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Abstract: Beer produced by autochthonous microbial fermentation is a long-established
craft beer style in Belgium that has now been implemented commercially in New Zealand.
We used a metabarcoding approach to characterize the microbiome of 11 spontaneously fer-
mented beers produced by a single brewery in Oamaru from 2016 to 2022. Key organic acid
concentrations were also determined. Both bacterial and fungal populations varied consid-
erably between vintages and between individual brews produced in 2020. Similarly, for
organic acids, the concentrations of L-malic acid, succinic acid, and L-lactic acid statistically
differed from one vintage to another. Moreover, a correlation between the concentrations
of certain organic acids and microbial composition was inferred by ordination analyses.
Through reference to publicly available climate data, humidity and maximum temperature
seemed to enhance the abundance of Penicillium and Hanseniaspora in beer microbiota.
However, comparison with previously published studies of Belgian lambic beers, similar
Russian ales, and publicly available temperature data from these regions showed that the
microbial populations of these were relatively stable despite greater extremes of weather.
Our results suggest that while climatic variables may influence microbial populations
during beer making that employs autochthonous fermentation in New Zealand, such varia-
tion is not evident where similar beers are produced in facilities with a long-established
history of production. These findings have implications for lambic-style beer production
in the context of global climate change, notably where microbial populations may lack
environmental adaptation.

Keywords: lambic beer; spontaneous fermentation; microbial diversity; metabarcoding;
climate change

1. Introduction
Beer is a widely consumed beverage on a global scale [1]. To achieve consistency,

it is common for beer industries to use yeast starter cultures in producing beers [2,3].
However, a spontaneous fermentation process can be used; these beers are usually left to
mature in wooden barrels for a period of one to three years [4]. The earliest known (13th
century) beverage of this style is called lambic beer, which is produced in the Pajottenland
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region, surrounding the valley of the Zenne River in the southwestern part of Brussels,
Belgium [5,6]. Similar to the “terroir” concept associated with wines, it is believed that the
Zenne valley contains important microorganisms in the open air that are necessary for the
fermentation and maturation of lambic beer wort [6]. Due to these specific environmental
characteristics, some authors argue that beers made outside this region do not meet the
requirements of the native product [7]. Nonetheless, other mixed fermentation beers
produced spontaneously that mimic the lambic beer style are popular [2]. For example,
American Coolship Ales (ACAs) are made in regular breweries as a seasonal product in
the USA [4]; the microbiota associated with these products is said to resemble lambic
beers [8]. Inevitably, the use of autochtonous microflora to drive the fermentation process
results in a diverse microbial population that includes various yeast species, lactic acid-
and acetic acid-producing bacteria, ultimately resulting in beers that are biochemically and
organoleptically complex due to the presence of ethanol, organic acids, and many other
products also [6].

In New Zealand, the beer industry has witnessed substantive growth and was reported
to have contributed NZD 3.3 billion to the New Zealand economy in the year 2022 [9].
In terms of consumption, 294 million liters were consumed in the year 2022—the most
for alcoholic beverages in the country [10]. However, few New Zealand brewers employ
spontaneous fermentation processes for production.

Globally, few studies have assessed the microbiota associated with the fermentation
and maturation of beer as well as finished beer products. More recently, there has been an
increase in the use of targeted sequencing (amplicon-based sequencing, commonly known
as metabarcoding) and untargeted amplification (metagenomics) in understanding convo-
luted microbial communities. This is because of the advantages it offers in investigating
the unculturable world of microbes [11]. They have been used to determine the fungal
and bacterial microbiota associated with wine and musts fermentations [12–14], but few
studies have examined beers produced using spontaneous fermentation methods. The
“BeerDecoded” project used Internal Transcribed Spacer metabarcoding to examine 39
bottled beers from five countries, and it determined a low abundance but an extensive
diversity of fungal species [15]. Bacterial species were not sought for, and the number of
beers produced by spontaneous fermentation was not declared in this study. Elsewhere,
studies have only examined such beers from Russia and Belgium [1,2,16]. New Zealand
beers have not previously been studied.

Oamaru is a traditional beer brewing town in the South Island of New Zealand that
has been gaining in popularity by craft brewers in recent years. The climate in this region
is categorized as warm and temperate. It appears unique in that “there is a considerable
amount of rainfall even during months that typically experience dry weather” [17]. In
this study, we apply a metabarcoding approach to determine the bacterial and fungal
microbiomes of beers produced in the Oamaru region of New Zealand over six vintages.
We compare our results to those of previously published studies of Belgian and Russian
beers [1,2,16], and we explore the role that climatic variables may play in the variation ob-
served. We also determine the concentrations of each of five organic acids in these samples
to evaluate any correlations between microbial populations and biochemical profile.

2. Materials and Methods
2.1. Beer Production and Sampling

Beer used in this study was made by a single, boutique craft brewery located in
Oamaru, New Zealand (45.0966◦ S, 170.9714◦ E) using a spontaneous approach similar
to Belgian lambic beer [6]. The brewer utilized malted pilsner and unmalted wheat with
300 g of hops dried and aged for one year added to form the wort. The wort was boiled
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for 3 h and transferred into a large cooling vat, which was thoroughly cleaned beforehand.
Thereafter, the wort was left outside overnight. After cooling to a temperature of 20 ◦C, the
sugar concentration was established to be 13 ◦P (13 g of sugar per 100 g of wort). The cooled
wort (without filtration) was transferred to large casks of 220 L where fermentation and
post-fermentation brewing occur for 1 year. The casks used were retired barrels formerly
used in the aging of Pinot noir wines and were flushed with water prior to use. End point
(i.e., fermentation complete) samples of 100 mL were collected aseptically using the valve
in front of the barrels. The average temperature of the cellar ranged from 15 ◦C to 20 ◦C
degrees throughout the year. End point beer samples from several vintages and years
from the brewery were collected and examined. Supplementary Table S1 details sampling
information. All samples collected were stored at −80 ◦C prior to processing.

