L-Rhamnose Globally Changes the Transcriptome of Planktonic and Biofilm Escherichia coli Cells and Modulates Biofilm Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain Selection and Cultivation
2.2. Growth Curves
2.3. Crystal Violet Assay
2.4. Biofilm Growth on Agar and EPS Harvesting
2.5. Confocal Microscopy
2.6. RNA Harvesting
2.7. RNA-seq Data Collection and Analysis
2.8. RT-PCR/qPCR
3. Results
3.1. PHL628 Growth Kinetics and Biofilm Growth with Rhamnose
3.2. Influence of Rhamnose on EPS Protein and Carbohydrate Concentrations
3.3. Rhamnose Modulates Gene Expression Differently for Planktonic and Biofilm Cells
3.4. Gene Ontology Analysis Reveals Global Changes to Metabolism and Transport with Rhamnose Addition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, R.; Tang, J.; Li, J.; Zheng, Q.; Liu, D.; Cheng, Y.; Zou, Y.; Chen, X.; Luo, C.; Zhang, G. Antibiotics in the Offshore Waters of the Bohai Sea and the Yellow Sea in China: Occurrence, Distribution and Ecological Risks. Environ. Pollut. 2013, 174, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Samuel, G.; Reeves, P. Biosynthesis of O-Antigens: Genes and Pathways Involved in Nucleotide Sugar Precursor Synthesis and O-Antigen Assembly. Carbohydr. Res. 2003, 338, 2503–2519. [Google Scholar] [CrossRef] [PubMed]
- Faury, G.; Ruszova, E.; Molinari, J.; Mariko, B.; Raveaud, S.; Velebny, V.; Robert, L. The α-l-Rhamnose Recognizing Lectin Site of Human Dermal Fibroblasts Functions as a Signal Transducer Modulation of Ca2+ Fluxes and Gene Expression. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2008, 1780, 1388–1394. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.; Sousa, S.; Cabanes, D. L-Rhamnosylation of Wall Teichoic Acids Promotes Efficient Surface Association of Listeria Monocytogenes Virulence Factors InlB and Ami through Interaction with GW Domains. Environ. Microbiol. 2018, 20, 3941–3951. [Google Scholar] [CrossRef]
- Kieda, C.; Monsigny, M. Involvement of Membrane Sugar Receptors and Membrane Glycoconjugates in the Adhesion of 3LL Cell Subpopulations to Cultured Pulmonary Cells. Invasion Metastasis 1986, 6, 347–366. [Google Scholar]
- Al-Tahhan, R.A.; Sandrin, T.R.; Bodour, A.A.; Maier, R.M. Rhamnolipid-Induced Removal of Lipopolysaccharide from Pseudomonas Aeruginosa: Effect on Cell Surface Properties and Interaction with Hydrophobic Substrates. Appl. Environ. Microbiol. 2000, 66, 3262–3268. [Google Scholar] [CrossRef]
- Pamp, S.J.; Tolker-Nielsen, T. Multiple Roles of Biosurfactants in Structural Biofilm Development by Pseudomonas Aeruginosa. J. Bacteriol. 2007, 189, 2531–2539. [Google Scholar] [CrossRef]
- Abdel-Mawgoud, A.M.; Lépine, F.; Déziel, E. Rhamnolipids: Diversity of Structures, Microbial Origins and Roles. Appl. Microbiol. Biotechnol. 2010, 86, 1323–1336. [Google Scholar] [CrossRef]
- Guzmán-Soto, I.; McTiernan, C.; Gonzalez-Gomez, M.; Ross, A.; Gupta, K.; Suuronen, E.J.; Mah, T.-F.; Griffith, M.; Alarcon, E.I. Mimicking Biofilm Formation and Development: Recent Progress in in Vitro and in Vivo Biofilm Models. iScience 2021, 24, 102443. [Google Scholar] [CrossRef]
