

Article

Comparative Genomic Analysis of *Campylobacter* **Plasmids Identified in Food Isolates**

Yiping He^{1,*,†}, Gretchen Elizabeth Dykes ^{1,†}, Siddhartha Kanrar ², Yanhong Liu ¹, Nereus W. Gunther IV ¹, Katrina L. Counihan ¹, Joe Lee ¹ and Joseph A. Capobianco ¹

- ¹ Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA; gretchen.dykes@usda.gov (G.E.D.); yanhong.liu@usda.gov (Y.L.); jack.gunther@usda.gov (N.W.G.IV); katrina.counihan@usda.gov (K.L.C.); joe.lee@usda.gov (J.L.); joseph.capobianco@usda.gov (J.A.C.)
- ² Foreign Arthropod-Borne Animal Disease Research Unit, National Bio and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; siddhartha.kanrar@usda.gov
- * Correspondence: yiping.he@usda.gov; Tel.: +1-(215)-233-6447; Fax: +1-(215)-836-3742
- ⁺ These authors contributed equally to this work.

Abstract: Campylobacter is one of the leading bacterial causes of gastroenteritis worldwide. It frequently contaminates poultry and other raw meat products, which are the primary sources of Campylobacter infections in humans. Plasmids, known as important mobile genetic elements, often carry genes for antibiotic resistance, virulence, and self-mobilization. They serve as the main vectors for transferring genetic material and spreading resistance and virulence among bacteria. In this study, we identified 34 new plasmids from 43 C. jejuni and C. coli strains isolated from retail meat using long-read and short-read genome sequencing. Pangenomic analysis of the plasmid assemblies and reference plasmids from GenBank revealed five distinct groups, namely, pTet, pVir, mega plasmids (>80 kb), mid plasmids (~30 kb), and small plasmids (<6 kb). Pangenomic analysis identified the core and accessory genes in each group, indicating a high degree of genetic similarity within groups and substantial diversity between the groups. The pTet plasmids were linked to tetracycline resistance phenotypes in host strains. The mega plasmids carry multiple genes (e.g., *aph*(3')-III, type IV and VI secretion systems, and type II toxin–antitoxin systems) important for plasmid mobilization, virulence, antibiotic resistance, and the persistence of Campylobacter. Together, the identification and comprehensive genetic characterization of new plasmids from Campylobacter food isolates contributes to understanding the mechanisms of gene transfer, particularly the spread of genetic determinants of virulence and antibiotic resistance in this important pathogen.

Keywords: *Campylobacter;* plasmid; genome sequencing; mobile genetic element; horizontal gene transfer; antibiotic resistance; virulence; foodborne pathogen

1. Introduction

Campylobacter causes millions of cases of foodborne illnesses annually, imposing a significant economic burden worldwide. Of the 33 species and subspecies in the *Campylobacter* genus, *C. jejuni* and *C. coli* are the most significant in illness, responsible for nearly all human infections (http://www.who.int/news-room/fact-sheets/detail/campylobacter, accessed on 1 December 2024). A high prevalence of *Campylobacter* spp. has been reported in poultry

Academic Editors: Renfu Yin and Aleksandar Dodovski

Received: 13 December 2024 Revised: 14 January 2025 Accepted: 16 January 2025 Published: 18 January 2025

Citation: He, Y.; Dykes, G.E.; Kanrar, S.; Liu, Y.; Gunther, N.W., IV; Counihan, K.L.; Lee, J.; Capobianco, J.A. Comparative Genomic Analysis of *Campylobacter* Plasmids Identified in Food Isolates. *Microorganisms* 2025, *13*, 206. https://doi.org/10.3390/ microorganisms13010206

Copyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/ licenses/by/4.0/). and other meat products. Consumption of undercooked meat or cross-contaminated food is considered the primary cause of *Campylobacter* infection in humans [1,2].

Campylobacter spp. carry and transmit mobile genetic elements such as plasmids, phages, and transposons, facilitating the transfer of genetic information between different strains and species. Plasmids in *Campylobacter* often harbor antibiotic resistance genes, such as the pTet plasmid containing *tetO*, which encodes a ribosomal protection protein which prevents tetracyline from binding to ribosomes, thereby conferring tetracycline resistance in bacteria. Moreover, the *aph*(3')-III gene encodes aminoglycoside-phosphotransferase, which confers resistance to aminoglycoside antibiotics such as kanamycin and streptomycin. Both *tetO* and *aph*(3')-III have been identified in plasmids and chromosomes in *Campylobacter*. The spread of *tetO* and *aph*(3')-III can be facilitated by plasmid transfer or transposon integration into other strains [3].

Many *Campylobacter* plasmids, including pVir, contain virulence-associated genes that enhance bacterial invasion, colonization, and survival in host cells [4]. The type IV secretion system (T4SS) is a common plasmid-born virulence factor consisting of a diverse set of genes within the *virB* and *virD* operons, encoding VirD4, VirB2, VirB4, VirB5, VirB6, VirB7, VirB8, VirB9, VirB10, VirB11, VirB12, TraG, IcmF, and Imp-like proteins. The T4SS facilitates the self-transfer of conjugative plasmids from donor to recipient cells and contributes to bacterial pathogenicity by delivering effector molecules across bacterial membranes into host cells [5].

Another important virulence factor located in plasmids or pathogenicity islands integrated into chromosomes is the type VI secretion system (T6SS). The gene cluster encoding the T6SS consists of at least 13 core components (TssA-TssM, Hcp, and VgrG) and forms a contractile T4 bacteriophage tail-like transmembrane structure. The T6SS facilitates host–pathogen interactions, delivers effector proteins to target or host cells, and induces cytotoxicity in red blood cells [6]. A recent study reported that 24.8% of *Campylobacter* genomes contain a T6SS [4].

In addition to virulence and antibiotic resistance genes, *Campylobacter* plasmids carry self-maintenance genes for replication, conjugation, mobilization, and adaptation. Through plasmid-mediated horizontal gene transfer (HGT), genetic determinants of resistance and virulence can spread to other strains or species, leading to the emergence of new pathogenic strains. Moreover, plasmid conjugation and self-mobilization between bacterial populations increase genetic diversity and adaptability in *Campylobacter*, promoting the pathogens' survival in various environmental conditions and thus making intervention and control more challenging [7,8].

Considering that multiple plasmids can co-exist in the same strain but differ in their ability to conjugate or be mobilized between strains/species, it is important to investigate how plasmids differ in their genetic content. In addition, since poultry and meat products are the main reservoirs for *Campylobacter*, it is important to determine if *Campylobacter* strains from different food companies or isolation sources carry the same virulence and antibiotic resistance genes. A previous work characterized *Campylobacter* plasmids from retail meats; however, in that study, strainss were primarily isolated in Tulsa, Oklahoma, USA [9]. It is currently unknown if similar plasmid profiles exist in other areas of the United States, such as in the Mid-Atlantic region. Understanding how these mobile genetic elements circulate in *Campylobacter* populations in food clarifies the impact of plasmids on the dissemination and persistence of antibiotic resistance and virulence [8].

In this study, we applied long-read and short-read genome sequencing techniques to identify new plasmids in *Campylobacter* food isolates, compare the genetic relatedness and diversity of the plasmids, and predict their functions. The potential transfer of virulence and antibiotic resistance genes between strains and species was inferred from the phylogeny and

pangenomic analysis of the plasmids. The results of this study enhance our understanding of how the pathogens develop and spread resistance and virulence traits and adapt to different environments, thereby assisting in the development of effective strategies to control their spread.

2. Materials and Methods

2.1. Sample Preparation

Each Campylobacter strain was isolated from an independent package of chicken meat, chicken liver, or beef liver acquired from local retailers or poultry processing plants in the Mid-Atlantic area in the USA from 2011 to 2023, using previously established methods [10]. Briefly, 450 g meat or liver was massaged with 250 mL buffered peptone water (BPW, Bio-Rad Laboratories Inc., Hercules, CA, USA) in a filtered stomacher bag. The liquid from the filtered side of the stomacher bag was collected and centrifuged (10,000 \times g for 10 min). Following centrifugation, the supernatant was discarded, and the pellet was resuspended and enriched in Bolton broth (Remel Inc., Lenexa, KS, USA) with horse blood and selective supplements (cefoperazone, trimethoprim, vancomycin, and cycloheximide) under microaerobic conditions (5% O_2 , 10% CO_2 , and 85% N_2) at 42 °C for 24 hrs. Due to the high motility of *Campylobacter* spp., passive filtration of the enrichment onto Brucella agar (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) was used for strain isolation. The enrichment culture (20 μ L) was spotted on a 0.45 μ m cellulose acetate filter on top of a Brucella agar plate. The filter and drop of enrichment culture were allowed to rest for 15 min (to provide sufficient time for mobile *Campylobacter* spp. to traverse the filter); then, the filter was removed, and the Brucella plate was incubated under microaerobic conditions at 42 °C for 24 h. After re-streaking for purified colonies, the genus and species of the isolates were determined by the multiplex quantitative polymerase chain reaction (qPCR) assay previously developed for the identification and differentiation of C. jejuni and C. coli [11]. Purified colonies were stored in DMSO stock at -80 °C following purification and re-cultured on Brucella agar plates and, finally, liquid Brucella media prior to sequencing, resulting in no more than two transfers of purified colonies prior to sequencing or phenotypic assays.

2.2. Genome Sequencing, Assembly, and Plasmid Identification

Genomic DNA was extracted using the Qiagen genomic tip 100/G kit (Valencia, CA, USA) and quantified with a Qubit 3.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA), following the manufacturers' instructions. Whole genomes were sequenced using Illumina MiSeq (San Diego, CA, USA), Pacific Biosciences (PacBio, Menlo Park, CA, USA) RSII, and/or PacBio Sequel. In addition, several *Campylobacter* genomes previously assembled [12] using PacBio long reads with Canu v2.2 [13] were incorporated. Initial assembly was performed using PacBio data with the arguments 'corMhapSensitivity = high', 'corMinCoverage = 100', and 'genomeSize = 1.83 m'. In some cases where a chromosome size contig was not assembled, a less stringent minimum coverage parameter, 'corMinCoverage = 0', was used. Following assembly, contig overhangs were trimmed, and the contigs were reoriented using Circlator v1.5.5 [14].