2.2. DNA Extraction and Sequencing

We utilized the approach employed by Tyakht et al. [1] to generate pellets from the
beer samples, centrifuging 50 mL of each sample at 4700× g for 10 min at 4 ◦C (Heraeus
Multifuge X3R, Thermo Scientific, Waltham, MA, USA). The pellet generated was kept at
−20 ◦C for DNA extraction.

The Mag-Bind Environmental DNA 96 kit (Omega, Norcross, GA, USA) was used for
DNA extraction, as per the manufacturer’s recommended protocol with slight adjustment.
We modified the cell disruption step where we employed a TissueLyser II (Qiagen, Venlo,
The Netherlands) for 3 min. A 1.5% agarose gel electrophoresis was used to estimate the
quality of all extracted DNA. We then measured the total DNA concentration using a
DeNovix DS-11 spectrophotometer (Wilmington, DE, USA).

For metabarcoding, we applied the two-step amplification process used by Ohwofasa
et al. [14]. The first step involves PCR amplification of the large subunit (LSU) ri-
bosomal RNA gene region using an equimolar mix of the primer pairs LSU200(A)-
F/LSU481(A)-R and LSU200-F/LSU481-R for fungal community analysis (Forward 200AF:
NNNNNNAACKGCGAGTGAAGCRGYA; 200F: NNNNNNAACKGCGAGTGAAGMGGGA
Reverse 481R: NNNNNNTCTTTCCCTCACGTTACTC; 481A-R: NNNNNNCSATCACT-
STACTTGTKCGC) [18]. The V4 region of the 16S ribosomal RNA gene targeted us-
ing the 515F/806R primers (Forward: GTGCCAGCMGCCGCGGTAA; Reverse: GGAC-
TACHVGGGTWTCTAAT) was used for bacteria community analysis [19]. PCR for the
first step was carried out using a KAPA 3G PCR plant kit (Sigma-Aldrich, St. Louis, MO,
USA). The PCR conditions were as follows: initial denaturation at 95 ◦C for 120 s, followed
by 35 cycles at 95 ◦C for 20 s (denaturation), 55 ◦C (fungal)/52.5 ◦C (bacterial) for 20 s
(annealing), 72 ◦C for 30 s (extension), and a final extension at 72 ◦C for 10 min.

The PCR products of the first step PCR served as template DNA for the second
PCR. Barcoded primers were used for amplification with the following PCR conditions:
initial denaturation at 95 ◦C for 2 min, 5 cycles of 95 ◦C for 20 s (denaturation), 50 ◦C for
20 s (annealing), 72 ◦C for 30 s (extension), and final extension at 72 ◦C for 2 min. The
resulting PCR products were cleaned up using SeraMag Magnetic Speed-Beads (Merck,
Darmstadt, Germany) [20] to remove primer dimers and normalize sample concentration.
We quantified these samples using Qubit (dsDNA HS Assay Kit, Invitrogen, Carlsbad,
CA, USA). Upon quantification, we pooled samples in an equimolar manner accounting
for the number of samples and amplicon length each library contains. The quality of the
final pooled library was evaluated using a LabChip GX Touch Nucleic Acid Analyzer
(PerkinElmer, Waltham, MA, USA). Sequencing was performed by the Auckland Genomics
Facility (University of Auckland) utilizing the Illumina MiSeq platform (phiX spike 10%,
250 × 2 cycles, NanoSeq kit) (Illumina, San Diego, CA, USA).
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2.3. Amplicon Sequence Variant (ASV) Cluster and Annotation of Species

With the aid of bcl2fastq2 (version 2.20) conversion software, raw data in Bcl file
formats were converted to fastq format. Demultiplexing was performed using Claident
(version 2018.05.08) [21]. The amplicon-based DADA2 (version 1.20.0) pipeline [22] was
used for quality filtering, merging, chimera removal, and inferring of amplicon sequence
variants (ASVs). Eukaryotic taxonomic assignment was performed using the UNITE fungal
taxonomic reference [23]. For prokaryotes, we used the SILVA v132 16S rRNA database [24].
Occasionally and where applicable, we probed ASVs against the Basic Local Alignment
Search Tool (BLAST) [25] to achieve a better taxonomic resolution. Bioinformatics anal-
ysis was carried out using Jupyter via the New Zealand eScience Infrastructure (NeSI)
HPC environment.

2.4. Climate Data

The weather reports associated with all vintages were accessed from the Ostler Vine-
yard Weather Station [26]. This station is situated in the north of Otago close to the location
of the brewery. Monthly data were collected (Supplementary Table S2), averaged, and used
subsequently as our climate data.

The Belgian lambic beers for which microbiome data have been determined were
brewed in an area southwest of Brussels [2,16]. We purchased daily temperature data
for Brussels for the vintages examined (2014–2017) by these authors from Weatherspark
(https://weatherspark.com/) to establish ranges and means for comparison.

