors, such
as fumarate, nitrate, nitrite, dimethyl sulfoxide (DMSO), arsenate, and insoluble minerals
like Fe(III) and Mn(IV) [253,296–298]. Homologous genes to cymA are widespread among
the members of the analyzed families. The phylogenetic tree of CymA reveals three main
clades: two from Shewanella strains and a third shared between strains of Geobacter and
the Desulfovibrionaceae family. While Shewanella species contain between 1 and 5 homologs
(with an average of 2.7), almost all members of the Desulfovibrionaceae family contain 1 or
2 homologs, with a few exceptions. Nearly half of the species analyzed in Geobacteraceae
contain one to two genes homologous to cymA (Tables S2 and S6). The variable presence
of these genes in Geobacteraceae species suggests two potential evolutionary scenarios: the
genes were either lost in most species or inserted into the genomes of the analyzed species.
Notably, species containing these genes are mostly clustered within a specific clade in
the phylogenetic tree (Figures S11 and S12), hinting at the likely insertion of this gene
through horizontal gene transfer into the common ancestor of these species, followed by its
subsequent vertical transmission. Another notable sequence in the phylogenetic tree is one
of the homologous copies from Geobacter hydrogenophilus DSM 13691 (WP_214187890.1),
positioned between two subclades of Desulfovibrionaceae family proteins (Figure S9B). The
context of this sequence suggests it was likely acquired via horizontal gene transfer, espe-
cially considering the proximity of genes encoding site-specific integrases and recombinase
family proteins. Interestingly, when investigating the gene contexts of cymA homologs,
several members of the Desulfovibrionaceae and Geobacteraceae families feature one of these
homologous genes located near the gene encoding ammonia-forming cytochrome c ni-
trite reductase subunit c552 (Figures S11 and S12). The similarities between the genetic
contexts of both families, along with their closer phylogenetic proximity in comparison
to Shewanellaceae species (Figure S9), suggest that the potential insertion into Geobacter-
aceae genomes might have originated from horizontal transmission from a member of the
Desulfovibrionaceae family or closely related species.

3.3.4. Inner-Membrane Quinone Oxidoreductase Protein Complexes: CbcC and CbcT
Subunits Provide Plasticity and Modularity to Different Complexes Involved in EET

Cytochrome bc1 complexes are membrane protein complexes found in the electron
transfer chains of bacteria using oxygen, nitrogen, and sulfur compounds as electron
acceptors. These enzymes transfer electrons from ubiquinol to cytochrome c and move
protons across the membrane. Despite transcriptomic and proteomic studies revealing
differential expression patterns of Cbc-like gene clusters in G. sulfurreducens in response to
electron acceptor availability, there is still limited information available regarding these
complexes [237,244,299,300].

CbcT homologs are present in high abundance across all three families. In the Desul-
fovibrionaceae family, which has the highest average number of cbcT homologs (9.8), Pseudo-



Microorganisms 2024, 12, 1796 19 of 36

desulfovibrio mercurii is noteworthy with 17 copies (Tables S2 and S6). G. uraniireducens Rf4
and S. sediminis HAW-EB3, from the Geobacteraceae and Shewanellaceae families, respectively,
stand out with the largest numbers of CbcT orthologs, at 11 and 19 genes, respectively,
except for S. denitrificans, which does not contain these genes. The intricate topology of the
phylogenetic tree mirrors the abundance of this gene. Specifically, distinguishing clades by
family is challenging due to their phylogenetically interwoven sequences. Moreover, there
does not appear to be a relationship between abundance and sources of isolation, as the
amount varies across all environmental classifications (Figure S9).