In some instances where reorientation and trimming failed, sequencing errors in the assembled contigs were corrected using Illumina MiSeq reads. First, MiSeq reads were mapped to Canu assembled contigs using BWA v0.7.17-r1188 [15]. Then, errors were corrected using Pilon v1.22 [16] with the parameters "--fix all" and "--mindepth 0.5". Pilon correction was repeated until no errors were reported. Finally, the contigs were trimmed and reoriented using Circlator v1.5.5.

For each strain, the contig closest in size to previously sequenced *Campylobacter* chromosomes (~1.6–1.8 Mbp) was annotated using RAST [17,18] to ensure that the origin was set to *dnaA*; three copies of rRNA subunits (23S, 16S, and 5S rRNA) and minimal repeats were present in the chromosome. Smaller contigs were examined for the potential presence of plasmids.

To search for plasmids in whole-genome sequences, all small contigs (<1 Mbp) assembled from Illumina MiSeq reads with SPAdes v3.14.0 [19] using the '--plasmid' argument and PacBio reads assembled with Canu v2.2 were queried with BLAST [20] for nucleotide similarity to known plasmids in GenBank (www.ncbi.nlm.nih.gov/genbank/). Small contigs were considered plasmid candidates if most of the top BLAST hits aligned to plasmid DNA. Overhang on potential plasmids was trimmed using BLAST+ v2.9.0 [21] and samtools v1.10 [22] or Circlator v1.5.5 [14]. Next, potential plasmids were reoriented with Circlator v1.5.5 using the fix-start function [14]. Finally, for each strain, the potential plasmids were aligned to the chromosome and each other using MegAlign ProTM ("MegAlign Pro", n.d., Madison, WI, USA) [23] to ensure that the final plasmids of a strain were not redundant sequences (Figure 1). This pipeline verified the integrity of the putative plasmids by ensuring that the top BLAST hits for each plasmid were other plasmid sequences (rather than chromosomal DNA) and by aligning plasmids to each other within a strain to avoid redundant sequences. Furthermore, we ran Circulator to trim overhang, which indicates that the plasmid was intact and not a fragment of a larger plasmid. Small plasmids were further verified by agarose gel electrophoresis.

Figure 1. Schematic representation of the plasmid assembly workflow.

2.3. Plasmid Pangenome and Phylogeny

To determine which genes were shared among multiple plasmids, we constructed a *Campylobacter* plasmid 'pangenome' with OrthoMCL v0.0.8 [24] using RAST-tk annotations [25] on the KBase Server [26]. In addition to the newly assembled plasmids reported here, we also incorporated previously published plasmids from our laboratory and reference plasmids from GenBank (Table 1). Heatmaps depicting gene presence/absence and the number of shared genes among plasmids were generated in R v4.4.0 [27] using ggplot2 and viridis [28,29]. To investigate the relatedness of different plasmid clusters, we constructed reference sequence-based alignment phylogenetic trees using the REALPHY web

server [30]. Reference sequences are listed in Table 1. Where there were multiple references in a cluster, we merged the final alignments. The small plasmids had higher sequence variation than the other plasmid clusters; therefore, the small plasmid phylogenetic trees were built with RAXML-NG [31] using multiple-sequence alignment from Muscle [32] in MegAlign ("MegAlign Pro", n.d., Madison, WI, USA). Trees were visualized and annotated using Iroki [33].

To understand the replicon types and mobility of the plasmids, we characterized all plasmids with the mob-typer tool in the mob-suite v3.1.9 [34,35].