2.5. Organic Acid Determination Using HPLC

Using High-Performance Liquid Chromatography (HPLC) (Shimadzu Corporation,
Kyoto, Japan), the method utilized by Shi et al. [27] was employed. In addition to acetic
acid, which was sourced from BDH, all chemicals used were purchased from Sigma-
Aldrich (Sigma-Aldrich, St. Louis, MO, USA). Separation and analyses of organic acids
was achieved using the Rezex ROA-Organic Acid H+ (8%) column (3000 × 7.8 mm, Phe-
nomenex, Torrance, CA, USA) which had a Guard column (Carbo-H 4x3.0; Phenomenex).
The mobile phase (5 mM H3SO4) was filtered through a 0.45 µm membrane. The column
temperature was fixed at 55 ◦C with a flow rate of 0.5 mL/min. A sample volume of
20 µL was injected, and the UV detector (SPD-20A, Shimadzu, Kyoto, Japan) was set at
a wavelength of 210 nm. A mixture of the standard stock solution was prepared using
analytical grade formic acid, D-gluconic acid, acetic acid, citric acid, L-malic acid, oxalic
acid, succinic acid, and L-lactic acid. The standard stock solution was then used to prepare
standard curve dilutions. The standard curve concentrations were 0, 1.0, 2.0, 5.0, 10.0, 20.0,
50.0, 100.0, 300.0, 500.0, 1000.0 ppm, respectively, in 5 mM H2SO4. Sample preparation
was achieved by adding 1.8 mL 5 mM H2SO4 to a 0.2 mL beer sample. After mixing
properly, this was filtered through a 0.2 µm PVDF membrane filter. Filtered samples were
further diluted 10 times with 5 mM H2SO4 prior to injection. After comparing the retention
time of organic acid standards, the identification of all organic acids present in the beer
samples was possible. Sample quantification was performed using the peak area of the
chromatograms from the external calibration standard curve. All data were processed
using the Lab solution software (Version 5.87 SP1).

2.6. Statistical Analysis

We carried out statistical analysis using the open-source R programming language [28]
(v4.1.0). The Phyloseq package (v1.38.0) [29] was used to create one fungal and bacterial
phyloseq object. Several other packages were also utilized (see Supplementary File S1).
The core microbiome (ASVs detected in 70% of the samples with an abundance ≥ 0.0001)

https://weatherspark.com/
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associated with beer was identified after transforming ASV abundances to their relative
abundance. This was necessary to account for dissimilarities in library sizes. Alpha diver-
sity (Shannon diversity index) was calculated to determine differences within each sample.
The function Betadisper in the R package “vegan” was applied for estimating dispersion
distances between communities. The distances were visualized using Principal Coordinates
Analysis (PCoA). We employed the standard parametric ANOVA and permutation tests for
homogeneity (permutest) to scrutinize the statistical significance of the betadisper object.

To determine ASVs that were significantly different, DESeq2 was used [30]. Depending
on the results of the first axis of the decoruna function in vegan [31,32], we utilized either
redundancy analysis (RDA) or canonical correspondence analysis (CCA) to visualize any
association between the climatic data associated with a given vintage and its microbiome.
The same approach was used to uncover any correlation between microbial abundance and
organic acid concentrations. The model that optimizes the variation explained while using
fewer variables was selected using a forward selection approach. When RDA was utilized,
we transformed our data using Hellinger’s transformation.

3. Results
3.1. Climatic Variables in Oamaru, New Zealand

A total of seven climatic variables in all vintages from Oamaru were assessed, and
these are shown in Table 1.

Table 1. Weather report associated with the northern Otago region. Values are reported as
average ± standard deviation (SD).

Vintage Min. Temp.
(◦C)

Average
Temp. (◦C)

Max. Temp.
(◦C) Rain (mm) Humidity

(%)
Average

Wind (km/h) Gust (km/h)

2016 1.4 ± 3.23 11.5 ± 3.61 24.7 ± 4.80 39.8 ± 23.8 82.9 ± 15.3 5.9 ± 2.05 67.5 ± 9.92

2017 1.5 ± 3.26 10.5 ± 3.46 23.8 ± 5.68 57.6 ± 35.3 86.7 ± 9.6 4.2 ± 1.41 58.8 ± 9.95

2019 2.1 ± 3.02 11.5 ± 3.4 24.9 ± 5.6 51.0 ± 53.5 76.4 ± 16.3 2.65 ± 2.46 37.31 ± 29.10

2020 1.8 ± 3.62 11.1 ± 3.38 25.7 ± 5.17 30.8 ± 20.5 71.9 ± 16.7 0.98 ± 3.4 4.33 ± 14.61

2021 1.1 ± 2.76 11.39 ± 3.03 23.2 ± 6.81 42.5 ± 35.1 83.2 ± 14.1 6.28 ± 2.83 56.32 ±19.75

2022 2.2 ± 3.34 11.1 ± 3.05 23.8 ± 4.35 62 ± 53.1 75.5 ± 14.5 6.91 ± 1.87 58.95 ± 15.12

3.2. Temperature Ranges in Brewing Locations of New Zealand and Belgium

Table 2 displays the temperature minima, maxima and mean for the Oamaru and
Brussels locations across the relevant beer production periods studied here (Oamaru) and
in Belgium (2014–2017; cf.) [2,16].

Table 2. Temperature (◦C) minima, maxima, means and standard deviations (SD) for Oamaru and
Brussels production regions.