- Compton, A.A.; Deodhar, B.S.; Fathi, A.; Pemberton, J.E. Optimization of a Chemical Synthesis for Single-Chain Rhamnolipids. ACS Sustain. Chem. Eng. 2020, 8, 8918–8927. [Google Scholar] [CrossRef]
- Bauer, J.; Brandenburg, K.; Zähringer, U.; Rademann, J. Chemical Synthesis of a Glycolipid Library by a Solid-Phase Strategy Allows Elucidation of the Structural Specificity of Immunostimulation by Rhamnolipids. Chem. A Eur. J. 2006, 12, 7116–7124. [Google Scholar] [CrossRef]
- Millard, P.; Pérochon, J.; Létisse, F. Functional Analysis of Deoxyhexose Sugar Utilization in Escherichia coli Reveals Fermentative Metabolism under Aerobic Conditions. Appl. Environ. Microbiol. 2021, 87, e00719-21. [Google Scholar] [CrossRef]
- Tao, Y.; Bu, C.; Zou, L.; Hu, Y.; Zheng, Z.-J.; Ouyang, J. A Comprehensive Review on Microbial Production of 1,2-Propanediol: Micro-Organisms, Metabolic Pathways, and Metabolic Engineering. Biotechnol. Biofuels 2021, 14, 216. [Google Scholar] [CrossRef]
- Tobin, J.F.; Schleif, R.F. Positive Regulation of the Escherichia coli L-Rhamnose Operon Is Mediated by the Products of Tandemly Repeated Regulatory Genes. J. Mol. Biol. 1987, 196, 789–799. [Google Scholar] [CrossRef]
- Moralejo, P.; Egan, S.M.; Hidalgo, E.; Aguilar, J. Sequencing and Characterization of a Gene Cluster Encoding the Enzymes for L-Rhamnose Metabolism in Escherichia coli. J. Bacteriol. 1993, 175, 5585–5594. [Google Scholar] [CrossRef]
- Egan, S.M.; Schleif, R.F. A Regulatory Cascade in the Induction of RhaBAD. J. Mol. Biol. 1993, 234, 87–98. [Google Scholar] [CrossRef]
- Giacalone, M.J.; Gentile, A.M.; Lovitt, B.T.; Berkley, N.L.; Gunderson, C.W.; Surber, M.W. Toxic Protein Expression in Escherichia coli Using a Rhamnose-Based Tightly Regulated and Tunable Promoter System. BioTechniques 2006, 40, 355–364. [Google Scholar] [CrossRef]
- Terpe, K. Overview of Bacterial Expression Systems for Heterologous Protein Production: From Molecular and Biochemical Fundamentals to Commercial Systems. Appl. Microbiol. Biotechnol. 2006, 72, 211. [Google Scholar] [CrossRef]
- Brautaset, T.; Lale, R.; Valla, S. Positively Regulated Bacterial Expression Systems. Microb. Biotechnol. 2009, 2, 15–30. [Google Scholar] [CrossRef]
- Cortés-Avalos, D.; Martínez-Pérez, N.; Ortiz-Moncada, M.A.; Juárez-González, A.; Baños-Vargas, A.A.; de los Santos, P.E.; Pérez-Rueda, E.; Ibarra, J.A. An Update of the Unceasingly Growing and Diverse AraC/XylS Family of Transcriptional Activators. FEMS Microbiol. Rev. 2021, 45, fuab020. [Google Scholar] [CrossRef]
- Ishizuka, H.; Hanamura, A.; Inada, T.; Aiba, H. Mechanism of the Down-Regulation of CAMP Receptor Protein by Glucose in Escherichia coli: Role of Autoregulation of the Crp Gene. EMBO J. 1994, 13, 3077–3082. [Google Scholar] [CrossRef]
- Zheng, D.; Constantinidou, C.; Hobman, J.L.; Minchin, S.D. Identification of the CRP Regulon Using in Vitro and in Vivo Transcriptional Profiling. Nucleic Acids Res. 2004, 32, 5874–5893. [Google Scholar] [CrossRef]
- Grainger, D.C.; Hurd, D.; Harrison, M.; Holdstock, J.; Busby, S.J.W. Studies of the Distribution of Escherichia coli CAMP-Receptor Protein and RNA Polymerase along the E. Coli Chromosome. Proc. Natl. Acad. Sci. 2005, 102, 17693–17698. [Google Scholar] [CrossRef]