C. $jejuni$ YH001Veal liverspCJP001-146,52429.74CP173351This workC. $jejuni$ YH001Veal liverspCJP001-2435430.57CP173352This workC. $jejuni$ YH016Calf liverspCJP01629,73628.21CP157938This workC. $jejuni$ YH018Calf liverspCJP018-146,52429.74CP172373This workC. $jejuni$ YH018Calf liverspCJP018-2436630.85CP172374This workC. $jejuni$ YH019Beef liverspCJP019-230.01128.18CP172370This workC. $jejuni$ YH019Beef liverspCJP019-230.01128.18CP172370This workC. $jejuni$ YH019Beef liverspCJP019-3436730.82CP172370This workC. $jejuni$ YH020Veal liverspCJP024-145.03429.55CP172367This workC. $jejuni$ YH024Calf liverspCJP024-1436630.85CP172357This workC. $jejuni$ YH025Calf liverspCJP024436630.85CP172357This workC. $jejuni$ YH026Calf liverspCJP02746,51529.72CP172353This workC. $jejuni$ YH027Calf liverspCJP02746,51529.72CP172357This workC. $jejuni$ YH029Beef liverspCJP02746,51529.72CP172357This workC. $jejuni$ YH029Calf liverspCJS010 (pCJS36)86,82726.03CP172357This work
C. $iejuni$ YH001Veal liverspCJP001-2435430.57CP173352This workC. $iejuni$ YH016Calf liverspCJP01629,73628.21CP157938This workC. $iejuni$ YH016Calf liverspCJP018-146,52429,74CP172373This workC. $iejuni$ YH018Calf liverspCJP018-2436630.85CP172374This workC. $iejuni$ YH019Beef liverspCJP019-146,27528.99CP172369This workC. $iejuni$ YH019Beef liverspCJP019-230,01128.18CP172371This workC. $iejuni$ YH019Beef liverspCJP019-3436730.82CP172371This workC. $iejuni$ YH019Beef liverspCJP0204-145,03429.55CP172357This workC. $iejuni$ YH024Calf liverspCJP02541,59428.51CP172357This workC. $iejuni$ YH025Calf liverspCJP02746,51529.72CP172357This workC. $iejuni$ YH026Calf liverspCJP02746,51529.72CP172357This workC. $iejuni$ YH027Calf liverspCJP02746,51529.72CP172357This workC. $iejuni$ YH028Calf liverspCJP02746,51529.72CP172357This workC. $iejuni$ YH029Beef liverspCJP02746,51529.72CP172357This workC. $iejuni$ YH029Beef liverspCJS010 (pCJS33)40,68628.49CP131443[37]
C. jejuni YH002Calf liverspCJP002 $45,904$ 29.20 CP020775[36]C. jejuni YH016Calf liverspCJP016 $29,736$ 28.21 CP157938This workC. jejuni YH018Calf liverspCJP018-2 4366 30.85 CP172374This workC. jejuni YH019Beef liverspCJP019-1 $46,275$ 28.99 CP172370This workC. jejuni YH019Beef liverspCJP019-2 $30,011$ 28.18 CP172371This workC. jejuni YH019Beef liverspCJP019-3 4367 30.82 CP172371This workC. jejuni YH020Veal liverspCJP020 $37,426$ 27.78 CP172367This workC. jejuni YH024Calf liverspCJP024-1 $45,034$ 29.55 CP172357This workC. jejuni YH024Calf liverspCJP025 $41,594$ 28.51 CP172357This workC. jejuni YH025Calf liverspCJP026 $44,973$ 29.12 CP172357This workC. jejuni YH027Calf liverspCJP025 $41,594$ 28.51 CP172357This workC. jejuni YH029Beef liverspCJP029 $16,920$ 28.27 CP172350This workC. jejuni YH029Calf liverspCJS010 (pCJS33) $40,666$ 28.49 CP131441[37]C. jejuni YH014Chicken thighspCJS011 (pCJS33) $40,660$ 28.64 CP172365This workC. jejuni YH014Chicken thighspCJS021 $43,177$ 28.66 <t< td=""></t<>
C. jejuni YH016Calf liverspCJP01629,73628,21CP157938This workC. jejuni YH018Calf liverspCJP018-146,62429,74CP172373This workC. jejuni YH019Beef liverspCJP019-146,27528,99CP172369This workC. jejuni YH019Beef liverspCJP019-230,01128,18CP172371This workC. jejuni YH019Beef liverspCJP019-3436730.82CP172371This workC. jejuni YH020Veal liverspCJP02037,42627.78CP172367This workC. jejuni YH024Calf liverspCJP024-145,03429.55CP172357This workC. jejuni YH025Calf liverspCJP02641,97329.12CP172357This workC. jejuni YH026Calf liverspCJP02746,51529.72CP172353This workC. jejuni YH027Calf liverspCJP02746,51529.72CP172350This workC. jejuni YH029Beef liverspCJP01910,6253040,68628.49CP131443[37]C. jejuni YH010Chicken thighspCJS011 (pCJS36)86,82726.03CP172378This workC. jejuni YH014Chicken thighspCJS01143,60029.00CP172378This workC. jejuni YH014Chicken thighspCJS02143,66028.64CP172363This workC. jejuni YH020Chicken drumstickspCOS03-2540132.85CP172363This work
C. jejuni YH018Calf liverspCJP018-1 $46,524$ $29,74$ CP172373This workC. jejuni YH019Beef liverspCJP018-2 4366 30.85 CP172374This workC. jejuni YH019Beef liverspCJP019-1 $46,275$ $28,99$ CP172370This workC. jejuni YH019Beef liverspCJP019-2 $30,011$ $28,18$ CP172370This workC. jejuni YH019Beef liverspCJP019-3 4367 30.82 CP172371This workC. jejuni YH020Veal liverspCJP024-1 $45,034$ $29,55$ CP172367This workC. jejuni YH024Calf liverspCJP024-1 $45,034$ $29,55$ CP172360This workC. jejuni YH025Calf liverspCJP024-2 4366 30.85 CP172360This workC. jejuni YH026Calf liverspCJP025 $41,973$ $29,12$ CP172357This workC. jejuni YH026Calf liverspCJP027 $46,515$ $29,72$ CP172350This workC. jejuni YH027Calf liverspCJP0293 $40,686$ 28.49 CP131443[37]C. jejuni (S3GCJ) YH010Chicken thighspCJS011 (pCJS36) $86,827$ 26.03 CP131441[37]C. jejuni YH012Chicken thighspCJS012 $43,177$ $28,96$ CP172378This workC. jejuni YH014Chicken thighspCJS022 $48,862$ 28.64 CP172363This workC. jejuni YH012Chicken thighspCJS022 $48,862$ $28.$
C. jejuni YH018Calf liverspCJP018-2436630.85CP172374This workC. jejuni YH019Beef liverspCJP019-146,27528.99CP172369This workC. jejuni YH019Beef liverspCJP019-3436730.82CP172371This workC. jejuni YH019Beef liverspCJP019-3436730.82CP172367This workC. jejuni YH020Veal liverspCJP02037,42627.78CP172357This workC. jejuni YH024Calf liverspCJP024-1436630.85CP172357This workC. jejuni YH024Calf liverspCJP02541,59428.51CP172357This workC. jejuni YH025Calf liverspCJP02644,97329.12CP172355This workC. jejuni YH026Calf liverspCJP02916,92028.27CP172350This workC. jejuni YH029Beef liverspCJS010 (pCJS33)40,68628.49CP131443[37]C. jejuni YH010Chicken thighspCJS011 (pCJS36)86,82726.03CP131441[37]C. jejuni YH014Chicken liverspCJS014-147,46830.28CP172373This workC. jejuni YH021Chicken thighspCJS02248,86228.64CP172373This workC. jejuni YH021Chicken drumstickspCOS503-1108,45326.15CP025828[12]C. coli YH503Chicken drumstickspCOS503-2540132.85CP172353This workC.
C. jejuni YH019Beef liverspCJP019-146,27528.99CP172369This workC. jejuni YH019Beef liverspCJP019-230,01128.18CP172370This workC. jejuni YH019Beef liverspCJP02037,42627.78CP172371This workC. jejuni YH020Veal liverspCJP02037,42627.78CP172359This workC. jejuni YH024Calf liverspCJP024-2436630.85CP172350This workC. jejuni YH024Calf liverspCJP02641,97329.12CP172357This workC. jejuni YH026Calf liverspCJP02644,97329.12CP172357This workC. jejuni YH026Calf liverspCJP02746,51529.72CP172350This workC. jejuni YH027Calf liverspCJP02916,92028.27CP172350This workC. jejuni (S3GCj) YH010Chicken thighspCJS010 (pCjS33)40,68628.49CP131443[37]C. jejuni YH014Chicken liverspCJS012143,66029.00CP172378This workC. jejuni YH014Chicken liverspCJS012143,66029.00CP172365This workC. jejuni YH022Chicken drumstickspCOS502125,96428.11CP172365This workC. jejuni YH021Chicken drumstickspCOS503-2540132.85CP172353This workC. jejuni YH022Chicken drumstickspCOS503-2540132.85CP172353This work
C. jejuni YH019Beef liverspCJP019-2 $30,011$ 28.18 CP172370This workC. jejuni YH019Beef liverspCJP019-3 4367 30.82 CP172371This workC. jejuni YH020Veal liverspCJP020 $37,426$ 27.78 CP172367This workC. jejuni YH024Calf liverspCJP024-1 $45,034$ 29.55 CP172359This workC. jejuni YH024Calf liverspCJP024-2 4366 30.85 CP172360This workC. jejuni YH025Calf liverspCJP025 $41,594$ 28.51 CP172355This workC. jejuni YH026Calf liverspCJP027 $46,515$ 29.72 CP172353This workC. jejuni YH027Calf liverspCJP029 $16,920$ 28.27 CP172350This workC. jejuni YH029Beef liverspCJS011 (pCJS36) 86.827 26.03 CP131443[37]C. jejuni YH010Chicken thighspCJS014-1 $47,468$ 30.28 CP172377This workC. jejuni YH014Chicken liverspCJS021 $43,177$ 28.96 CP172363This workC. jejuni YH020Chicken drumstickspCOS502 $125,964$ 28.11 CP018901[38]C. coli YH503Chicken drumstickspCOS503-2 5401 32.85 CP173353This workC. jejuni YH034Chicken drumstickspCOS504-2 5401 32.85 CP173354This workC. jejuni YH036Chicken drumstickspCOS507-3 $29,068$
C. jejuni YH019Beef liverspCJP019-3436730.82CP172371This workC. jejuni YH020Veal liverspCJP020 $37,426$ $27,78$ CP172367This workC. jejuni YH024Calf liverspCJP024-1 $45,034$ $29,55$ CP172350This workC. jejuni YH024Calf liverspCJP024-2 4366 30.85 CP172357This workC. jejuni YH025Calf liverspCJP025 $41,594$ $28,51$ CP172355This workC. jejuni YH026Calf liverspCJP027 $46,515$ $29,72$ CP172355This workC. jejuni YH027Calf liverspCJP029 $16,920$ 28.27 CP172350This workC. jejuni (S36Cj) YH010Chicken thighspCJS010 (pCJS33) $40,686$ 28.49 CP131443[37]C. jejuni (S36Cj) YH011Chicken thighspCJS011 (pCJS36) $86,827$ 26.03 CP172377This workC. jejuni YH014Chicken thighspCJS021 $43,177$ 28.96 CP172365This workC. jejuni YH012Chicken liverspCJS022 $43,862$ 28.64 CP172365This workC. jejuni YH021Chicken thighspCJS021 $43,177$ 28.96 CP172365This workC. jejuni YH022Chicken drumstickspCOS502 $125,964$ 28.11 CP018901[38]C. coli YH503Chicken drumstickspCOS503-2 5401 32.85 CP173354This workC. jejuni YH024Chicken drumstickspCOS504
C. jejuni YH020Veal liverspCJP020 $37,426$ 27.78 CP172367This workC. jejuni YH024Calf liverspCJP024-1 $45,034$ $29,55$ CP172359This workC. jejuni YH024Calf liverspCJP025 $41,594$ $28,51$ CP172357This workC. jejuni YH025Calf liverspCJP026 $44,973$ $29,12$ CP172357This workC. jejuni YH026Calf liverspCJP026 $44,973$ $29,12$ CP172353This workC. jejuni YH027Calf liverspCJP027 $46,515$ 29.72 CP172350This workC. jejuni YH029Beef liverspCJP029 $16,920$ 28.27 CP172350This workC. jejuni (S36Cj) YH010Chicken thighspCJS010 (pCjS33) $40,686$ 28.49 CP131443[37]C. jejuni YH014Chicken thighspCJS011 (pCjS36) $86,827$ 26.03 CP172377This workC. jejuni YH014Chicken liverspCJS014-2 $43,660$ 29.00 CP172373This workC. jejuni YH014Chicken liverspCJS021 $43,177$ 28.96 CP172363This workC. jejuni YH022Chicken drumstickspCOS502 $125,964$ 28.11 CP018901[38]C. coli YH503Chicken drumstickspCOS503-1 $108,453$ 26.15 CP12333This workC. jejuni YH014Chicken drumstickspCOS503-25401 32.85 CP173354This workC. coli YH503Chicken drumstickspCOS504-2<
C. jejuni YH024Calf liverspCJP024-1 $45,034$ $29,55$ CP172359This workC. jejuni YH024Calf liverspCJP024-2 4366 30.85 CP172360This workC. jejuni YH025Calf liverspCJP026 $41,594$ 28.51 CP172357This workC. jejuni YH026Calf liverspCJP026 $44,973$ 29.12 CP172357This workC. jejuni YH027Calf liverspCJP027 $46,515$ 29.72 CP172353This workC. jejuni YH029Beef liverspCJP029 $16,920$ 28.27 CP172350This workC. jejuni (S33Cj) YH010Chicken thighspCJS010 (pCJS33) $40,686$ 28.49 CP131443[37]C. jejuni (S36Cj) YH010Chicken thighspCJS0114 $47,468$ 30.28 CP172377This workC. jejuni YH014Chicken liverspCJS014-1 $47,468$ 30.28 CP172363This workC. jejuni YH021Chicken breastspCJS012 $43,177$ 28.96 CP172363This workC. jejuni YH022Chicken drumstickspCOS503-1 $108,453$ 26.15CP025282[12]C. coli YH503Chicken drumstickspCOS503-25401 32.85 CP173353This workC. coli YH504Chicken drumstickspCOS503-25401 32.85 CP173353This workC. coli YH504Chicken drumstickspCOS504110,35726.02CP091645[12]C. coli YH507Chicken drumstickspCOS507-2
C. jejuni YH024 Calf livers pCJP024-2 4366 30.85 CP172360 This work C. jejuni YH025 Calf livers pCJP025 41,594 28.51 CP172357 This work C. jejuni YH026 Calf livers pCJP026 44,973 29.12 CP172355 This work C. jejuni YH027 Calf livers pCJP027 46,515 29.72 CP172350 This work C. jejuni YH029 Beef livers pCJP029 16,920 28.27 CP172350 This work C. jejuni (S36Cj) YH010 Chicken thighs pCJS010 (pCjS33) 40,686 28.49 CP131443 [37] C. jejuni YH014 Chicken thighs pCJS011 (pCjS36) 86,827 26.03 CP172377 This work C. jejuni YH014 Chicken livers pCJS014-1 47,468 30.28 CP172365 This work C. jejuni YH021 Chicken drumsticks pCJS021 43,177 28.96 CP172363 This work C. jejuni YH022 Chicken drumsticks pCOS503-1 108,453 26.15
C. jejuni YH025Calf liverspCJP02541,59428.51CP172357This workC. jejuni YH026Calf liverspCJP02644,97329.12CP172355This workC. jejuni YH027Calf liverspCJP02746,51529.72CP172353This workC. jejuni YH029Beef liverspCJP02916,92028.27CP172350This workC. jejuni (S33Cj) YH010Chicken thighspCJS010 (pCJS33)40,68628.49CP131443[37]C. jejuni (S36Cj) YH011Chicken thighspCJS011 (pCJS36)86,82726.03CP131441[37]C. jejuni YH014Chicken liverspCJS014-147,46830.28CP172377This workC. jejuni YH014Chicken breastspCJS02143,17728.96CP172365This workC. jejuni YH022Chicken drumstickspCOS502125,96428.11CP018901[38]C. coli YH503Chicken drumstickspCOS503-2540132.85CP173353This workC. coli YH503Chicken drumstickspCOS504110,35726.02CP091645[12]C. coli YH504Chicken drumstickspCOS504-2540132.85CP173354This workC. coli YH507Chicken drumstickspCOS507-1150,43427.53CP172393This workC. coli YH507Chicken drumstickspCOS507-237,22425.96CP172394This workC. coli YH507Chicken liverspCOS507-329,06829.33CP17239