Region Minima/SD Mean/SD Maxima/SD

Oamaru 1.68 ± 3.2 12.4 ± 3.98 24.35 ± 5.4

Brussels −4.25 ± 1.3 11.26 ± 7.25 32.5 ± 0.5

3.3. Bacterial and Fungal Community Composition in All Vintages

The relative abundance and richness of the core bacterial communities detected in
all vintages are shown in Figure 1. In five of the six vintages examined, Pediococcus spp.
were detected in significant proportions; only in the 2020 vintage, which had a notably
higher richness and diversity (Figure 1D), was this trend not evident. In terms of specific
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composition, upon taxonomic assignment, the 229 amplicon sequence variants (ASVs) gave
rise to a total of 78 bacterial genera. The 2016 vintage was completely dominated by Pedio-
coccus (97.6%); other genera detected included Lactobacillus (1.24%), Komagataeibacter (0.18)
and Bacillus (0.13%). However, in the 2017 vintage, Pediococcus was not as predominant,
as seen in the 2016 vintage. Here, Pediococcus made up 33.9%. Komagataeibacter (22.7%),
Acetobacter (21.7%), and Paenibacillus (16.3%) were the other common genera associated
with this vintage. The 2019 vintage was similar to the 2016 vintage where Pediococcus
showed high relative abundance at 97.5%; however, Rhodococcus (0.08%) and Acetobacter
(0.33%), which were not detected in previous vintages, were present here in low relative
abundance. All four barrels sampled in the 2020 vintage indicated that this vintage was
different in terms of bacterial composition. Pediococcus was visibly detected in only one of
the four barrels, and it was in a far lower proportion (ca. 15%) than observed in all other
vintages. Rhodococcus thrived in this vintage, as it was detected in all four barrels, as high
as 32% in barrel B. The 2021 vintage was again dominated by Pediococcus, Klebsiella and
members of the Enterobacteriaceae family. Together they made up over 85% of bacteria
genera detected in all three barrels of this vintage. The same trend was observed in the
2022 vintage. Acetobacter, Ammoniphilus and Gluconobacter were also present but in low
proportions (Figure 1 and Supplementary Table S3).
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A total of 107 fungal ASVs resulted in 27 fungal genera after taxonomic assignment.
The relative abundances of these are shown in Figure 2 below. The 2016 vintage had a
large proportion of Penicillium (74.8%). Others detected includes Saccharomyces (4.67%), As-
pergillus (4.55%), Hanseniaspora (4.33%) and Brettanomyces (4.5%). Cladosporium, Rhodotorula
and Torulaspora were found in small amounts (all making up less than 2%). The most
abundant fungi in the 2017 vintage were Brettanomyces (31%). This was followed by
Aspergillus (17.1%), Saccharomyces (12.8%), Debaryomyces (11.4%) and Penicillium (10.7%).
Genera unique to this vintage include Naganishia (1.7%) and Pichia (0.16%). Aspergillus,
the filamentous fungi, was seen to be dominant (44%) in the 2019 vintage. Saccharomyces
(26.9%), Penicillium (9.34%), Hanseniaspora (8.8%) Brettanomyces (5.4%) and Cladosporium
(1.9%) were also reported.

All four barrels of the 2020 vintage were identical with Saccharomyces, Hanseniaspora
and Brettanomyces constituting more than 60%. In this vintage, barrel B was unique with
the presence of Kregervanrija (19%) and Cystofilobasidium (4.29%). Two barrels (A and B)
of the 2021 vintage had high amounts of Penicillium (over 50%). Other genera detected in
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barrel A were Aspergillus (19.1%), Saccharomyces (12%), Cladosporium (7.2%), Rhodotorula
(2.4%) and Brettanomyces (1.9%). Barrel B, on the other hand, had a higher proportion
of Saccharomyces (27.4%) and Rhodotorula (12%) when compared to barrel A. The genus
Debaryomyces (5.2%) was only detected in barrel B of this vintage. Saccharomyces (53%)
was the highest detected in barrel C. Others included Penicillium (13%), Brettanomyces
(12.8%) and Tilletiopsis (10%). Penicillium, Saccharomyces, Kregervanrija and Brettanomyces
were dominant in the 2022 vintage. Together they made up over 80% of the fungi detected
(Figure 2 and Supplementary Table S4).
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(D) 2020; (E) 2021; (F) 2022. Fungi which were not resolved to the genus level are shown at the family
level. Vintages with multiple barrels are indicated with different letters.

3.4. Alpha and Beta Diversity Measure

The within-sample diversity showed no significant differences for both bacterial and
fungal communities across the vintages. Nevertheless, the higher richness and diversity
associated with the 2020 vintage is highlighted in both bacterial and fungal plots. This is
shown in Supplementary File S2. For beta diversity, our results indicated that the bacte-
rial (PERMANOVA—F = 1.55, R2 = 0.56, p = 0.02) and fungal (PERMANOVA—F = 2.15,
R2 = 0.64, p = 0.002) composition differed across all vintages (Figure 3).

Microorganisms 2025, 13, x FOR PEER REVIEW  7  of  16 
 

 

 

Figure 2. Relative abundance of the core fungal genera in vintage: (A) 2016; (B) 2017; (C) 2019; (D) 

2020; (E) 2021; (F) 2022. Fungi which were not resolved to the genus level are shown at the family 

level. Vintages with multiple barrels are indicated with different letters. 

3.4. Alpha and Beta Diversity Measure 

The within-sample diversity showed no significant differences for both bacterial and 

fungal communities across the vintages. Nevertheless, the higher richness and diversity 

associated with the 2020 vintage is highlighted in both bacterial and fungal plots. This is 

shown in Supplementary File S2. For beta diversity, our results indicated that the bacterial 

(PERMANOVA—F = 1.55, R2 = 0.56, p = 0.02) and fungal (PERMANOVA—F = 2.15, R2 = 

0.64, p = 0.002) composition differed across all vintages (Figure 3). 