- Brückner, R.; Titgemeyer, F. Carbon Catabolite Repression in Bacteria: Choice of the Carbon Source and Autoregulatory Limitation of Sugar Utilization. Fems Microbiol. Lett. 2002, 209, 141–148. [Google Scholar] [CrossRef]
- Kopp, D.; Bergquist, P.L.; Sunna, A. Enzymology of Alternative Carbohydrate Catabolic Pathways. Catalysts 2020, 10, 1231. [Google Scholar] [CrossRef]
- Beisel, C.L.; Storz, G. The Base-Pairing RNA Spot 42 Participates in a Multioutput Feedforward Loop to Help Enact Catabolite Repression in Escherichia coli. Mol. Cell 2011, 41, 286–297. [Google Scholar] [CrossRef]
- Aidelberg, G.; Towbin, B.D.; Rothschild, D.; Dekel, E.; Bren, A.; Alon, U. Hierarchy of Non-Glucose Sugars in Escherichia coli. Bmc Syst. Biol. 2014, 8, 133. [Google Scholar] [CrossRef]
- Choudhury, D.; Saini, S. Cross-regulation among Arabinose, Xylose and Rhamnose Utilization Systems in E. Coli. Lett. Appl. Microbiol. 2018, 66, 132–137. [Google Scholar] [CrossRef]
- Choudhury, D.; Gayen, K.; Saini, S. Dynamic Control of Arabinose and Xylose Utilization in E. coli. Can. J. Chem. Eng. 2018, 96, 1881–1887. [Google Scholar] [CrossRef]
- Okano, H.; Hermsen, R.; Hwa, T. Hierarchical and Simultaneous Utilization of Carbon Substrates: Mechanistic Insights, Physiological Roles, and Ecological Consequences. Curr. Opin. Microbiol. 2021, 63, 172–178. [Google Scholar] [CrossRef]
- Baev, M.V.; Baev, D.; Radek, A.J.; Campbell, J.W. Growth of Escherichia coli MG1655 on LB Medium: Monitoring Utilization of Sugars, Alcohols, and Organic Acids with Transcriptional Microarrays. Appl. Microbiol. Biot. 2006, 71, 310–316. [Google Scholar] [CrossRef]
- Caglar, M.U.; Houser, J.R.; Barnhart, C.S.; Boutz, D.R.; Carroll, S.M.; Dasgupta, A.; Lenoir, W.F.; Smith, B.L.; Sridhara, V.; Sydykova, D.K.; et al. The E. Coli Molecular Phenotype under Different Growth Conditions. Sci. Rep. 2017, 7, 45303. [Google Scholar] [CrossRef]
- Bühler, T.; Ballestero, S.; Desai, M.; Brown, M.R.W. Generation of a Reproducible Nutrient-depleted Biofilm of Escherichia coli and Burkholderia Cepacia. J. Appl. Microbiol. 1998, 85, 457–462. [Google Scholar] [CrossRef]
- Jackson, D.W.; Simecka, J.W.; Romeo, T. Catabolite Repression of Escherichia coli Biofilm Formation. J. Bacteriol. 2002, 184, 3406–3410. [Google Scholar] [CrossRef]
- Moreira, J.M.R.; Gomes, L.C.; Araújo, J.D.P.; Miranda, J.M.; Simões, M.; Melo, L.F.; Mergulhão, F.J. The Effect of Glucose Concentration and Shaking Conditions on Escherichia coli Biofilm Formation in Microtiter Plates. Chem. Eng. Sci. 2013, 94, 192–199. [Google Scholar] [CrossRef]
- Sutrina, S.L.; Callender, S.; Grazette, T.; Scantlebury, P.; O’Neal, S.; Thomas, K.; Harris, D.C.; Mota-Meira, M. The Quantity and Distribution of Biofilm Growth of Escherichia coli Strain ATCC 9723 Depends on the Carbon/Energy Source. Microbiology+ 2018, 165, 47–64. [Google Scholar] [CrossRef]
- Sutrina, S.L.; Daniel, K.; Lewis, M.; Charles, N.T.; Anselm, C.K.E.; Thomas, N.; Holder, N. Biofilm Growth of Escherichia coli Is Subject to CAMP-Dependent and CAMP-Independent Inhibition. J. Mol. Microb. Biotech. 2015, 25, 209–225. [Google Scholar] [CrossRef]