The cbcSTU operon is highly conserved among Geobacteraceae species (Figure S12).
Among the strains analyzed, only Geobacter sp. FeAm09 presents homologs of cbcT, but nei-
ther cbcS not cbcU. Several Shewanellaceae strains exhibit a closely related cluster, featuring
an orthologous of cbcT, which is a homolog to the sirC gene in S. oneidensis MR-1. SirC is a
4Fe-4S ferredoxin that, together with its partner SirD, encoding an NrfD/PsrC-type quinol
dehydrogenase, has the ability to transfer electrons from quinols to the same respiratory
pathways as CymA, except for nitrate. As a consequence, this quinol dehydrogenase
complex (SirCD) can functionally replace CymA in the respiratory pathways for fumarate,
DMSO, and ferric citrate as the electron acceptor [301]. It is worth noting that in most of the
Shewanellaceae strains, there are two genes adjacent to one of the homologous cbcT genes.
These two genes do not have homology to cbcS and cbcU but share the same annotation
as the latter two genes, and are arranged in a similar spatial disposition. Specifically, the
gene encoding the cytochrome c3 family protein (similar to CbcS) is homologous to the
outer-membrane lipoprotein c-type cytochrome OmcI in G. sulfurreducens PCA. In this
case, similar to the cbcU gene in G. sulfurreducens, there is a gene encoding a cytochrome c
nitrite reductase subunit NrfD, although it does not belong to the CbcU orthogroup. These
observations suggest a convergent evolution event in forming these modular membrane
complexes, which appear to function similarly in electron transfer from the quinol pool
in different respiratory pathways [302,303]. Interestingly, S. sediminis HAW-EB3, which
presents the greatest number of cbcT homologs (and which acquired a ppcA homolog),
also presents a high number of copies of other genes involved in EET mechanisms, includ-
ing cbcA/omcI (12) and mrtA (12) homologs. This strain, isolated from an unexploded
ordnance dumping site in the Atlantic Ocean near Halifax Harbour, Nova Scotia, Canada,
can degrade RDX, nitrate, and nitrite. However, it does not demonstrate a reduction in
Fe(III) or elemental sulfur [291]. These distinctive characteristics are likely a result of the
environmental pressures in its natural habitat, which gives it unique features compared to
other species. Furthermore, these observations suggest that these proteins are not limited to
iron- or sulfur-reduction pathways from natural sources, but to other compounds, includ-
ing chemicals from industrial activity and pollution events, to which bacteria have had to
adapt. Considering its genetic features, it would be interesting to conduct a more in-depth
characterization to investigate the functional potential of these mechanisms. In contrast,
S. violacea DSS12 and S. denitrificans OS217 either lack or have only one homolog of cbcT.
These strains also lack other crucial genes involved in EET mechanisms, such as OmcA,
CctA, FccA, and the MtrCAB complexes. Recently, Baker et al. (2021) also reported the
absence of this last complex in both species and attributed it to an environmental pressure
effect, which was linked to the transition to an aerobic environment, facilitated by their
habitat at the oxygenated sediment-water interface [59,304,305]