 

Figure 3. Beta diversity PCoA  (Weighted Unifrac)  for  (A) bacterial;  (B)  fungal. Significant PER-

MANOVA results indicated that the vintage had an impact on the community structure of bacteria 

and fungi. 

3.5. Influence of Climate on Microbial Community Composition in Oamaru‐Brewed Beers 

The model  (p = 0.001; Adj. R2 = 0.18)  that best described  the bacteria data had  the 

average temperature, maximum temperature, and rainfall as constraining variables (Fig-

ure 4A, redundancy analysis, RDA). Of the total inertia, 40.38% was explained by the RDA 

constrained axes. Maximum temperature had the highest impact on the first and second 

RDA axis. The site constraints indicated that all four samples (barrels) of the 2020 vintage 

as well  as  the  2017  vintage were  positively  correlated with  the  first  RDA  axis,  thus 

Figure 3. Beta diversity PCoA (Weighted Unifrac) for (A) bacterial; (B) fungal. Significant PERMANOVA
results indicated that the vintage had an impact on the community structure of bacteria and fungi.
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3.5. Influence of Climate on Microbial Community Composition in Oamaru-Brewed Beers

The model (p = 0.001; Adj. R2 = 0.18) that best described the bacteria data had
the average temperature, maximum temperature, and rainfall as constraining variables
(Figure 4A, redundancy analysis, RDA). Of the total inertia, 40.38% was explained by the
RDA constrained axes. Maximum temperature had the highest impact on the first and
second RDA axis. The site constraints indicated that all four samples (barrels) of the 2020
vintage as well as the 2017 vintage were positively correlated with the first RDA axis, thus
suggesting that maximum temperature might explain the bacterial community composition
detected in those vintages (Figure 4A). Similarly, samples from the 2016, 2019, 2021 and
the 2022 vintage all strongly negatively correlated with the first RDA axis. This indicated
that average temperature and rainfall influenced their bacterial composition. A further
positive correlation between rainfall and average temperature was observed with both
variables negatively correlated with maximum temperature. These results were confirmed
using ANOVA (by terms): average temperature (F = 1.57, p = 0.021), maximum temperature
(F = 1.67, p = 0.033) and rainfall (F = 2.17, p = 0.002) (Supplementary Table S5A).
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Figure 4. (A) Redundancy analyses (RDAs) for bacterial communities. (B) Canonical correspondence
analysis (CCA) for fungal microbiome. The arrows were the climatic data used to constrain the axes.
The angles and lengths of the arrows show the correlations between the first two axes and the climatic
variables. Site scores, site constraints and biplot scores are shown in Supplementary Table S6.

For the fungal data, canonical correspondence analysis (CCA) was used to uncover
climatic variables that best explain the variance observed in the data (Figure 4B). Here, the
model (p = 0.001; Adj. R2 = 0.22) where five climatic variables were included explained
a better proportion of the observed variance. The constrained axes described 57.09% of
the total inertia detected. The first CCA axis was positively correlated with maximum
temperature, while it was negatively correlated with all other variables. The second CCA,
on the other hand, was positively correlated with humidity and average temperature and
negatively correlated with minimum temperature, max. temperature and rainfall. Here,
humidity and average temperature were positively correlated, while both were negatively
correlated with maximum temperature. At approximately right angles to each other, rainfall
and humidity were uncorrelated. Upon observing the site constraints, we inferred that
maximum temperature had the highest impact on the fungal community composition from
the 2017, 2019 and 2020 vintages. The 2016 and 2021 vintages were influenced by average
temperature and humidity. The minimum temperature and rainfall appeared to drive
the 2022 fungal community (Figure 4B). Supplementary Table S5B shows the statistical
significance of all explanatory variables.
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3.6. Organic Acid Concentrations and Correlations with Microbial Data

Statistical analysis of organic acid data revealed that the concentrations of acetic
acid and citric acid were consistent across all vintages. However, statistically different
concentrations were found in L-malic acid, succinic acid, and L-lactic acid. The highest
concentration of L-malic acid was detected in the 2021 vintage, while the lowest was found in
the 2022 vintage. The 2017 vintage had high concentrations of succinic acid, and again, the
smallest amounts of this acid were reported in the 2022 vintage. These are shown in Table 3.

Table 3. Organic acids reported in Oamaru-produced beer. Results shown as mean ± standard
deviation (SD). Different superscripts in the same column signifies significant differences (Tukey’s
HSD test, p < 0.05).

Sample
ID Sample Vintage Citric Acid

(mg/L)
L-Malic Acid

(mg/L)
Succinic Acid

(mg/L)
L-Lactic Acid

(mg/L)
Acetic Acid

(mg/L)