- Liu, C.; Sun, D.; Zhu, J.; Liu, J.; Liu, W. The Regulation of Bacterial Biofilm Formation by CAMP-CRP: A Mini-Review. Front. Microbiol. 2020, 11, 802. [Google Scholar] [CrossRef]
- Michael, V.; Frank, O.; Bartling, P.; Scheuner, C.; Göker, M.; Brinkmann, H.; Petersen, J. Biofilm Plasmids with a Rhamnose Operon Are Widely Distributed Determinants of the ‘Swim-or-Stick’ Lifestyle in Roseobacters. ISME J. 2016, 10, 2498–2513. [Google Scholar] [CrossRef]
- Lange, M.D.; Farmer, B.D.; Declercq, A.M.; Peatman, E.; Decostere, A.; Beck, B.H. Sickeningly Sweet: L-rhamnose Stimulates Flavobacterium Columnare Biofilm Formation and Virulence. J. Fish. Dis. 2017, 40, 1613–1624. [Google Scholar] [CrossRef]
- Vidal, O.; Longin, R.; Prigent-Combaret, C.; Dorel, C.; Hooreman, M.; Lejeune, P. Isolation of an Escherichia coli K-12 Mutant Strain Able to Form Biofilms on Inert Surfaces: Involvement of a New OmpR Allele That Increases Curli Expression. J. Bacteriol. 1998, 180, 2442–2449. [Google Scholar] [CrossRef]
- Prigent-Combaret, C.; Brombacher, E.; Vidal, O.; Ambert, A.; Lejeune, P.; Landini, P.; Dorel, C. Complex Regulatory Network Controls Initial Adhesion and Biofilm Formation in Escherichia coli via Regulation of The csgD Gene. J. Bacteriol. 2001, 183, 7213–7223. [Google Scholar] [CrossRef]
- Prigent-Combaret, C.; Vidal, O.; Dorel, C.; Lejeune, P. Abiotic Surface Sensing and Biofilm-Dependent Regulation of Gene Expression in Escherichia coli. J. Bacteriol. 1999, 181, 5993–6002. [Google Scholar] [CrossRef]
- Jackson, D.W.; Suzuki, K.; Oakford, L.; Simecka, J.W.; Hart, M.E.; Romeo, T. Biofilm Formation and Dispersal under the Influence of the Global Regulator CsrA of Escherichia coli. J. Bacteriol. 2002, 184, 290–301. [Google Scholar] [CrossRef]
- Benamara, H.; Rihouey, C.; Jouenne, T.; Alexandre, S. Impact of the Biofilm Mode of Growth on the Inner Membrane Phospholipid Composition and Lipid Domains in Pseudomonas Aeruginosa. Biochimica Biophysica Acta Bba-Biomembr. 2011, 1808, 98–105. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, G.A. Microtiter Dish Biofilm Formation Assay. J. Vis. Exp. Jove 2011. [Google Scholar] [CrossRef]
- Chiba, A.; Sugimoto, S.; Sato, F.; Hori, S.; Mizunoe, Y. A Refined Technique for Extraction of Extracellular Matrices from Bacterial Biofilms and Its Applicability. Microb. Biotechnol. 2015, 8, 392–403. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Rebers, and Fred. Smith. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Shihan, M.H.; Novo, S.G.; Marchand, S.J.L.; Wang, Y.; Duncan, M.K. A Simple Method for Quantitating Confocal Fluorescent Images. Biochem. Biophys. Rep. 2021, 25, 100916. [Google Scholar] [CrossRef]
- Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI Gene Expression and Hybridization Array Data Repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Buffalo, V.; Fass, J. Scythe—A Bayesian Adapter Trimmer (Version 0.994 BETA).[Software] 2014. Available online: https://github.com/vsbuffalo/scythe (accessed on 1 June 2024).
- Joshi, N.A.; Fass, J.N. Sickle: A Sliding-Window, Adaptive, Quality-bBased Trimming Tool for FastQ Files (Version 1.33) [Software]. 2011. Available online: https://github.com/najoshi/sickle (accessed on 1 June 2024).