C. jejuni YH026 Calf livers pCJP026 44,973 29.12 CP172355 This work C. jejuni YH027 Calf livers pCJP027 46,515 29.72 CP172353 This work C. jejuni YH029 Beef livers pCJP029 16,920 28.27 CP172350 This work C. jejuni (S33Cj) YH010 Chicken thighs pCJS010 (pCjS33) 40,686 28.49 CP131443 [37] C. jejuni (S36Cj) YH011 Chicken thighs pCJS011 (pCjS36) 86,827 26.03 CP131441 [37] C. jejuni YH014 Chicken livers pCJS014-1 47,468 30.28 CP172377 This work C. jejuni YH014 Chicken livers pCJS012 43,177 28.96 CP172365 This work C. jejuni YH022 Chicken drumsticks pCJS022 48,862 28.64 CP172363 This work C. jejuni YH022 Chicken drumsticks pCOS502 125,964 28.11 CP018901 [38] C. coli YH503 Chicken drumsticks pCOS503-2 5401 32.85
C. jejuni YH027Calf liverspCJP02746,51529.72CP172353This workC. jejuni YH029Beef liverspCJP02916,92028.27CP172350This workC. jejuni (S33Cj) YH010Chicken thighspCJS010 (pCJS33)40,68628.49CP131443[37]C. jejuni (S36Cj) YH011Chicken thighspCJS011 (pCJS36)86,82726.03CP172377This workC. jejuni YH014Chicken liverspCJS014-147,46830.28CP172378This workC. jejuni YH014Chicken liverspCJS014-243,66029.00CP172378This workC. jejuni YH021Chicken breastspCJS02143,17728.96CP172363This workC. jejuni YH022Chicken drumstickspCOS502125,96428.11CP018901[38]C. coli YH503Chicken drumstickspCOS503-1108,45326.15CP025282[12]C. coli YH504Chicken drumstickspCOS504110,35726.02CP091645[12]C. coli YH504Chicken drumstickspCOS506540230.53CP172398This workC. coli YH506Chicken wingspCOS507-1150,43427.53CP172393This workC. coli YH507Chicken liverspCOS507-237,22425.96CP172394This workC. coli YH507Chicken liverspCOS507-329,06829.33CP172388This workC. coli YH507Chicken liverspCOS507-329,06829.33CP17238
C. jejuni YH029 Beef livers pCJP029 16,920 28.27 CP172350 This work C. jejuni (S33Cj) YH010 Chicken thighs pCJS010 (pCjS33) 40,686 28.49 CP131443 [37] C. jejuni (S36Cj) YH011 Chicken thighs pCJS011 (pCjS36) 86,827 26.03 CP131441 [37] C. jejuni YH014 Chicken livers pCJS014-1 47,468 30.28 CP172377 This work C. jejuni YH014 Chicken livers pCJS014-2 43,660 29.00 CP172378 This work C. jejuni YH021 Chicken breasts pCJS022 48,862 28.64 CP172365 This work C. jejuni YH022 Chicken drumsticks pCOS502 125,964 28.11 CP018901 [38] C. coli YH503 Chicken drumsticks pCOS503-1 108,453 26.15 CP025282 [12] C. coli YH503 Chicken drumsticks pCOS504 110,357 26.02 CP091645 [12] C. coli YH504 Chicken drumsticks pCOS504-2 5401 32
C. jejuni (S33Cj) YH010Chicken thighs tigspCJS010 (pCjS33) $40,686$ 28.49 CP131443[37]C. jejuni (S36Cj) YH011Chicken thighs there in YH014Chicken thighs there in YH014pCJS011 (pCjS36) $86,827$ 26.03 CP131441[37]C. jejuni YH014Chicken livers there in YH014Chicken livers there in YH014pCJS014-1 $47,468$ 30.28 CP172377This workC. jejuni YH014Chicken livers there in YH021Chicken breasts there in YH022pCJS014-2 $43,660$ 29.00 CP172365This workC. jejuni YH022Chicken breasts there in YH502pCJS021 $43,177$ 28.96 CP172363This workC. coli YH502Chicken drumsticks there in YH503pCOS502125,964 28.11 CP018901[38]C. coli YH503Chicken drumsticks there in YH504pCOS503-25401 32.85 CP173353This workC. coli YH504Chicken drumsticks there in YH504Chicken drumsticks there in YH507pCOS5065402 30.53 CP172398This workC. coli YH507Chicken livers there in PCOS507-2 $37,224$ 25.96 CP172394This workC. coli YH507Chicken livers there in PCOS507-3 $29,068$ 29.33 CP172395This workC. coli YH507Chicken livers there in PCOS501-1 $117,204$ 28.20 CP172388This work
C. jejuni (S36Cj) YH011 Chicken thighs pCJS011 (pCjS36) 86,827 26.03 CP131441 [37] C. jejuni YH014 Chicken livers pCJS014-1 47,468 30.28 CP172377 This work C. jejuni YH014 Chicken livers pCJS014-2 43,660 29.00 CP172378 This work C. jejuni YH021 Chicken breasts pCJS021 43,177 28.96 CP172365 This work C. jejuni YH022 Chicken thighs pCJS022 48,862 28.64 CP172363 This work C. coli YH502 Chicken drumsticks pCOS502 125,964 28.11 CP018901 [38] C. coli YH503 Chicken drumsticks pCOS503-1 108,453 26.15 CP025282 [12] C. coli YH503 Chicken drumsticks pCOS504 110,357 26.02 CP091645 [12] C. coli YH504 Chicken drumsticks pCOS506 5402 30.53 CP172398 This work C. coli YH506 Chicken livers pCOS507-1 150,434 27.53 CP172393 This work C. coli YH507 Chicken livers
C. jejuni YH014 Chicken livers pCJS014-1 47,468 30.28 CP172377 This work C. jejuni YH014 Chicken livers pCJS014-2 43,660 29.00 CP172378 This work C. jejuni YH021 Chicken breasts pCJS021 43,177 28.96 CP172365 This work C. jejuni YH022 Chicken thighs pCJS022 48,862 28.64 CP172363 This work C. coli YH502 Chicken drumsticks pCOS502 125,964 28.11 CP018901 [38] C. coli YH503 Chicken drumsticks pCOS503-1 108,453 26.15 CP025282 [12] C. coli YH503 Chicken drumsticks pCOS503-2 5401 32.85 CP173353 This work C. coli YH504 Chicken drumsticks pCOS504-2 5401 32.85 CP173354 This work C. coli YH504 Chicken drumsticks pCOS507-1 150,434 27.53 CP172398 This work C. coli YH506 Chicken livers pCOS507-2 37,224 25.96 CP172394 This work C. coli YH507 Chicken livers
C. jejuni YH014Chicken liverspCJS014-243,66029.00CP172378This workC. jejuni YH021Chicken breastspCJS02143,17728.96CP172365This workC. jejuni YH022Chicken thighspCJS02248,86228.64CP172363This workC. coli YH502Chicken drumstickspCOS502125,96428.11CP018901[38]C. coli YH503Chicken drumstickspCOS503-1108,45326.15CP025282[12]C. coli YH503Chicken drumstickspCOS503-2540132.85CP173353This workC. coli YH504Chicken drumstickspCOS504-2540132.85CP173354This workC. coli YH504Chicken drumstickspCOS506540230.53CP172398This workC. coli YH506Chicken liverspCOS507-1150,43427.53CP172393This workC. coli YH507Chicken liverspCOS507-237,22425.96CP172394This workC. coli YH507Chicken liverspCOS507-329,06829.33CP172395This workC. coli YH500Chicken liverspCOS507-1117,20428.20CP172388This work
C. jejuni YH021 Chicken breasts pCJS021 43,177 28.96 CP172365 This work C. jejuni YH022 Chicken thighs pCJS022 48,862 28.64 CP172363 This work C. coli YH502 Chicken drumsticks pCOS502 125,964 28.11 CP018901 [38] C. coli YH503 Chicken drumsticks pCOS503-1 108,453 26.15 CP025282 [12] C. coli YH503 Chicken drumsticks pCOS503-2 5401 32.85 CP173353 This work C. coli YH504 Chicken drumsticks pCOS504 110,357 26.02 CP091645 [12] C. coli YH504 Chicken drumsticks pCOS504-2 5401 32.85 CP173354 This work C. coli YH504 Chicken drumsticks pCOS506 5402 30.53 CP172398 This work C. coli YH507 Chicken livers pCOS507-2 37,224 25.96 CP172394 This work C. coli YH507 Chicken livers pCOS507-3 29,068 29.33 CP17
C. jejuni YH022 Chicken thighs pCJS022 48,862 28.64 CP172363 This work C. coli YH502 Chicken drumsticks pCOS502 125,964 28.11 CP018901 [38] C. coli YH503 Chicken drumsticks pCOS503-1 108,453 26.15 CP025282 [12] C. coli YH503 Chicken drumsticks pCOS503-2 5401 32.85 CP173353 This work C. coli YH504 Chicken drumsticks pCOS504 110,357 26.02 CP091645 [12] C. coli YH504 Chicken drumsticks pCOS504-2 5401 32.85 CP173354 This work C. coli YH504 Chicken drumsticks pCOS506 5402 30.53 CP172398 This work C. coli YH506 Chicken livers pCOS507-1 150,434 27.53 CP172393 This work C. coli YH507 Chicken livers pCOS507-2 37,224 25.96 CP172394 This work C. coli YH507 Chicken livers pCOS507-3 29,068 29.33 CP17
C. coli YH502Chicken drumstickspCOS502125,96428.11CP018901[38]C. coli YH503Chicken drumstickspCOS503-1108,45326.15CP025282[12]C. coli YH503Chicken drumstickspCOS503-2540132.85CP173353This workC. coli YH504Chicken drumstickspCOS504110,35726.02CP091645[12]C. coli YH504Chicken drumstickspCOS504-2540132.85CP173354This workC. coli YH504Chicken drumstickspCOS506540230.53CP172398This workC. coli YH506Chicken liverspCOS507-1150,43427.53CP172393This workC. coli YH507Chicken liverspCOS507-237,22425.96CP172394This workC. coli YH507Chicken liverspCOS507-329,06829.33CP172395This workC. coli YH510Chicken liverspCOS510-1117,20428.20CP172388This work
C. coli YH503 Chicken drumsticks pCOS503-1 108,453 26.15 CP025282 [12] C. coli YH503 Chicken drumsticks pCOS503-2 5401 32.85 CP173353 This work C. coli YH504 Chicken drumsticks pCOS504-2 5401 32.85 CP173354 This work C. coli YH504 Chicken drumsticks pCOS504-2 5401 32.85 CP173354 This work C. coli YH504 Chicken drumsticks pCOS504-2 5401 32.85 CP173354 This work C. coli YH506 Chicken drumsticks pCOS506 5402 30.53 CP172398 This work C. coli YH507 Chicken livers pCOS507-1 150,434 27.53 CP172393 This work C. coli YH507 Chicken livers pCOS507-2 37,224 25.96 CP172394 This work C. coli YH507 Chicken livers pCOS507-3 29,068 29.33 CP172395 This work C. coli YH510 Chicken livers pCOS510-1 117,204 28.20
C. coli YH503 Chicken drumsticks pCOS503-2 5401 32.85 CP173353 This work C. coli YH504 Chicken drumsticks pCOS504 110,357 26.02 CP091645 [12] C. coli YH504 Chicken drumsticks pCOS504-2 5401 32.85 CP173354 This work C. coli YH504 Chicken drumsticks pCOS506 5402 30.53 CP172398 This work C. coli YH506 Chicken livers pCOS507-1 150,434 27.53 CP172393 This work C. coli YH507 Chicken livers pCOS507-2 37,224 25.96 CP172394 This work C. coli YH507 Chicken livers pCOS507-3 29,068 29.33 CP172395 This work C. coli YH510 Chicken livers pCOS510-1 117,204 28.20 CP172388 This work
C. coli YH504 Chicken drumsticks pCOS504 110,357 26.02 CP091645 [12] C. coli YH504 Chicken drumsticks pCOS504-2 5401 32.85 CP173354 This work C. coli YH506 Chicken wings pCOS506 5402 30.53 CP172398 This work C. coli YH507 Chicken livers pCOS507-1 150,434 27.53 CP172393 This work C. coli YH507 Chicken livers pCOS507-2 37,224 25.96 CP172394 This work C. coli YH507 Chicken livers pCOS507-3 29,068 29.33 CP172395 This work C. coli YH510 Chicken livers pCOS510-1 117,204 28.20 CP172388 This work
C. coli YH504 Chicken drumsticks pCOS504-2 5401 32.85 CP173354 This work C. coli YH506 Chicken wings pCOS506 5402 30.53 CP172398 This work C. coli YH507 Chicken livers pCOS507-1 150,434 27.53 CP172393 This work C. coli YH507 Chicken livers pCOS507-2 37,224 25.96 CP172394 This work C. coli YH507 Chicken livers pCOS507-3 29,068 29.33 CP172395 This work C. coli YH510 Chicken livers pCOS507-1 117,204 28.20 CP172388 This work
C. coli YH506 Chicken wings pCOS506 5402 30.53 CP172398 This work C. coli YH507 Chicken livers pCOS507-1 150,434 27.53 CP172393 This work C. coli YH507 Chicken livers pCOS507-2 37,224 25.96 CP172394 This work C. coli YH507 Chicken livers pCOS507-3 29,068 29.33 CP172395 This work C. coli YH500 Chicken livers pCOS510-1 117,204 28.20 CP172388 This work
C. coli YH507 Chicken livers pCOS507-1 150,434 27.53 CP172393 This work C. coli YH507 Chicken livers pCOS507-2 37,224 25.96 CP172394 This work C. coli YH507 Chicken livers pCOS507-3 29,068 29.33 CP172395 This work C. coli YH510 Chicken livers pCOS510-1 117,204 28.20 CP172388 This work
C. coli YH507 Chicken livers pCOS507-2 37,224 25.96 CP172394 This work C. coli YH507 Chicken livers pCOS507-3 29,068 29.33 CP172395 This work C. coli YH510 Chicken livers pCOS510-1 117,204 28.20 CP172388 This work
C. coli YH507 Chicken livers pCOS507-3 29,068 29.33 CP172395 This work C. coli YH510 Chicken livers pCOS510-1 117,204 28.20 CP172388 This work
C. coli YH510 Chicken livers pCOS510-1 117,204 28.20 CP172388 This work
<i>C. coli</i> YH510 Chicken livers pCOS510-2 38,174 25.80 CP172389 This work
<i>C. coli</i> YH511 Chicken livers pCOS511 30,429 27.88 CP172386 This work
<i>C. jejuni</i> RM1246-ERRC Human pRM1246_ERRC 45,197 29.14 CP022471 [39]
<i>C. jejuni</i> RM3194 Human pRM3194 81,079 25.99 CP014345 [40]
<i>C. jejuni</i> 81-176 Human pTet * 45,025 29.09 CP000549 N/A
<i>C. jejuni</i> 81-176 Human pVir * 37,473 25.89 CP000550 N/A
C. coli CVM N17C336 Chicken breasts pN17C336-1 * 146,302 27.99 CP169431 N/A
C. coli CVM N17C264 Chicken breasts pN17C264-2 * 39,356 26.18 CP169460 N/A
C. jejuni NADC 20827 Turkey p20827S * 4366 30.83 CP045047 [41]
C. coli CC20JX12 Meat pCC20JX12-5K * 5363 31.51 CP109816 N/A
C. coli 2014D-0261 Not reported p2014D0261-1 * 52,384 28.41 CP059367 N/A
<i>C. jejuni</i> AR-0413 Not reported pAR-0413-2 * 25,131 28.47 CP044172 N/A
<i>C. jejuni</i> PNUSC002710 Not reported pNUSAC002710-2 * 28,157 28.03 CP132117 N/A
C. coli XK3140 Chicken liver pCCDM140S * 26,812 29.28 MH634990 [9]
C. jejuni RM1477 Human pRM1477 * 28,220 27.93 CP071588 [42]