1 OBYR16 2016 36.49 ± 1.03 a 805.68 ± 7.54 ab 1518.42 ± 21.33 a 2059.67 ± 1.50 b 2719.22 ± 7.24 a

2 OBYR17 2017 164.29 ± 2.34 a 554.57 ± 5.95 c 7853.93 ± 19.09 b 2378.92 ± 7.85 b 1935.60 ± 24.09 a

3 OBYR19 2019 91.38 ± 0.57 a 632.50 ± 1.51 bc 1355.53 ± 1.03 a 3996.11 ± 48.61 b 2165.75 ± 41.01 a

4 OBYR20A 2020 181.40 ± 1.45 a 668.04 ± 4.54 c 5219.40 ± 11.46 ab 7389.08 ± 4.31 a 2395.66 ± 25.22 a

5 OBYR20B 2020 195.44 ± 0.47 a 646.63 ± 3.72 c 3760.15 ± 9.05 ab 9002.02 ± 21.01 a 540.26 ± 3.20 a

6 OBYR20C 2020 849.73 ± 1.91 a 607.24 ± 1.51 c 5087.91 ± 2.80 ab 7741.88 ± 52.59 a 1308.62 ± 23.91 a

7 OBYR20D 2020 194.73 ± 1.74 a 624.33 ± 2.65 c 3256.08 ± 8.78 ab 8220.19 ± 1.44 a 1040.83 ± 6.00 a

8 OBYR21A 2021 178.76 ± 1.90 a 874.71 ± 2.76 a 1357.05 ± 2.50 a 8517.37 ± 4.36 a 346.51 ± 1.00 a

9 OBYR21B 2021 189.55 ± 0.22 a 909.43 ± 1.09 a 1335.33 ± 2.47 a 8831.55 ± 17.25 a 191.48 ± 6.28 a

10 OBYR21C 2021 163.23 ± 1.51 a 821.00 ± 5.64 a 3051.26 ± 5.24 a 7160.86 ± 6.01 a 208.54 ± 1.61 a

25 NBFM12 2022 142.73 ± 0.26 a 503.93 ± 0.43 c 1092.93 ± 2.47 a 5318.81 ± 7.17 ab 2395.86 ± 18.68 a

When organic acid concentrations were correlated with microbial data using RDA,
the best model (p = 0.002; Adj. R2 = 0.43) for the bacterial data had succinic, lactic and
acetic acid as constraining variables (Figure 5A; Supplementary Table S8). The constrained
axes explained 58.6% of the total inertia. The first RDA axis correlated with succinic
(F = 5; p = 0.007) and lactic (F = 4.49; p = 0.008) acid. This may indicate that the bacterial
community in those vintages (2017, 2020, 2021) may be responsible for this (Figure 5A and
Supplementary Table S7A).
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Figure 5. (A) Redundancy analyses (RDA) for bacterial communities. (B) Canonical correspondence
analysis (CCA) for fungal microbiome. The arrows were the organic acid concentrations used to
constrain the axes. The angles and lengths of the arrows shows the correlations between the first two axes
and the organic acids. Site scores, site constraints and biplot scores are shown in Supplementary Table S8.
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Similarly, using organic acids as constraining variables via CCA for the fungal data
accounted for 53% of the total inertia. Here, the model (p = 0.007; Adj. R2 = 0.15) that best
described the data used citric acid, malic acid, succinic acid, lactic acid and acetic acid.
Figure 5B shows that the first CCA correlated positively with citric, malic and succinic acid.
All these were reaffirmed by ANOVA (by terms) (Supplementary Table S7B).

3.7. Analysis of ASVs That Were Differentially Abundant in All Vintages

The list containing the bacterial ASVs that were differentially expressed are shown
in Supplementary Table S9. None were reported between vintage 2016 and 2017, vintage
2016 and 2019, vintage 2016 and 2020 and vintage 2016 and 2021. At the genus level, the
most differences were identified between vintage 2021 and vintage 2022 where 12 ASVs
were noted. Some examples include Klebsiella (log 2-fold change; −26.9; p.adj; 1.82 × 10−7),
Komagataeibacter (log 2-fold change; 24.7; p.adj; 2.36 × 10−7), and Pediococcus (log 2-fold
change; 14.8; p.adj; 1 × 10−3). In some cases, it was observed that some ASVs identified at
a certain taxonomic level (e.g., Pediococcus) had both a positive and a negative log 2-fold
change. An ASV identified to the family level (Solirubrobacteraceae) was differentially
abundant and specifically associated with the 2020 vintage.

For the fungal data, only the vintage 2016 and 2017 showed no differentially abundant
ASV. This implies that more differential ASVs were associated with the fungal data as
compared with the bacterial data. Unlike the bacterial data, the most differential fungal
ASVs (16) were noted between vintage 2020 and vintage 2021. These include A. pullulans
and H. valbyensis with higher differential abundance in the 2020 vintage than those observed
in the 2021 vintage. ASVs that were differentially abundant in the 2021 vintage were
identified as Metschnikowia and Cladosporium. All these are shown in Supplementary
Table S10.

4. Discussion
We assessed the bacterial and fungal diversity in six vintages of a lambic styled

beer produced in Oamaru, Otago, New Zealand. Furthermore, we explored the prospect
of climatic variables influencing the microbiome of this beer style and compared our
results with those of similar studies of Belgian lambic beer [2,16], for which climate data
were accessible.

Studies involving the use of metabarcoding to determine the microbiomes of sponta-
neously fermented beers are, at present, scarce, and to our knowledge, they are otherwise
hitherto limited to Belgium [2,16] and Russia [1]. The latter study examined a range of
commercially available bottled products without stipulation of production times or loca-
tions, making a detailed comparison of their results with those of the Belgian studies or
ours limited. Nonetheless, it is relevant to note that the microbial diversity of the Russian
products examined was somewhat low, with Lactobacillaceae dominating bacterial pres-
ence, and Brettanomyces the predominant yeast species found, with exceptions found in
three beers where Saccharomyces species were dominant. In one of these, Brettanomyces
represented 45.4% of the yeast population (to 54.1% for Saccharomyces), and there was
another with Issantchenkia orientalis (also known as Pichia kudriavzevii) comprising 22.4%
of the yeast population. One other beer with Brettanomyces comprising 81.5% of the yeast
population also had 11.5% P. kluyveri present. In summary, over 90% of the bacterial or
fungal populations in these beers were represented by one or two taxa only.