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 2017, 14, 417–419. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, L.; Lun, A.T.L.; Baldoni, P.; Smyth, G.K. edgeR 4.0: Powerful differential analysis of sequencing data with expanded functionality and improved support for small counts and larger datasets. bioRxiv. 2024. [Google Scholar] [CrossRef]
- Reiner-Benaim, A. FDR control by the BH procedure for two-sided correlated tests with implications to gene expression data analysis. Biom. J 2007, 49, 107–126. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.D.; Ebert, D.; Muruganujan, A.; Mushayahama, T.; Albou, L.; Mi, H. PANTHER: Making Genome-scale Phylogenetics Accessible to All. Protein Sci. 2022, 31, 8–22. [Google Scholar] [CrossRef]
- Karp, P.D.; Paley, S.; Caspi, R.; Kothari, A.; Krummenacker, M.; Midford, P.E.; Moore, L.R.; Subhraveti, P.; Gama-Castro, S.; Tierrafria, V.H.; et al. The EcoCyc Database (2023). EcoSal Plus 2023, 11, eesp00022023. [Google Scholar] [CrossRef]
- Mi, H.; Muruganujan, A.; Huang, X.; Ebert, D.; Mills, C.; Guo, X.; Thomas, P.D. Protocol Update for Large-Scale Genome and Gene Function Analysis with the PANTHER Classification System (v.14.0). Nat. Protoc. 2019, 14, 703–721. [Google Scholar] [CrossRef]
- Zhou, K.; Zhou, L.; Lim, Q.E.; Zou, R.; Stephanopoulos, G.; Too, H.-P. Novel Reference Genes for Quantifying Transcriptional Responses of Escherichia coli to Protein Overexpression by Quantitative PCR. BMC Mol. Biol. 2011, 12, 18. [Google Scholar] [CrossRef]
- Buck, L.D.; Paladino, M.M.; Nagashima, K.; Brezel, E.R.; Holtzman, J.S.; Urso, S.J.; Ryno, L.M. Temperature-Dependent Influence of FliA Overexpression on PHL628 E. Coli Biofilm Growth and Composition. Front. Cell Infect. Mi 2021, 11, 775270. [Google Scholar] [CrossRef]
- Katsikogianni, M.; Missirlis, Y.F. Concise Review of Mechanisms of Bacterial Adhesion to Biomaterials and of Techniques Used in Estimating Bacteria-Material Interactions. Eur. Cell Mater. 2004, 8, 37–57. [Google Scholar] [CrossRef]
- Muiry, J.A.R.; Gunn, T.C.; McDonald, T.P.; Bradley, S.A.; Tate, C.G.; Henderson, P.J.F. Proton-Linked l -Rhamnose Transport, and Its Comparison with l -Fucose Transport in Enterobacteriaceae. Biochem. J. 1993, 290, 833–842. [Google Scholar] [CrossRef]
- Wood, T.K. Insights on Escherichia coli Biofilm Formation and Inhibition from Whole--transcriptome Profiling. Environ. Microbiol. 2009, 11, 1–15. [Google Scholar] [CrossRef]
- Fink, R.C.; Black, E.P.; Hou, Z.; Sugawara, M.; Sadowsky, M.J.; Diez-Gonzalez, F. Transcriptional Responses of Escherichia coli K-12 and O157:H7 Associated with Lettuce Leaves. Appl. Environ. Microb. 2012, 78, 1752–1764. [Google Scholar] [CrossRef]
- Berger, P.; Kouzel, I.U.; Berger, M.; Haarmann, N.; Dobrindt, U.; Koudelka, G.B.; Mellmann, A. Carriage of Shiga Toxin Phage Profoundly Affects Escherichia coli Gene Expression and Carbon Source Utilization. Bmc Genom. 2019, 20, 504. [Google Scholar] [CrossRef]