Regarding the Desulfovibrionaceae family, 24 of the 42 strains analyzed contain at least
one homolog of cbcC. This distinct group forms a well-differentiated clade that exhibits
significant evolutionary divergence from Geobacteraceae and Shewanellaceae, suggesting
adaptation to the metabolic needs of these bacteria since their last common ancestor. In
fact, this group of cbcC homologs coincides with one of the clusters of the multi-heme
cytochrome similarity network (Figure 3B), specifically community N#37. This cluster
comprises cytochrome c family proteins with 10 heme motifs, forming a separate cluster
from other nodes in the network, thereby supporting the observed evolutionary divergence
in the phylogenetic tree. Notably, in these species, at least one of the cbcC homologs was
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found alongside the rnfABCDGE operon, which was initially identified in Rhodobacter
capsulatus [306]. The RNF complex is composed of six subunits, including four membrane
proteins (RnfA, RnfD, RnfE, and RnfG) and two iron–sulfur proteins (RnfB and RnfC),
and encodes a membrane-bound NADH:ferredoxin dehydrogenase [306]. Our results
revealed that many members of the Desulfovibrionaceae family exhibit the loss of the rnfB
gene and instead have a gene encoding an FAD-dependent oxidoreductase at the end of
the operon (Figure 9). In the Bacteroidota/Chlorobiota group, the loss of the rnfB gene
has been documented, along with the recruitment of a reductase subunit from aromatic
monooxygenases (AMOr protein), resulting in the emergence of the sodium-dependent
NADH:ubiquinone oxidoreductase (Na+-NQR). This complex is commonly associated with
the aerobic respiratory metabolism of pathogenic bacteria. A key distinction between Rnf
and Na+-NQR is the mechanism of electron incorporation into the complex, suggesting an
alternative mechanism for electron transfer in the presence of this oxidoreductase in the
Rnf complex in Desulfovibrionaceae family strains [307]. The presence of this oxidoreductase
in the Rnf complex in strains of the Desulfovibrionaceae family may indicate an alternative
mechanism for electron transfer. Interestingly, the strains exhibiting this substitution are
typically found in marine or impacted environments, which are known for their harsh
conditions compared to the habitats of strains with the RnfB subunit (mainly found in soil,
animals, and freshwater). These findings imply that environmental factors such as oxygen
levels and the presence of metallic and organic electron acceptors or donors may have
driven the modification of the rnf operon.
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Figure 9. Schematic representation of membrane-bound complexes Cbc4, Dsr, Cbc5 and Rnf involved
in EET. Gene contexts and depictions of membrane-associated complexes: (A) The Cbc4 complex
(cbcSTU) identified in G. sulfurreducens PCA, consists of three subunits: a b-type cytochrome CbcU,
an iron–sulfur cluster-binding protein CbcT, and a c-type cytochrome CbcS; (B) The Dsr complex
(DsrMKJOP) in family Desulfovibrionaceae members, comprised of five subunits: a b-type cytochrome
DsrM, an iron-sulfur binding protein DsrK; a triheme c-type cytochrome DsrJ; a ferredoxin-like
protein DsrO (homologous to CbcT), and an NrfD/PsrC family integral membrane protein DsrP. The
orthologous proteins CbcT from the Cbc4 complex and DsrO from the Dsr complex are highlighted
in blue. (C) The Cbc5 complex (cbcEDCBA) from Geobacter species, composed of five subunits: three
c-type cytochromes CbcA, CbcC and CbcD, a b-type cytochrome CbcB, and a membrane protein
CbcE; and (D) The Rnf complex (rnfABCDGE) consists of six subunits, including four membrane
proteins RnfA, RnfD, RnfE, and RnfG and two iron-sulfur proteins, RnfB and RnfC. The protein
homologous to CbcC (CbcC*) is shown on the cytoplasmic side, which is possibly recruited by the
Rnf complex for its function. The orthologous proteins CbcC from the Cbc5 complex and Cbc* from
the Rnf complex are highlighted in violet. The rnfB subunit is indicated with dashed lines to denote
its variable presence in the Rnf operon of Desulfovibrionaceae family. The complexes are depicted
within the inner membrane, with the periplasm located at the top and the cytoplasm at the bottom.

It is important to note that in almost all strains of the Desulfovibrionaceae family that do
not have cbcC homologs, the other subunits of the Rnf complex are also missing. This sup-
ports a hypothesis regarding the integration of the CbcC homolog as an accessory protein
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within the complex. The only exceptions are Desulfovibrio cuneatus DSM 11391, which pos-
sesses the rnf operon minus the RnfB subunit and the CbcC homolog, and Halodesulfovibrio
aestuarii DSM 17919, which harbors the complete rnf operon and a cytochrome c, not homol-
ogous to CbcC (Figure S14). All other strains with the rnf operon contain the cbcC homolog,
likely indicating an ancient evolutionary incorporation event before these species diverged.
Furthermore, the sporadic occurrence of this complex in some family members strongly
suggests horizontal gene transfer as a mode of acquisition. Previous research indeed indi-
cates the spread of this complex among various lineages by HGT, including several species
within the phyla Pseudomonadota, Chlamydiota, and Planctomycetota, which subsequently led
to the rise in other complexes, such as Na+-NQR mentioned above [308]. In this context,
the CbcC-like cytochrome represents a unique module that has become integrated into
various membrane complexes involved in electron transfer through evolution and species
diversification. In Geobacter, it is part of the CbcEDCBA cluster where it is predicted to
form menaquinol:ferricytochrome c oxidoreductase [237], and in Desulfovibrionaceae family
members, it forms part of the Rnf complex, with a predicted cytoplasmic location, where it
likely engages in coupling to facilitate efficient electron transfer (Figure 9). These findings
indicate that this subunit, adapted by Desulfovibrionaceae family members with significant
evolutionary divergence, might offer a potential new catalytic innovation. By incorporating
it into the Rnf complex, these bacteria could potentially broaden the detection of redox
potentials and access an alternative electron transfer pathway, thereby enhancing growth
efficiency in variable environments.