Belgium-made lambic beers seem to follow a similar pattern. Bacteria were not
detected beyond 13 months, but studies so far identify either Pediococcus damnosus [16] or
Acetobacter lambici [2] as the taxa exclusively identified at this point, whereas at 24 months
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and 30 months, respectively, the only yeast species detected were Dekkera (Brettanomyces)
bruxellensis (24 months) or B. custersianus (30 months) [2,16].

Our results from end-point examinations of beers produced in Oamaru from 2016
until 2022 display a markedly different pattern of microbial diversity. Only in vintages of
2016 and 2019 do the bacterial populations resemble, in terms of diversity, those outlined
above for Belgian and Russian ales with a predominance of Pediococcus (Figure 1). However,
although the Pediococcus species is a notable presence during 2021 and 2022 brewings, it is
not exclusive; and for 2017 and especially 2020, it is either absent or marginalized among
other bacteria detected. Furthermore, the identity of fungal taxa continually shifts between
each year studied (Figure 2); and for 2020 and 2021, where several distinct barrels were
investigated, each sample displays a notable microbial population shift.

We have previously inferred a relationship between certain climatic variables and
microbial populations in organic wines produced in Waipara [14], which is a region just
300 km from the participating Oamaru brewery. On this basis, we sought to explore the
potential influence of such climatic variables on the microbiomes of the beers we examined.
Overall, variance in temperature was indicated as the most likely common feature to
correlate with the taxonomic variance we observed (Figure 4). However, this is at odds
with the temperature data we acquired for Brussels (Table 2), located only approximately
21 km from the Senne valley brewery, where the minimum and maximum temperature
ranges are greater than Oamaru. Details of production dates, times and conditions are not
provided in the Russian study [1], but as a region, it is certainly far colder [33] than either
Belgium or New Zealand, yet their ales display a microbial homogeneity similar to Belgian
lambic beers.

What distinguishes New Zealand from both Belgium and Russia is history. The latter
two nations have brewed beers since the 13th and 15th centuries, whereas New Zealand’s
first record of beer production was by Captain Cook in 1773 with larger production runs
established in the 1930s and, more pertinently, with the brewer producing the lambic-style
beers examined in this study established only in 2014. We consider it highly likely that
during a substantive period of brewing, the indigenous microbes present in Belgian and
Russian breweries have become well established and adapted to their environments, in
stark contrast to those present in Oamaru, where the brewing conditions are very new by
comparison. In this respect, the New Zealand situation is unique, and it is one in which
microbial fluctuations, perhaps in part due to climatic variables, and also to a relatively
close proximity to the Pacific Ocean, may be better explained.

For Oamaru-produced beers, there was no significant difference between the alpha di-
versity of all vintages in both bacterial and fungal populations (Supplementary Figure S1),
yet beta diversity (PERMANOVA) reported significant differences (Figure 3). Using climatic
variables (maximum temperature, minimum temperature, average temperature, rainfall,
humidity) and organic acid concentrations (citric acid, L-malic acid, succinic acid, L-lactic
acid, acetic acid) as constraining variables associated with the vintages, we uncovered
some relationships via RDA and CCA. It appears that bacterial and fungal communities
responded differently to these variables. In terms of climate, Figure 4A indicates that maxi-
mum temperature was the key factor that influenced the bacterial community associated
with the 2020 vintage. The higher bacterial richness and diversity associated with this
vintage can be seen in Figure 1D. For fungi, in addition to the 2020 vintage, the fungal
community compositions of the 2017 and 2019 vintages were impacted by the maximum
temperature (Figure 4B). Similarly, the bacterial composition of the 2020 and the 2016
vintage might have influenced the concentrations of succinic acid reported in these vin-
tages (Figure 5A). An identical conclusion can be drawn from the fungal plot (Figure 5B),
although it is much more pronounced in the former. Contrasting responses of bacteria
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and fungi to vintage and site-specific effects have also been reported in wine grapes [34].
Acknowledging the unique position of New Zealand in the history of brewing, we believe
ours is the first study to report these observations: further studies of the impact of these
variables in organic beer fermentation would be helpful to confirm this association.

Overall, besides the 2020 vintage, Pediococcus is a generally significant presence
(Figure 1). This is known as one of the lactic acid bacteria (LAB) species commonly seen
in a beer environment [6,35,36]. From the outputs of DESeq2, we can infer that different
species and/strains of Pediococcus might dominate different vintages. However, these
could not be resolved beyond the genus level (Supplementary Table S9). Members of the
Enterobacteriaceae family have established roles in the beer fermentation process [37]. In
our study, these were mainly detected only in the 2021 and 2022 vintages. In other vintages,
they were relatively minute (less than 1%–vintage 2019) or absent (2016, 2017 and 2019).
Most beer brewers usually acidify their wort manually, and this impacts the growth of
members of Enterobacteriaceae [6,38]. Here, this could possibly imply that the brewery
employed an acidification approach for earlier vintages, while the latter vintages (2021 and
2022) were not acidified.