Table 1. List of the plasmids identified in *C. jejuni* and *C. coli* isolates.

* Reference plasmids used for analyses. N/A indicates not applicable. These plasmids are available in GenBank, but there is no publication noted on the database entry to cite.

2.4. Tetracycline Resistance Testing

Strain resistance to tetracycline was assessed using the Clinical Laboratory Standards Institute (CLSI, 2015) broth microdilution technique with Sensititre plates (ThermoFisher Scientific, Clevland, OH, USA), as described in Ghatak et al., in 2020 [38].

3. Results and Discussion

3.1. In Silico Identification of Large and Small Plasmids in Campylobacter Food Isolates

In this study, we identified 34 new plasmids from 32 *C. jejuni* and 11 *C. coli* genomes using PacBio HiFi long-read sequencing and Illumina Miseq short-read sequencing. The de novo-assembled plasmid contigs were confirmed through a BLAST search for nucleotide similarity to known plasmids in GenBank. Plasmids were verified to ensure that there was no similarity to their chromosome or other plasmid sequences in the same strain. All plasmid-carrying strains were independent *Campylobacter* isolates from individual packages of fresh chicken meat, chicken liver, or beef liver collected from different vendors or processors between 2011 and 2023. Table 1 summarizes the host strain, source, sequence, and assembly information of the plasmids identified in *Campylobacter* food isolates.

Out of 43 *Campylobacter* isolates, 25 were found to carry 1–3 plasmids per strain. The plasmids ranged in size from 4.3 to 150.4 kb. All the mega plasmids were assembled from the long-read sequences, whereas small plasmids were identified only from short-read sequence assemblies, due to the 10 kb size cutoff during PacBio library preparation. The average %GC content of the plasmids was 28.8%, which is lower than that of host chromosomes (~30–31%). The size and GC content of the new plasmids correspond well to known *Campylobacter* plasmids in the NCBI database.

3.2. Pangenomic Analyses of the Conserved Core Genes and Diversity of the Plasmids

To determine the relatedness of the plasmids, we conducted a pangenomic analysis using OrthoMCL v0.0.8 [24]. By comparing the number of genes shared among the plasmids, we categorized the plasmids into five groups (Figure 2): mega plasmids (>80 kb), pTet (containing the *tetO* gene), mid-sized plasmids (~30 kb), pVir, and small plasmids (<6 kb). The heatmap in Figure 2 shows that the mega plasmids have the highest number of shared genes, whereas the small plasmids have the least shared genes. No genes were shared among all 46 plasmids (including references). However, 275 genes were shared between 2 and 33 plasmids (non-core genes), and 318 were present only in a single plasmid (Supplementary Table S1).

Functional annotation with RASTtk (Rapid Annotations using Subsystems Technology toolkit) predicted that plasmid genes are involved in antimicrobial resistance, virulence, and horizontal gene transfer between strains or species (Supplementary Table S2).

3.2.1. pTet

Bacterial plasmids often contain genes encoding antibiotic resistance, which can rapidly spread between different strains and species. We found that 14 out of 36 plasmids (36%, excluding references, including previously published plasmids) contained the tetracycline resistance gene *tetO*, indicating that pTet was the most prevalent type of plasmid in our *Campylobacter* food isolates, which is consistent with other reports [9,43]. In the pangenomic analysis, 16 plasmids from both *C. jejuni* and *C. coli* isolates clustered together and close to the well-studied pTet from *C. jejuni* 81-176 (Figure 3). This indicates that the pTet plasmids reported here are genetically related to each other, suggesting that pTet might be obtained through horizontal gene transfer events between different strains and species. This is supported by the core pTet genome, which contains T4SS genes and conjugative transfer genes, and the non-core genome which contains tetracycline and kanamycin resistance genes. Two plasmids,

pCJP020 and pCJP029, shared a number of genes with the rest of the pTet plasmid group but did not contain *tetO*. Although pCJP029 shared more genes with pTet group plasmids than any other groups, far fewer genes were shared between pCJP029 and pTet group plasmids than between plasmids within the pTet group.

Figure 2. Heatmap showing the number of shared genes across the plasmid pangenome: the higher the number of shared genes, the more yellow the cell; the less shared genes, the more purple the cell. Plasmid labels are shaded according to our manual clustering groups. Reference strains are indicated with a star on the y-axis.

To investigate the phylogenetic relatedness of the pTet cluster, we constructed a tree of pTet sequences aligned to the reference plasmids pTet and p2014D0261-1 (Figure 3). The plasmid pCOS507-1 (150.4 kb) was excluded from the tree because it was significantly larger than other pTet plasmids (<48.8 kb). Although pCJP020 and pCJP029 did not contain *tetO*, both were closely related to other pTet plasmids and did not cluster as an outgroup. A BLAST search confirmed that, while *tetO* was absent from the pCJP020 and pCJP029 plasmids, *tetO* was located in the chromosome. This suggests that *tetO* may have been lost from the plasmid and subsequently integrated into the chromosomes and pTet plasmids. When analyzed phylogenetically, the chromosomal *tetO* amino acid sequences clustered together

and independently from plasmid *tetO* sequences within the same strain (Supplementary Figure S1). This suggests that some *tetO* genes or plasmids could be more suited for chromosomal integration. Given the presence of *tetO* in the chromosome and plasmid in multiple strains, as well as the high proportion of pTet plasmids among the sequenced genomes, these results indicate a strong selective advantage for *tetO* maintenance and suggest frequent horizontal gene transfer events.