4. Implications

The coexistence of sulfate- and iron-reducing bacteria can be found in several envi-
ronments with limited oxygen availability and varying redox conditions, such as marine
sediments, anoxic soils, and groundwater. These bacteria have developed mechanisms
for utilizing external electron donors and acceptors for energy metabolism, including EET.
However, the distribution, diversity, and evolution of the EET mechanisms are still not
well understood, and the underlying molecular mechanisms shared between SRB and
FeRB remain unexplored. In this study, a comparative genomic analysis uncovered the
similarities and differences in the distribution of genes related to EET in the genomes of
the Desulfovibrionaceae, Geobacteraceae, and Shewanellaceae families. Our results showed a
higher abundance of multi-heme cytochromes, especially those that were extracellular, in
Geobacteraceae strains than Desulfovibrionaceae and Shewanellaceae. The analysis also showed
more orthologous groups (OGs) shared between these two families than Geobacteraceae,
suggesting a closer phylogenomic relationship. However, this did not necessarily correlate
with OGs related to EET. In fact, the strains belonging to Desulfovibrionaceae shared more
homologous genes related to EET with the model G. sulfurreducens PCA compared to
S. oneidensis MR-1.

Within each family, a set of genes related to EET proteins exhibited significant en-
richment. For example, the presence of gene copies encoding CymA and riboflavins
distinguished Shewanellaceae, while those encoding OmpJ differentiated the Desulfovib-
rionaceae. Similarly, the presence of gene copies encoding Cbc and total cytochromes
distinguished the Geobacteraceae from other families. After conducting a comprehensive
analysis, we identified potential horizontal gene transfer events, gene gain or loss events,
and instances of convergent evolution related to specific proteins. These findings enhance
our understanding of the distribution and evolution of EET genes and pathways across
diverse phylogenetic groups of SRB and FeRB. These discoveries contribute to our under-
standing of the adaptability of these bacteria and their diverse electron transfer pathways
in different environments, especially relevant in environments with redox gradients.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/microorganisms12091796/s1, Table S1: Genomic features of the SRB and
FeRB genomes; Table S2: Custom database for EET-related genes belonging to the Desulfovibrionaceae,
Geobacteraceae, and Shewanellaceae families; Table S3: Growth conditions of SRB and FeRB genomes;
Table S4: Mobilome-related counts found in the genomes of SRB and FeRB genomes; Table S5:
Prevalence of mobilome elements in the genomes of SRB and FeRB genomes; Table S6: Counts of
c-type cytochromes found in the genomes of SRB and FeRB genomes; Table S7: References of growth
conditions of SRB and FeRB genomes; Figure S1: Orthology analysis of the SRB and FeRB genomes.
(A) Number of orthogroups (OGs) versus the number of genomes in log10 scale. The first (left) and
last (right) bars represent the species-specific OGs (546) and the core OGs with all species present
(289), respectively. (D) Venn diagram showing unique and shared ortholog gene clusters in the three
families. The number of unassigned genes to OGs is shown in parentheses. Figure S2: Phylogenomic
tree of the analyzed genomes belonging to the Desulfovibrionaceae, Geobacteraceae, and Shewanellaceae
families. Phylogeny was inferred using Orthofinder v2.5.4, identifying 109 single-copy orthogroups
with all species present. (A) Clades of each family, (B), (C), and (D) show the subclades of strains
belonging to Desulfovibrionaceae, Geobacteraceae, and Shewanellaceae families, respectively; Figure S3:
Violin-plots of the distribution of (A) genomic GC content and (B) genome size by subclades of
Desulfovibrionaceae, Geobacteraceae, and Shewanellaceae families; Figure S4: Presence/absence matrix of
genes of complementary genes related to EET mechanisms of S. oneidensis MR-1 y G. sulfurreducens
PCA. On the left, the phylogenomic cladogram is presented with the isolation source according to
Figure 1; Figure S5: Correlation between prophage density (total number of prophages per Mbp) and
the average total prophages per strain found in each family; Figure S6: Principal Component Analysis
of the strains from the Desulfovibrionaceae, Geobacteraceae and Shewanellaceae families in relation to
their mobilome components, types of cytochromes, genome size, and GC content. Colors indicate