- Hagiwara, D.; Sugiura, M.; Oshima, T.; Mori, H.; Aiba, H.; Yamashino, T.; Mizuno, T. Genome-Wide Analyses Revealing a Signaling Network of the RcsC-YojN-RcsB Phosphorelay System in Escherichia coli. J. Bacteriol. 2003, 185, 5735–5746. [Google Scholar] [CrossRef]
- Kaberdina, A.C.; Ruiz-Larrabeiti, O.; Lin-Chao, S.; Kaberdin, V.R. Reprogramming of Gene Expression in Escherichia coli Cultured on Pyruvate versus Glucose. Mol. Genet. Genom. 2019, 294, 1359–1371. [Google Scholar] [CrossRef]
- Polen, T.; Krämer, M.; Bongaerts, J.; Wubbolts, M.; Wendisch, V.F. The Global Gene Expression Response of Escherichia coli to L-Phenylalanine. J. Biotechnol. 2005, 115, 221–237. [Google Scholar] [CrossRef]
- Smith, A.; Kaczmar, A.; Bamford, R.A.; Smith, C.; Frustaci, S.; Kovacs-Simon, A.; O’Neill, P.; Moore, K.; Paszkiewicz, K.; Titball, R.W.; et al. The Culture Environment Influences Both Gene Regulation and Phenotypic Heterogeneity in Escherichia coli. Front. Microbiol. 2018, 9, 1739. [Google Scholar] [CrossRef]
- Lynnes, T.; Horne, S.M.; Prüß, B.M. SS-Phenylethylamine as a Novel Nutrient Treatment to Reduce Bacterial Contamination Due to Escherichia coli O157:H7 on Beef Meat. Meat Sci. 2014, 96, 165–171. [Google Scholar] [CrossRef]
- Lynnes, T.; Prüβ, B.M.; Samanta, P. Acetate Metabolism and Escherichia coli Biofilm: New Approaches to an Old Problem. Fems Microbiol. Lett. 2013, 344, 95–103. [Google Scholar] [CrossRef]
- Fux, C.A.; Costerton, J.W.; Stewart, P.S.; Stoodley, P. Survival Strategies of Infectious Biofilms. Trends Microbiol. 2005, 13, 34–40. [Google Scholar] [CrossRef]
- Amores, G.R.; Heras, A.d.L.; Sanches-Medeiros, A.; Elfick, A.; Silva-Rocha, R. Systematic Identification of Novel Regulatory Interactions Controlling Biofilm Formation in the Bacterium Escherichia coli. Sci. Rep. 2017, 7, 16768. [Google Scholar] [CrossRef]
- Frizzell, J.K.; Taylor, R.L.; Ryno, L.M. Constitutive Activation of RpoH and the Addition of L-Arabinose Influence Antibiotic Sensitivity of PHL628 E. Coli. Antibiotics 2024, 13, 143. [Google Scholar] [CrossRef]
- Barnhart, M.M.; Chapman, M.R. Curli Biogenesis and Function. Annu. Rev. Microbiol. 2006, 60, 131–147. [Google Scholar] [CrossRef]
- Bougdour, A.; Lelong, C.; Geiselmann, J. Crl, a Low Temperature-Induced Protein in Escherichia coli That Binds Directly to the Stationary Phase σ Subunit of RNA Polymerase*. J. Biol. Chem. 2004, 279, 19540–19550. [Google Scholar] [CrossRef]
- Kurabayashi, K.; Tanimoto, K.; Tomita, H.; Hirakawa, H. Cooperative Actions of CRP-cAMP and FNR Increase the Fosfomycin Susceptibility of Enterohaemorrhagic Escherichia coli (EHEC) by Elevating the Expression of glpT and uhpT under Anaerobic Conditions. Front. Microbiol. 2017, 8, 426. [Google Scholar] [CrossRef]
- Yu, L.; Li, W.; Qi, K.; Wang, S.; Chen, X.; Ni, J.; Deng, R.; Shang, F.; Xue, T. McbR is involved in biofilm formation and H2O2 stress response in avian pathogenic Escherichia coli X40. Poult. Sci. 2019, 98, 4094–4103. [Google Scholar] [CrossRef]