Figure 3. Phylogenetic tree and presence/absence chart of genes contained in pTet plasmids. In the phylogenetic tree, reference pTet plasmids are indicated with a star; plasmids that are clustered with pTet but only contain chromosomal *tetO* are highlighted in teal. Solid lines in the phylogenetic tree indicate distance between plasmids. Dotted lines are for esthetic purposes to ease in the interpretation of the figure, given the aligned tip labels. In the presence /absence chart, the presence of gene clusters in the plasmid is indicated in dark gray, while the absence of genes is indicated in white; the location on the x-axis does not indicate the location on the plasmid. The scale bar for the phylogenetic tree indicates the distance in units of nucleotide substitutions per site.

Across the pTet plasmids, several core genes (present in all 16 pTet plasmids) were involved in horizontal gene transfer and antibiotic resistance (Supplementary Table S3). Eleven out of thirty-three core gene clusters belonged to Type IV secretion systems (T4SS), including clusters encoding VirB9, VirB5, VirB10, VirB2, VirB6, VirB7, VirB8, VirD4, VirB11, VirB3, and VirB4. In addition, several annotated core genes were involved in conjugative transfer, including *traG*, *traR*, and *traQ*. One core gene was a site-specific recombinase in the resolvase family. Antibiotic resistance genes were identified as non-core genes, including *tetO*, which was present in 14 of the pTet plasmids, and *aph*(3')-III (conferring resistance to aminoglycosides), which was present in 6 of the pTet plasmids and 3 additional mega plasmids.

To determine the resistance phenotype of the pTet-containing strains, we assessed tetracycline resistance of all the isolated strains (Table 2). All pTet-carrying strains, including both *C. jejuni* and *C. coli* species, were resistant to tetracycline, with minimum inhibitory concentrations (MICs) greater than or equal to $4 \mu g/mL$, and with most strains greater than or equal to $64 \mu g/mL$. This includes the strains harboring plasmids pCJP020 (YH020) and pCJP029 (YH029), which clustered with the pTet plasmids but did not contain plasmid *tetO* and instead carried chromosomal *tetO*.

The consistency between genotype and phenotype demonstrates that the *tetO* gene, whether located in pTet plasmids or the chromosomes, contributes to the tetracycline resistance of *Campylobacter* strains. The observed high rate of tetracycline resistance in

Campylobacter isolates from meat products could be related to the use of tetracycline as a growth promoter in animal feed [44], raising concerns about the transmission of antimicrobial resistance through food sources. Low-level antimicrobial resistance may arise from exposure to low-dose antibiotics [45], and low-dose exposure of tetracycline may explain the prevalence of pTet plasmids across *Campylobacter* isolates, especially in the strains harboring pTet plasmids with tetracycline MICs of 4 μ g/mL. In addition, high plasmid stability may contribute to the observed high frequency of strains with pTet plasmids.

Strain	Plasmids	Tetracycline MIC (µg/mL)	tetO Location
C. jejuni YH014	pCJS014-2	>64	pTet
C. jejuni YH019	pCJP019-1, pCJP019-2, pCJP019-3	>64	pTet and chromosome
C. jejuni YH020	pCJP020	>64	chromosome
C. jejuni YH025	pCJP025	>64	pTet
C. coli YH507	pCOS507-1, pCOS507-2, pCOS507-3	>64	pTet
C. jejuni YH001	pCJP001-1, pCJP001-2	64	pTet
C. jejuni YH002	pCJP002	64	pTet and chromosome
C. jejuni YH018	pCJP018-1	64	pTet
C. jejuni YH022	pCJS022	64	pTet
C. jejuni YH024	pCJP024-1, pCJP024-2	64	pTet
C. jejuni YH027	pCJP027	64	pTet
C. jejuni YH029	pCJP029	64	chromosome
C. jejuni YH026	pCJP026	32	pTet
C. jejuni YH010	pCJS010	4	pTet
C. jejuni YH021	pCJS021	4	pTet
C. coli YH503	pCOS503-1, pCOS503-2	0.5	none
C. coli YH504	pCOS504-1, pCOS504-1	0.25	none
C. coli YH510	pCOS510-1, pCOS510-2	0.25	none
C. coli YH511	pCOS511	0.25	none
C. jejuni YH011	pCJS011	0.12	none
C. coli YH506	pCOS506	0.12	none
C. coli YH502	pCOS502	0.06	none

Table 2. Tetracycline MIC for Campylobacter strains containing tetO.

3.2.2. pVir

pVir was initially identified in the clinical *C. jejuni* strain 81-176 and is believed to contribute to bloody diarrhea in *C. jejuni* enteritis [46]. pVir infrequently occurs in *Campylobacter* [43]. In this study, only two *C. coli* plasmids (pCOS507-2 and pCOS510-2) from chicken liver isolates were clustered in the same group as pVir based on the number of shared genes (Figure 2). These plasmids clustered closely to pVir in the phylogenetic analysis (Figure 4). pCOS507-2 and pCOS510-2 share 99% sequence homology to pVir and share 35 core genes and 19 non-core genes (Supplementary Table S1). pVir group plasmids possess the same core set of virulence factors, including T4SS: Vir B3, VirB4, VirB6, VirB8, VirB9, VirB10, VirB11 (core), and VirD4 (non-core, Supplementary Table S4). In addition to the T4SS, all pVir plasmids contained the plasmid conjugative transfer protein TraQ and the plasmid partitioning protein ParA. Together, these results suggest a high virulence potential of these plasmid-harboring strains from food.

Figure 4. Phylogenetic tree and presence/absence chart of genes in pVir plasmids. In the phylogenetic tree, reference pTet plasmids are indicated with a star. Solid lines in the phylogenetic tree indicate distance between plasmids. Dotted lines are for esthetic purposes to aid the interpretation of the figure given the aligned tip labels. In the presence/absence chart, the presence of gene clusters in the plasmid is indicated in dark gray, while the absence of gene clusters is indicated in white; location on the x-axis does not indicate location on the plasmid. The scale bar for the phylogenetic tree indicates the distance in units of nucleotide substitutions per site.

3.2.3. Small Plasmids (<6 kb)

The small plasmids (<6 kb) shared few genes with other plasmids, and all but one small plasmid co-existed with large plasmids in the same host strains. Pangenomic analysis clustered the small plasmids into two groups, each with only five shared core genes (Figure 2, Supplementary Table S5). Phylogenetically (based on multiple-sequence alignment), the small plasmids formed three separate groups, consistent with the pangenome groups (Figure 5). Group 1 contained only plasmids from *C. coli*, including pCOS503-2, pCOS405-2, pCOS506, and the reference pCC20JX12-5K; group 2 contained only plasmids from *C. jejuni*, including pCJP019-3, pCJP024-2, pCJP001-2, and the reference p20827S. Finally, one plasmid, pCJP018-2, clustered separately from the *C. coli* and *C. jejuni* small-plasmid groups. This may indicate that small plasmids are more likely to be species-specific than larger plasmids, perhaps because they are more reliant on host/larger plasmid replication machinery than larger plasmids, which may possess more self-replication genes.

To better understand whether small plasmids are related to the host species in *C. coli* and *C. jejuni*, we constructed a multiple-sequence alignment tree of all *C. coli* and *C. jejuni* small plasmids (<6 kb) available on NCBI and predicted their mobility using MOB-suite v3.1.9 [34,35] (Supplementary Figure S2). Plasmids from different species were found in the same clades, though some clades were composed of mostly or entirely *C. coli* or *C. jejuni* plasmids. Therefore, it is unlikely for small plasmids to have high specificity for a single species. However, the majority of small plasmids were found to be non-mobilizable (79%), indicating that most small plasmids rely on the host or larger plasmid machinery to spread to other hosts.

To better understand how small plasmids may rely on host/large plasmid machinery, we predicted the mobility and type of plasmids using the MOB-suite software v3.1.9 [34,35]. None of the small plasmids were predicted to be conjugative, further supporting the idea that small plasmids rely on larger plasmid/host machinery to spread (Table 3). The predicted mobility of the plasmids correlated with their phylogenetic grouping, with *C. jejuni* small plasmids being categorized as mobilizable whereas *C. coli* small plasmids were categorized as non-mobilizable. Mobilizable plasmids contain a relaxase and the origin of transfer (*oriT*) but lack a mate-pair formation marker and can be transferred with the

help of a conjugative plasmid, while non-mobilizable plasmids lack a relaxase and *oriT* and cannot be moved via conjugation [34]. All *C. jejuni* (but not *C. coli*) small plasmids co-existed with a conjugative pTet plasmid (Table 3), which may facilitate the horizontal transfer of small mobilizable plasmids. On the other hand, *C. coli* small plasmids were found to exist alongside non-mobilizable mega plasmids or alone, indicating the inability to transfer horizontally.

0.13

Figure 5. Phylogenetic tree of multiple-sequence alignment of small plasmid sequences. Reference sequences are indicated with a star. Solid lines in the phylogenetic tree indicate distance between plasmids. Dotted lines are for esthetic purposes to aid the interpretation of the figure given the aligned tip labels. Small plasmids are clustered into three groups, one composed of *C. coli* sequences (highlighted in pink), one composed of *C. jejuni* sequences (highlighted in orange), and a singular *C. jejuni* sequence. The scale bar for the phylogenetic tree indicates the distance in units of nucleotide substitutions per site.

Table 3. Replicon, relaxase, and mobility type of Campylobacter plasmids.