strains origin/habitat; Figure S7: Phylogeny and genetic context of PpcA orthologous proteins.
The phylogenetic tree was constructed using MrBayes method based on amino acid sequences of
64 proteins, 40 belonging to members of Desulfovibrionaceae family, 22 belonging to Geobacteraceae
family and two belonging to Shewanellaceae family. Bayesian posterior probabilities are indicated
above their branch. The scale bar shows 0.3 estimated substitutions per site. The tree was rooted to
the closest protein of Thermovibrio ammonificans HB-1. The number before the bacterial name indicates
the position with respect to the phylogenomic tree (obtained with Orthofinder). Colors next to the
phylogenetic tree indicate the source of isolation: blue for marine waters/sediments, turquoise for
brackish water/sediments, cyan for freshwater sediments, purple for engineered/impacted system,
green for plant/algae-associated, orange for animal/human-associated, yellow for soil, red for food,
and gray for unknown source. The blue triangles indicate those bacteria from Desulfovibrionaceae
family that have reported Fe(III) reduction. On the right, the genetic contexts of the ppcA orthologous
genes are visualized. The lower zone shows the genetic context of the gene encoding the periplasmic
cytochrome ppcA of Geobacter sulfurreducens PCA; Figure S8: Genetic context of ppcA-orthologous
genes in others representative strains of the Desulfovibrionaceae family. Genetic context of ppcA gene
of (A) Maridesulfovibrio frigidus DSM 17176 (WP_031480636.1), (B) Desulfocurvibacter africanus PCS
(WP_005987327.1), (C) Desulfovibrio vulgaris Hildenborough (WP_010940429.1), and (D) Desulfovibrio
desulfuricans DSM 642 (WP_022659815.1); Figure S9: Phylogenetic trees of the orthologous groups as-
sociated with OmpJ, CymA, CbcT and CbcC. The phylogenetic trees were inferred using Orthofinder
v2.5.4. (A) Phylogenetic tree of proteins homologous of the outer membrane protein OmpJ. The tree
comprises 225 protein sequences: 42 from Geobacter strains and 183 from members of the Desulfovibri-
onaceae family. (B) Phylogenetic tree of proteins homologous of the c-type cytochrome CymA. The
tree is composed of 232 protein sequences: 17 from Geobacter strains, 162 from Shewanella and 53
from members of the Desulfovibrionaceae family. (C) Phylogenetic tree of proteins homologous of the
cytochrome bc complex CbcT. The tree is composed of 1018 protein sequences: 161 from Geobacter
strains, 447 from Shewanella and 410 from members of the Desulfovibrionaceae family. (D) Phylogenetic
tree of proteins homologous of the cytochrome bc complex CbcC. The tree is composed of 136 protein
sequences: 94 from Geobacter strains, 4 from Shewanella and 38 from members of the Desulfovibrionaceae
family. Each clade/branch is colored according to its family of origin; Figure S10: Phylogeny and
genetic context of OmpJ orthologous proteins. The phylogenetic tree was constructed using MrBayes
method based on amino acid sequences of 64 proteins, 42 belonging to members of Desulfovibrionaceae
family and 22 belonging to Geobacteraceae family. Bayesian posterior probabilities are indicated above
their branch. The scale bar shows 0.3 estimated substitutions per site. The tree was rooted to the
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closest protein of Thermovibrio ammonificans HB-1. The number before the bacterial name indicates the
position with respect to the phylogenomic tree (obtained with Orthofinder). Colors next to the phylo-
genetic tree indicate the source of isolation: blue for marine waters/sediments, turquoise for brackish
water/sediments, cyan for freshwater sediments, purple for engineered/impacted system, green
for plant/algae-associated, orange for animal/human-associated, yellow for soil, red for food, and
gray for unknown source. The blue triangles indicate those bacteria from Desulfovibrionaceae family
that have reported Fe(III) reduction. On the right, the genetic contexts of the ompJ orthologous genes
are visualized. The bottom of the figure shows the genetic context of the gene encoding the outer
membrane protein OmpJ of Geobacter sulfurreducens PCA; Figure S11: Phylogeny and genetic context
of CymA orthologous proteins. The phylogenetic tree was constructed using MrBayes method
based on amino acid sequences of 113 proteins, 40 belonging to members of Desulfovibrionaceae
family, 14 to Geobacteraceae family and 59 belonging to Shewanellaceae family. Bayesian posterior
probabilities are indicated above their branch. The scale bar shows 0.3 estimated substitutions per