The bacterial family Solirubrobacteraceae (log 2-fold change; 22.37; p.adj; 2.16 × 10−8)
was significantly expressed; we believe this is the first time this bacterial family was detected
in beer microbiota. These bacteria have previously been isolated from soil microbiomes
from tea plantations [39] and wheat cropping systems [40]. Liao et al. [41] suggested that
an increase in Solirubrobacteraceae could imply changes in microbial communities from
changes in wider ecological conditions. It is interesting to note that 2020 experienced the
hottest maximum temperatures and lowest values for rainfall, humidity, wind and gust
strength out of all the vintages studied (Table 1). Since maximum temperature as indicated
by our RDA plot (Figure 4A) had a significant impact on the bacterial community of the
2020 vintage, this might have been the major driver of this bacterial family. More research
will be required to verify this.

For fungi, the filamentous fungi Penicillium was conspicuous in all vintages, constitut-
ing more than 70% in the 2016 vintage (Figure 2). This has also been identified in other beer
studies [35,42]. Specifically, in their study, Piraine et al. [43] found one sample with a high
proportion (>80%) of its fungal ASVs linked to Penicillium. Bossaert et al. [35] hypothesized
that such an observation might be linked to low levels of bitterness and/or alcohol, which
provides an environment that is less stringent. In this current study, rainfall and humidity
appear to influence the fungal community of the 2016, 2021 and 2022 vintages (Figure 4B).
Together these vintages had high proportions of ASVs linked to Penicillium (Figure 2).
These species are known to thrive with excessive moisture [44]. The correlation between
environmental moisture and humidity associated with a given vintage, and the proportion
of filamentous fungi such as Penicillium, appears logical.

The genera Brettanomyces, Saccharomyces and Hanseniaspora were detected in all vin-
tages. Brettanomyces is known to be abundant in Belgian lambic and gueze beers where
it contributes a unique taste [45–48]. Like wine, the presence of Saccharomyces in beer is
common [1,2]. They are mainly responsible for converting fermentable carbohydrates
into ethanol and carbon dioxide via the Embden–Meyerhof–Parnas pathway [6]. The
non-Saccharomyces yeasts Hanseniaspora is well established in grape and wine fermentation
microbiomes [14,49,50]. In beer brewing, the impact of Hanseniaspora on the volatile com-
position of beer have been described [51]. In this study, the 2020 vintage had the highest
relative abundance of Hanseniaspora (Supplementary Table S4). With maximum tempera-
ture having a significant effect on its fungal community composition (Figure 4B), it might
be the case that Hanseniaspora thrives in vintages associated with higher temperatures. This
result is supported by an earlier report where Hanseniaspora species were among the first
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microorganisms to grow when the temperature reaches 30 ◦C in cocoa and mixed beers
fermentation [52,53]. The genus Kregervanrija was also detected in one sample of the 2021
vintage and the 2022 vintage. This has previously been isolated from Austrian wines [54],
beer, cider and table olives [55]. Amongst other species, De Roos et al. [42] also reported
their abundance in the interior surfaces of casks used for lambic beer production. Their
detection in these vintages might be due to the retired wine casks/barrels used for beer
brewing here.

The organoleptic properties of beer are known to be impacted by organic acids and
other compounds such as CO2 and ethanol [56,57]. The role of non-Saccharomyces yeasts
in shaping the mouth feel properties of beer has been discussed [58,59]. L-Lactic acid
concentrations varied significantly across the vintages. The highest concentrations occurred
in the 2020 and 2021 vintages. Lower amounts were associated with the 2016, 2017 and
2019 vintages. This is in line with Postigo et al. [37] who reported varying concentrations of
this acid in experimental beers and suggested that the competition between various yeasts
species and those between yeast and lactic acid bacteria (LAB) may be responsible for this.
Beers with a sour taste are usually characterized with high lactic acid concentration [60].
This could mean that beers from the 2020 and 2021 vintages were sour compared to the
others. The beer from the 2017 vintage will likely be bitter and salty, as it had the highest
amounts of succinic acid (Table 3). Bitter flavors and saltiness in beer taste have been
attributed to succinic acid [61]. In the brewing process, most breweries aim to minimize
succinic acid concentration to improve drinkability [62]. Significant variations were also
detected for L-malic acid concentrations. As with citric acid, its level in the starting wort
determines its concentration in beer products [63].

No significant difference was observed when the citric acid concentrations in all beers
were determined. Although no statistical differences were reported, the variations in
amounts reported can be observed. This might be due to the varying amounts of citric acid
in the starting wort. Li and Liu [63] have earlier established that this acid is not produced
during fermentation and that the concentration in wort primarily determines its amount in
beer. The same can be said of acetic acid, where no significant variations were detected in
their concentration in all vintages (Table 3).

At this point, we are unsure what this might mean especially from the sen-
sory/organoleptic point of view. Additional studies will be needed to evaluate this.

5. Conclusions
In comparison with spontaneously fermented beers produced in Russia and Belgium,

the New Zealand equivalents examined in this study display a substantive degree of micro-
biological flux. The relative stability of beer microbiomes in the other countries for which
data are available is likely to be attributed to the lengthy production history and hence
adaptation of the indigenous microflora to those local brewing conditions. The production
history of the brewery in Oamaru (and New Zealand generally) is chronologically very
short, potentially explaining the lack of microbiological coherency between brews and
greater susceptibility to climatic variables, as indicated in this study. Additional studies
exploring microbial flux in other breweries across New Zealand (and indeed any nation
where beers are produced using indigenous microflora) would be valuable to better inform
this hypothesis; however, our observations may also be prudent for any new enterprise
wishing to embark upon brewing using a spontaneous fermentation approach, where
indigenous microflora is not established, and where microbial flux may be influenced by
external factors, including those of climatic origin. This could be relevant in generating the
consistency of the final product and thus of consequence for the beer industry at large.
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