Plasmid Name	Replicon Type	Relaxase Type	Predicted Mobility	Cluster
pCOS502	-	MOBQ	mobilizable	mega
pCOS510-1	-	MOBQ	mobilizable	mega
pN17C336-1 *	-	MOBQ	mobilizable	mega
pCJS011 (pCjS36)	-	-	non-mobilizable	mega
pCOS503-1	-	-	non-mobilizable	mega
pCOS504	-	-	non-mobilizable	mega
pRM3194	-	-	non-mobilizable	mega
pCOS507-1	rep_cluster_475	MOBP	conjugative	mega/pTet
pAR-0413-2	-	-	-	mid
pCCDM140S	-	-	-	mid
pNUSAC002710-2	-	-	-	mid
pRM1477	-	-	-	mid
pCJP016	-	MOBP	conjugative	mid
pCJP019-2	-	MOBP	conjugative	mid
pCOS507-3	-	MOBP	conjugative	mid
pCOS511	-	MOBP	conjugative	mid
p2014D0261-1	-	-	-	pTet

Plasmid Name	Replicon Type	Relaxase Type	Predicted Mobility	Cluster
pCJP001-1	rep_cluster_475	MOBP	conjugative	pTet
pCJP002	rep_cluster_475	MOBP	conjugative	pTet
pCJP018	rep_cluster_475	MOBP	conjugative	pTet
pCJP019-1	rep_cluster_475	MOBP	conjugative	pTet
pCJP020	-	MOBP	conjugative	pTet
pCJP024	rep_cluster_475	MOBP	conjugative	pTet
pCJP025	-	MOBP	conjugative	pTet
pCJP026	rep_cluster_475	MOBP	conjugative	pTet
pCJP027	rep_cluster_475	MOBP	conjugative	pTet
pCJS010 (pCjS33)	-	MOBP	conjugative	pTet
pCJS014-2	-	MOBP	conjugative	pTet
pCJS021	-	MOBP	conjugative	pTet
pCJS022	-	MOBP	conjugative	pTet
pRM1246_ERRC	rep_cluster_475	MOBP	conjugative	pTet
pTet *	rep_cluster_475	MOBP	conjugative	pTet
pCJP029	rep_cluster_475	MOBP	mobilizable	pTet
pCOS507-2	rep_cluster_1502	MOBP	conjugative	pVir
pCOS510-2	rep_cluster_1502	MOBP	conjugative	pVir
pN17C264-2 *	rep_cluster_1502	MOBP	conjugative	pVir
pVir *	rep_cluster_1502	MOBP	conjugative	pVir
p20827S *	rep_cluster_795	MOBP	mobilizable	small
pCJP001-2	rep_cluster_795	MOBP	mobilizable	small
pCJP018-2	rep_cluster_795	MOBP	mobilizable	small
pCJP019-3	rep_cluster_795	MOBP	mobilizable	small
pCJP024-2	rep_cluster_795	MOBP	mobilizable	small
pCC20JX12-5K *	rep_cluster_896	-	non-mobilizable	small
pCOS503-2	rep_cluster_896	-	non-mobilizable	small
pCOS504-2	rep_cluster_896	-	non-mobilizable	small
pCOS506	-	-	non-mobilizable	small

Table 3. Cont.

"-" Indicates no prediction reported from MOB-suite. * Reference plasmids used for analyses.

The analysis of replicon types with MOB-suite demonstrated that the small plasmids had distinct replicon types from the large plasmids, with the *C. jejuni* small plasmids categorized as cluster 795 replicons and the *C. coli* small plasmids categorized as cluster 896 replicons (Table 3). The mega and mid plasmids were not assigned a replicon cluster, but the pTet plasmids were typically cluster 475, and the pVir plasmids were cluster 1502. Therefore, small and large plasmids do not share the same replication systems, supporting the idea that distantly related plasmids tend to be compatible with each other in the same bacterial cell [47].

Except for limited plasmid self-maintenance genes, no other functions were predicted in the sequences of small plasmids, which may reflect limitations in current annotation methods and/or databases for identifying small protein-encoding genes and functional RNA genes. The only annotated core genes were found in group 1 (*C. coli*) small plasmids, all of which shared a site-specific recombinase and the putative replication protein RepE.

3.2.4. Mega Plasmids (>80 kb)

The group of mega plasmids (>80 kb) found in *C. jejuni* and *C. coli* isolates shared 42 conserved core genes and had high genetic similarity (Supplementary Table S1, Figure 6). Most of the annotated mega plasmid core genes were involved in the type VI secretion system (T6SS), including ImpA, ImpB, ImpC, ImpG, ImpH, ImpJ, ImpK, IcmF, Hcp, and vasD (Supplementary Table S6). Non-core genes were involved in self-maintenance, antibiotic resistance, and conjugation. Three (42%) of the mega plasmids contained aminoglycoside O-phosphotransferase encoded by *aph*(3')-IIIa, which confers resistance to aminoglycoside antibiotics. However, of the seven mega plasmids, only pCOS507-1 contained *tetO*, which confers tetracycline resistance to the host strain *C. coli* YH507. Five (71%) of the mega plasmids contained the type II toxin–antitoxin system death-on-curing protein Doc. Type II toxin–antitoxin systems were reported to be involved in bacterial pathogenesis by maintaining virulence plasmids and inducing the expression of virulence-associated genes [48].

Figure 6. Phylogenetic tree of multiple-sequence alignment and presence/absence chart of genes in mega plasmid sequences. Reference sequences are indicated with a star. Solid lines in the phylogenetic tree indicate distance between plasmids. Dotted lines are for esthetic purposes to aid the interpretation of the figure given the aligned tip labels. In the presence/absence chart, the presence of gene clusters in the plasmid is indicated in dark gray, while the absence of gene clusters is indicated in white; the location on the x-axis does not indicate the location on the plasmid. The scale bar for the phylogenetic tree indicates the distance in units of nucleotide substitutions per site.

We found that the mega plasmids were categorized as mobilizable or non-mobilizable plasmids, contrasting with the mid, pVir, and pTet plasmids, which were all categorized as conjugative (Table 3). However, we noted multiple genes involved in conjugative transfer, including IncF plasmid conjugative transfer protein TraG (core, 100%), TrsK-like protein (29%), and VirB6 (42%), were present in the mega plasmids. Other conjugative transfer proteins were observed more sporadically in the mega plasmids (Supplementary Table S6). In addition, mega plasmids that were mobilizable encoded a MOBQ-type relaxase, as opposed to the MOBP-type relaxase which was found in all pVir, pTet, mid, and small plasmids.

The presence of T6SS, antibiotic resistance, and toxin–antitoxin genes in the mega plasmids suggests significant potential for antibiotic resistance and virulence in the host strains, as well as the possible spread of pathogenicity to other strains via plasmid conjugation or mobilization. These findings align with recent studies of pCJDM202/pCJDM67L, a *Campylobacter* mega plasmid containing tetracycline resistance genes, conjugative transfer (T4SS), and the Type VI secretion system (T6SS). pCJDM202/pCJDM67L increased cytotoxicity to red blood cells when transferred to its recipient strain through conjugation [9].

3.2.5. Mid Plasmids (~30 kb)

The group of mid plasmids (~30 kb) in *Campylobacter* displayed high similarity and shared 20 conserved core genes (Supplementary Table S1). Most of the annotated mid plasmid core genes were the components of RP4-specific conjugative transfer apparatus (TrbC, TrbD, TrbE, TrbF, TrbG, TrbI, TrbJ, TrbL, and TrbM) and T4SS (VirB11, VirB1, VirD4, VirB3, and VirB5), which are involved in plasmid conjugative transfer (Supplementary Table S7). In addition, the mid plasmids were categorized as conjugative (Table 3), consistent with the annotated functions of mid plasmid genes.

4. Conclusions

This study identified 34 new plasmids from *Campylobacter* food isolates, uncovering their complete sequences and functional annotations. Comprehensive genomic analysis revealed critical genes and gene operons associated with antibiotic resistance, virulence, and the transfer of genetic elements within *Campylobacter*. Notably, the presence of *tetO* and aminoglycoside resistance genes underscores the role of these plasmids in mediating multidrug resistance, a significant challenge in both clinical and agricultural settings. The identification of Type IV and Type VI secretion systems (T4SS and T6SS) further highlights the contribution of these plasmids to pathogenicity and their potential role in facilitating the horizontal transfer of virulence factors between strains.

Phylogenetic and pangenomic studies provided insight into the genetic relatedness of plasmids within groups, while demonstrating diversity between groups. These findings are significant, advancing our understanding of the genetic basis of bacterial evolution through the transfer of genetic elements and the spread of antibiotic resistance and virulence factors among pathogens. The described bioinformatics workflow for the identification and genetic characterization of large and small plasmids in *Campylobacter* strains represents a valuable resource. It provides a robust framework for studying mobile genetic elements, virulence factors, and antibiotic resistance determinants in *Campylobacter* and related microorganisms. This research not only deepens scientific knowledge but also supports the development of targeted interventions to eliminate the spread of antimicrobial resistance and enhance food safety.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/microorganisms13010206/s1.