site. The tree was rooted to the closest protein of Thermovibrio ammonificans HB-1. The number
before the bacterial name indicates the position with respect to the phylogenomic tree (obtained
with Orthofinder). Colors next to the phylogenetic tree indicate the source of isolation: blue for
marine waters/sediments, turquoise for brackish water/sediments, cyan for freshwater sediments,
purple for engineered/impacted system, green for plant/algae-associated, orange for animal/human-
associated, yellow for soil, red for food, and gray for unknown source. The blue triangles indicate
those bacteria from Desulfovibrionaceae family that have reported Fe(III) reduction. On the right,
the genetic contexts of the cymA orthologous genes are visualized. The lower zone shows the ge-
netic context of the gene encoding the tetraheme c-type cytochrome CymA of Shewanella oneidensis
MR-1; Figure S12: Genetic context of cymA-orthologous genes in others representative strains of the
Desulfovibrionaceae family. Genetic context of cymA gene of (A) Maridesulfovibrio frigidus DSM 17176
(WP_031480646.1), (B) Desulfocurvibacter africanus PCS (WP_005984200.1), (C) Desulfovibrio vulgaris
Hildenborough (WP_010937927.1), and (D) Desulfovibrio desulfuricans DSM 642 (WP_022659018.1);
Figure S13: Phylogeny and genetic context of CbcT orthologous proteins. The phylogenetic tree was
constructed using MrBayes method based on amino acid sequences of 72 proteins, 42 belonging
to members of Desulfovibrionaceae family, and 30 representative sequences of the Geobacteraceae and
Shewanellaceae families (10 and 20, respectively). Bayesian posterior probabilities are indicated above
their branch. The scale bar shows 0.2 estimated substitutions per site. The tree was rooted to the
closest protein of Thermovibrio ammonificans HB-1. The number before the bacterial name indicates
the position with respect to the phylogenomic tree (obtained with Orthofinder). Colors next to the
phylogenetic tree indicate the source of isolation: blue for marine waters/sediments, turquoise for
brackish water/sediments, cyan for freshwater sediments, purple for engineered/impacted system,
green for plant/algae-associated, orange for animal/human-associated, yellow for soil, red for food,
and gray for unknown source. The blue triangles indicate those bacteria from Desulfovibrionaceae
family that have reported Fe(III) reduction. On the right, the genetic contexts of the cbcT orthologous
genes are visualized. The lower zone shows the genetic context of the gene encoding the iron-sulfur
cluster-binding protein CbcT of Geobacter sulfurreducens PCA. CbcT, together with c-type cytochrome
CbcS and b-type cytochrome CbcU represent the menaquinol: ferricytochrome c oxidoreductase
complex; Figure S14: Phylogeny and genetic context of CbcC orthologous proteins. The phyloge-
netic tree was constructed using MrBayes method based on amino acid sequences of 50 proteins, 24
belonging to members of Desulfovibrionaceae family, 22 to Geobacteraceae family and 4 belonging to
Shewanellaceae family. Bayesian posterior probabilities are indicated above their branch. The scale bar
shows 0.4 estimated substitutions per site. The tree was rooted to the closest protein of Thermovibrio
ammonificans HB-1. The number before the bacterial name indicates the position with respect to the
phylogenomic tree (obtained with Orthofinder). Colors next to the phylogenetic tree indicate the
source of isolation: blue for marine waters/sediments, turquoise for brackish water/sediments, cyan
for freshwater sediments, purple for engineered/impacted system, green for plant/algae-associated,
orange for animal/human-associated, yellow for soil, red for food, and gray for unknown source.
The blue triangles indicate those bacteria from Desulfovibrionaceae family that have reported Fe(III)
reduction. On the right, the genetic contexts of the cbcC orthologous genes are visualized. The
lower zone shows the genetic context of the gene encoding the c-type cytochrome CbcC of Geobacter
sulfurreducens PCA. CbcC is part of the Cbc5 complex (cbcEDCBA), a menaquinol:ferricytochrome
c oxidoreductase complex, expressed during the reduction of Fe(III) oxide minerals; Figure S15:
Multi-heme cytochrome similarity networking. Similarity network colored according to: (A) Isolation
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source of the bacteria of origin; (B) Salt tolerance level of the bacteria; (C) Experimental evidence of
Fe(III) reduction of the bacteria and; (D) Classification according to OGs, in color are shown some
more abundant OGs (8/35).
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