- Chang, Y.; Bai, J.; Yu, H.; Chang, P.S.; Nitin, N. Synergistic Inactivation of Bacteria Using a Combination of Erythorbyl Laurate and UV Type-A Light Treatment. Front. Microbiol. 2021, 12, 682900. [Google Scholar] [CrossRef]
- Tsai, M.-J.; Wang, J.-R.; Yang, C.-D.; Kao, K.-C.; Huang, W.-L.; Huang, H.-Y.; Tseng, C.-P.; Huang, H.-D.; Ho, S.-Y. PredCRP: Predicting and analysing the regulatory roles of CRP from its binding sites in Escherichia coli. Sci. Rep. 2018, 8, 951. [Google Scholar] [CrossRef]
Rate Constant (hr−1) | Maximum Growth (Abs at 600 nm) | ||||
---|---|---|---|---|---|
28 °C | 37 °C | 28 °C | 37 °C | ||
Rich Media | 0% | 0.469 ± 0.013 | 0.373 ± 0.006 | 0.591 ± 0.005 | 0.807 ± 0.004 |
0.1% Rha | 0.435 ± 0.012 † | 0.530 ± 0.008 *,§,† | 0.635 ± 0.006 *,§,† | 0.757 ± 0.002 *,§,† | |
0.5% Rha | 0.453 ± 0.010 † | 0.639 ± 0.010 *,† | 0.659 ± 0.005 *,† | 0.731 ± 0.002 *,† | |
0.1% Glu | 0.511 ± 0.013 *,§ | 0.873 ± 0.012 *,§ | 0.686 ± 0.005 *,§ | 0.777 ± 0.002 *,§ | |
0.5% Glu | 0.69 ± 0.02 * | 1.49 ± 0.03 * | 0.590 ± 0.003 | 0.638 ± 0.002 * | |
Minimal Media | 0% | 0.066 ± 0.013 | 0.07 ± 0.02 | 0.047 ± 0.002 | 0.045 ± 0.002 |
0.1% Rha | 0.068 ± 0.009 | 0.04 ± 0.02 §,† | 0.048 ± 0.002 §,† | 0.052 ± 0.007 † | |
0.5% Rha | 0.088 ± 0.008 | 0.33 ± 0.05 *,† | 0.055 ± 0.002 *,† | 0.059 ± 0.001 † | |
0.1% Glu | 0.140 ± 0.005 | 0.66 ± 0.02 *,§ | 0.111 ± 0.003 *,§ | 0.109 ± 0.001 * | |
0.5% Glu | 0.185 ± 0.004 | 0.89 ± 0.08 * | 0.1052 ± 0.0011 * | 0.104 ± 0.001 * |
Gene Function | Genes of Interest |
---|---|
Biofilm formation, surface attachment | bhsA, csgA, fimA |
EPS formation | wcaF, bcsA, lptA, mcbA |
Sugar metabolism and transport | rhaT, xylF, sfsA, mlc, crp |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hantus, C.E.; Moppel, I.J.; Frizzell, J.K.; Francis, A.E.; Nagashima, K.; Ryno, L.M. L-Rhamnose Globally Changes the Transcriptome of Planktonic and Biofilm Escherichia coli Cells and Modulates Biofilm Growth. Microorganisms 2024, 12, 1911. https://doi.org/10.3390/microorganisms12091911
Hantus CE, Moppel IJ, Frizzell JK, Francis AE, Nagashima K, Ryno LM. L-Rhamnose Globally Changes the Transcriptome of Planktonic and Biofilm Escherichia coli Cells and Modulates Biofilm Growth. Microorganisms. 2024; 12(9):1911. https://doi.org/10.3390/microorganisms12091911
Chicago/Turabian StyleHantus, Charlotte E., Isabella J. Moppel, Jenna K. Frizzell, Anna E. Francis, Kyogo Nagashima, and Lisa M. Ryno. 2024. "L-Rhamnose Globally Changes the Transcriptome of Planktonic and Biofilm Escherichia coli Cells and Modulates Biofilm Growth" Microorganisms 12, no. 9: 1911. https://doi.org/10.3390/microorganisms12091911
APA StyleHantus, C. E., Moppel, I. J., Frizzell, J. K., Francis, A. E., Nagashima, K., & Ryno, L. M. (2024). L-Rhamnose Globally Changes the Transcriptome of Planktonic and Biofilm Escherichia coli Cells and Modulates Biofilm Growth. Microorganisms, 12(9), 1911. https://doi.org/10.3390/microorganisms12091911