Author Contributions: Y.H., G.E.D., and J.A.C. designed and performed the experiments, analyzed data, interpreted results, and wrote the manuscript. S.K., Y.L., N.W.G.IV, and K.L.C. performed the bioinformatic analysis and reviewed the manuscript. J.L. conducted the experiments. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), National Program 108, Current Research Information System number 8072-42000-093, and used resources provided by the SCINet project and/or the AI Center of Excellence of USDA-ARS, project numbers 0201-88888-003-000D and 0201-88888-002-000D. The mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the assembled plasmid sequences from *Campylobacter* isolates were deposited and are available in GenBank, NCBI, under the accession numbers listed in Table 1.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- Skarp, C.P.A.; Hänninen, M.-L.; Rautelin, H.I.K. Campylobacteriosis: The Role of Poultry Meat. *Clin. Microbiol. Infect.* 2016, 22, 103–109. [CrossRef] [PubMed]
- Silva, J.; Leite, D.; Fernandes, M.; Mena, C.; Gibbs, P.A.; Teixeira, P. Campylobacter spp. as a Foodborne Pathogen: A Review. Front. Microbiol. 2011, 2, 200. [CrossRef]
- 3. Tang, Y.; Fang, L.; Xu, C.; Zhang, Q. Antibiotic Resistance Trends and Mechanisms in the Foodborne Pathogen, *Campylobacter*. *Anim. Health. Res. Rev.* 2017, *18*, 87–98. [CrossRef] [PubMed]
- 4. Gabbert, A.D.; Mydosh, J.L.; Talukdar, P.K.; Gloss, L.M.; McDermott, J.E.; Cooper, K.K.; Clair, G.C.; Konkel, M.E. The Missing Pieces: The Role of Secretion Systems in *Campylobacter jejuni* Virulence. *Biomolecules* **2023**, *13*, 135. [CrossRef] [PubMed]
- 5. Wysok, B.; Wojtacka, J.; Hänninen, M.-L.; Kivistö, R. Antimicrobial Resistance and Virulence-Associated Markers in *Campylobacter* Strains from Diarrheic and Non-Diarrheic Humans in Poland. *Front. Microbiol.* **2020**, *11*, 1799. [CrossRef]
- Bleumink-Pluym, N.M.C.; Van Alphen, L.B.; Bouwman, L.I.; Wösten, M.M.S.M.; Van Putten, J.P.M. Identification of a Functional Type VI Secretion System in *Campylobacter jejuni* Conferring Capsule Polysaccharide Sensitive Cytotoxicity. *PLoS Pathog.* 2013, 9, e1003393. [CrossRef] [PubMed]
- 7. Yang, Y.; Feye, K.M.; Shi, Z.; Pavlidis, H.O.; Kogut, M.J.; Ashworth, A.; Ricke, S.C. A Historical Review on Antibiotic Resistance of Foodborne *Campylobacter. Front. Microbiol.* **2019**, *10*, 1509. [CrossRef] [PubMed]
- Luangtongkum, T.; Jeon, B.; Han, J.; Plummer, P.; Logue, C.M.; Zhang, Q. Antibiotic Resistance in *Campylobacter*: Emergence, Transmission and Persistence. *Future Microbiol.* 2009, *4*, 189–200. [CrossRef] [PubMed]
- 9. Marasini, D.; Karki, A.B.; Buchheim, M.A.; Fakhr, M.K. Phylogenetic Relatedness Among Plasmids Harbored by *Campylobacter jejuni* and *Campylobacter coli* Isolated from Retail Meats. *Front. Microbiol.* **2018**, *9*, 2167. [CrossRef] [PubMed]
- 10. He, Y.; Capobianco, J.; Armstrong, C.M.; Chen, C.-Y.; Counihan, K.; Lee, J.; Reed, S.; Tilman, S. Detection and Isolation of *Campylobacter* spp. from Raw Meat. *JoVE* **2024**, 204, 66462. [CrossRef]
- 11. He, Y.; Yao, X.; Gunther, N.W.; Xie, Y.; Tu, S.-I.; Shi, X. Simultaneous Detection and Differentiation of *Campylobacter jejuni*, *C. coli*, and *C. lari* in Chickens Using a Multiplex Real-Time PCR Assay. *Food Anal. Methods* **2010**, *3*, 321–329. [CrossRef]
- He, Y.; Reed, S.; Yan, X.; Zhang, D.; Strobaugh, T.; Capobianco, J.; Gehring, A. Complete Genome Sequences of Multidrug-Resistant *Campylobacter coli* Strains YH501, YH503, and YH504, from Retail Chicken. *Microbiol. Resour. Announc.* 2022, *11*, e00237-22. [CrossRef] [PubMed]
- 13. Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and Accurate Long-Read Assembly via Adaptive *k* -Mer Weighting and Repeat Separation. *Genome Res.* **2017**, *27*, 722–736. [CrossRef]
- 14. Hunt, M.; Silva, N.D.; Otto, T.D.; Parkhill, J.; Keane, J.A.; Harris, S.R. Circlator: Automated Circularization of Genome Assemblies Using Long Sequencing Reads. *Genome Biol.* **2015**, *16*, 294. [CrossRef] [PubMed]
- 15. Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows–Wheeler Transform. *Bioinformatics* 2009, 25, 1754–1760. [CrossRef] [PubMed]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. *PLoS ONE* 2014, 9, e112963. [CrossRef] [PubMed]
- 17. Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid Annotations Using Subsystems Technology. *BMC Genom.* **2008**, *9*, 75. [CrossRef]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the Rapid Annotation of Microbial Genomes Using Subsystems Technology (RAST). *Nucl. Acids Res.* 2014, 42, D206–D214. [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. *J. Comput. Biol.* 2012, 19, 455–477. [CrossRef]
- 20. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [CrossRef] [PubMed]
- 21. Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and Applications. *BMC Bioinform.* **2009**, *10*, 421. [CrossRef]
- 22. Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. *GigaScience* **2021**, *10*, giab008. [CrossRef] [PubMed]
- 23. MegAlign Pro, DNASTAR. Available online: https://www.dnastar.com/software/lasergene/megalign-pro/ (accessed on 1 December 2024).
- 24. Li, L.; Stoeckert, C.J.; Roos, D.S. OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. *Genome Res.* 2003, 13, 2178–2189. [CrossRef] [PubMed]

- 25. Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A Modular and Extensible Implementation of the RAST Algorithm for Building Custom Annotation Pipelines and Annotating Batches of Genomes. *Sci. Rep.* **2015**, *5*, 8365. [CrossRef] [PubMed]
- Arkin, A.P.; Cottingham, R.W.; Henry, C.S.; Harris, N.L.; Stevens, R.L.; Maslov, S.; Dehal, P.; Ware, D.; Perez, F.; Canon, S.; et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. *Nat. Biotechnol.* 2018, *36*, 566–569. [CrossRef]
- 27. R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024.
- 28. Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4.
- 29. Simon, G.; Noam, R.; Robert, R.; Pedro, A.C.; Marco, S.; Scherer, C. *Viridis(Lite)—Colorblind-Friendly Color Maps for R*; rOpenSci: Berkeley, CA, USA, 2024.
- Bertels, F.; Silander, O.K.; Pachkov, M.; Rainey, P.B.; Van Nimwegen, E. Automated Reconstruction of Whole-Genome Phylogenies from Short-Sequence Reads. *Mol. Biol. Evol.* 2014, *31*, 1077–1088. [CrossRef] [PubMed]
- 31. Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A Fast, Scalable and User-Friendly Tool for Maximum Likelihood Phylogenetic Inference. *Bioinformatics* **2019**, *35*, 4453–4455. [CrossRef] [PubMed]
- 32. Edgar, R.C. MUSCLE: A Multiple Sequence Alignment Method with Reduced Time and Space Complexity. *BMC Bioinform*. 2004, 5, 113. [CrossRef] [PubMed]
- Moore, R.M.; Harrison, A.O.; McAllister, S.M.; Polson, S.W.; Wommack, K.E. Iroki: Automatic Customization and Visualization of Phylogenetic Trees. *PeerJ.* 2020, 26, e8584. [CrossRef] [PubMed]
- 34. Robertson, J.; Nash, J.H.E. MOB-Suite: Software Tools for Clustering, Reconstruction and Typing of Plasmids from Draft Assemblies. *Microb. Genom.* **2018**, *4*, e000206. [CrossRef]
- 35. Robertson, J.; Bessonov, K.; Schonfeld, J.; Nash, J.H.E. Universal Whole-Sequence-Based Plasmid Typing and Its Utility to Prediction of Host Range and Epidemiological Surveillance. *Microb. Genom.* **2020**, *6*, e000435. [CrossRef] [PubMed]
- Ghatak, S.; Armstrong, C.M.; Reed, S.; He, Y. Comparative Methylome Analysis of *Campylobacter jejuni* Strain YH002 Reveals a Putative Novel Motif and Diverse Epigenetic Regulations of Virulence Genes. *Front. Microbiol.* 2020, 11, 610395. [CrossRef] [PubMed]
- He, Y.; Kanrar, S.; Reed, S.; Lee, J.; Capobianco, J. Whole Genome Sequences, De Novo Assembly, and Annotation of Antibiotic Resistant *Campylobacter jejuni* Strains S27, S33, and S36 Newly Isolated from Chicken Meat. *Microorganisms* 2024, 12, 159. [CrossRef] [PubMed]
- 38. Ghatak, S.; He, Y.; Reed, S.; Strobaugh, T.; Irwin, P. Whole Genome Sequencing and Analysis of *Campylobacter coli* YH502 from Retail Chicken Reveals a Plasmid-Borne Type VI Secretion System. *Genom. Data* **2017**, *11*, 128–131. [CrossRef] [PubMed]
- 39. Gunther, N.W.; Reichenberger, E.R. Complete Genome Sequence of *Campylobacter jejuni* RM1246-ERRC, Which Exhibits Resistance to Quaternary Ammonium Compounds. *Genome Announc.* **2017**, *5*, e00978-17. [CrossRef]
- 40. Gunther, N.W.; Reichenberger, E.R.; Bono, J.L. Complete Genome Sequence of UV-Resistant *Campylobacter jejuni* RM3194, Including an 81.08-Kilobase Plasmid. *Genome Announc.* **2016**, *4*, e00305-16. [CrossRef] [PubMed]
- 41. Nielsen, D.W.; Maki, J.J.; Looft, T.; Ricker, N.; Sylte, M.J. Complete Genome Sequence of *Campylobacter jejuni* Strain NADC 20827, Isolated from Commercial Turkeys. *Microbiol. Resour. Announc.* **2020**, *9*, e01403-19. [CrossRef] [PubMed]
- Heikema, A.P.; Strepis, N.; Horst-Kreft, D.; Huynh, S.; Zomer, A.; Kelly, D.J.; Cooper, K.K.; Parker, C.T. Biomolecule Sulphation and Novel Methylations Related to Guillain-Barré Syndrome-Associated *Campylobacter jejuni* Serotype HS:19. *Microb. Genom.* 2021, 7, 000660. [CrossRef] [PubMed]
- 43. Schmidt-Ott, R.; Pohl, S.; Burghard, S.; Weig, M.; Groß, U. Identification and Characterization of a Major Subgroup of Conjugative *Campylobacter jejuni* Plasmids. *J. Infect.* **2005**, *50*, 12–21. [CrossRef] [PubMed]
- 44. Chattopadhyay, M.K. Use of Antibiotics as Feed Additives: A Burning Question. Front. Microbiol. 2014, 5, 334. [CrossRef]
- 45. Baquero, F. Low-Level Antibacterial Resistance: A Gateway to Clinical Resistance. Drug Resist. Updates 2001, 4, 93–105. [CrossRef]
- 46. Bacon, D.J.; Alm, R.A.; Burr, D.H.; Hu, L.; Kopecko, D.J.; Ewing, C.P.; Trust, T.J.; Guerry, P. Involvement of a Plasmid in Virulence of *Campylobacter jejuni* 81-176. *Infect. Immun.* 2000, *68*, 4384–4390. [CrossRef] [PubMed]
- 47. Novick, R.P. Plasmid Incompatibility. *Microbiol. Rev.* 1987, 51, 381–395. [CrossRef] [PubMed]
- 48. Kamruzzaman, M.; Wu, A.Y.; Iredell, J.R. Biological Functions of Type II Toxin-Antitoxin Systems in Bacteria. *Microorganisms* **2021**, *9*, 1276. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.