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Abstract: The rumen microbiome is central to feed digestion and host performance, mak-
ing it an important target for improving ruminant productivity and sustainability. This 
study investigated how feed composition influences rumen microbial abundance and 
phenotypic traits in beef cattle. Fifty-nine Angus bulls were assigned to forage- and grain-
based diets in a randomized block design, evaluating microbial dynamics, methane emis-
sions, and feed efficiency. Quantitative PCR (qPCR) quantified bacterial, archaeal, fungal, 
and protozoal populations. Grain-based diets reduced bacterial and fungal counts com-
pared to forage diets (1.1 × 1011 vs. 2.8 × 1011 copies of 16S rRNA genes and 1.5 × 103 vs. 3.5 
× 104 copies of 18S rRNA genes/mL, respectively), while protozoan and methanogen pop-
ulations remained stable. Microbial abundance correlated with feed intake metrics, in-
cluding dry matter and neutral detergent fiber intakes. Methane emissions were lower in 
grain-fed bulls (14.8 vs. 18.0 L CH4/kg DMI), though feed efficiency metrics showed no 
direct association with microbial abundance. Comparative analysis revealed adaptive mi-
crobial shifts in response to dietary changes, with functional redundancy maintaining ru-
men stability and supporting host performance. These findings provide insights into how 
feed composition shapes rumen microbial dynamics and host phenotypes, highlighting 
the functional adaptability of the rumen microbiome during dietary transitions. 
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1. Introduction 
The rumen microbiome plays a central role in feed digestion, animal productivity, 

and the sustainability of ruminant agriculture. By facilitating the breakdown of fibrous 
feedstuffs, rumen microbes provide fermentation end-products, including volatile fatty 
acids and microbial protein, to the host animal [1,2]. However, microbial fermentation in 
the rumen also produces methane, a potent greenhouse gas that represents both an envi-
ronmental challenge and an energy loss for the host [3]. Recent advances in microbiome 
research have highlighted the complexity and dynamic nature of rumen microbial com-
munities, with diet recognized as a primary driver of changes in microbial composition 
and functional activity [4]. Understanding how dietary inputs influence microbial dynam-
ics is critical for optimizing feed efficiency and mitigating methane emissions in ruminant 
production systems [5]. 

Diet composition, particularly the forage-to-concentrate ratio, exerts a profound in-
fluence on rumen microbial population dynamics. Forage-based diets are typically rich in 
fiber and favor the growth of bacteria and fungi specialized in plant cell wall degradation 
[6]. Conversely, grain-based diets, with their high starch content, often shift microbial 
communities toward amylolytic populations [7], leading to changes in fermentation path-
ways and the physico-chemical properties of the rumen environment [8]. Feed composi-
tion can alter the balance between hydrogen-producing and hydrogen-utilizing microbes, 
with downstream effects on methane production and host nutrient utilization [9]. Forage-
based diets tend to result in higher methane emissions per unit of DM fermented as com-
pared to grain-based diets, as the fermentation of fibrous feeds generates more hydrogen 
for methanogenesis [10]. While the impacts of forage-to-grain transitions on rumen mi-
crobiota are well-documented [11,12], knowledge gaps remain regarding how their pop-
ulational shifts interact with host phenotypic traits, such as feed conversion efficiency and 
methane emissions. Previous research on the assessment of population dynamics during 
forage-to-grain transitions has predominantly focused on bacteria and has not examined 
other microbial groups—such as archaea, fungi, and protozoa—individually [13]. There-
fore, investigating these relationships can provide insights into the mechanisms underly-
ing host–microbe interactions and their implications for sustainable ruminant production. 

It is well established that rumen microbial functions are driven by both prokaryotes 
(bacteria, archaea) and eukaryotes (protozoa and fungi) [7]. This study aimed to evaluate 
the impact of feed composition on rumen microbial abundance of four microbial groups 
and its association with phenotypic traits (e.g., feed intake, feed efficiency, weight gain) 
and methane emissions in beef cattle. These objectives were addressed by integrating mi-
crobial and phenotypic data within a randomized block design. Comparative analysis 
across feeding periods further highlighted the adaptability of rumen microbial popula-
tions to dietary changes. 

2. Materials and Methods 
2.1. Animal Study 

The experimental procedures described in this study were approved by the Veteri-
nary Services and the Animal Care Committee, University of Manitoba, Canada. Fifty-
nine purebred Red and Black Angus bulls (mean age of 249 ± 22 days and average body 
weight of 314 ± 32 kg) were raised in confinement at the Glenlea Research Station (Uni-
versity of Manitoba) according to the Canadian Council on Animal Care guidelines [14]. 
The bulls were randomly assigned to four pens, and each pen was bedded with a mixture 
of barley/flaxseed straw and equipped with GrowSafe® (GrowSafe Systems Ltd., Airdrie, 
AB, Canada) feed intake system and a heated watering bowl. Bulls were fed forage or 
grain diets over two experimental periods (Periods 1 and 2, each one with 80-day 
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duration) in a randomized block design (Table S1). Bulls in pens 1 and 4 were only fed 
forage or grain diets in both study periods, whereas bulls in pens 2 and 3 were fed forage 
and grain in Period 1, respectively, and then they were switched to the alternate diet in 
Period 2 (Table S1). 

Individual feed intake was measured by the GrowSafe® feeding system to provide 
growth and intake data (DMI) needed for the estimation of feed conversion ratio (FCR), 
which was used as a measure of feed efficiency in this study. FCR was determined as a 
ratio of DMI to average daily gain (individual animals) and computed on a biweekly basis 
[15]. Residual feed intake (RFI) was calculated as the difference between observed feed 
intake and predicted feed intake, with predictions derived from a regression model based 
on metabolic body weight (BW0.75) and average daily gain (ADG), following the methods 
described by Koch et al. [16] and further refined by Basarab et al. [17] and Berry and 
Crowley [18]. The RFI measurement spanned 79 days, during which intake data were rig-
orously validated to exclude days with feed disappearance below 95%. This approach 
yielded 76 valid intake days, allowing for a robust assessment of feed efficiency and elim-
inating potential confounding factors that could arise from inaccurate feed intake meas-
urements. Starch and NDF contents (Table S2) of the respective diets were used to calcu-
late starch and NDF intakes from the daily DMI [19]. Finally, enteric CH4 emissions were 
measured using the sulfur hexafluoride (SF6) tracer gas technique, a method reported by 
Berndt et al. [20] and Deightonet al. [21]. Methane was measured on four distinct occasions 
during the adaptation phase to account for variability and allow animals to acclimate to 
the experimental setup: Days-12, -9, -6, and -2 relative to the start of the RFI period. To 
avoid interfering with feed intake measurements, CH4 collection was deliberately ex-
cluded during the RFI phase. Measurements resumed immediately after the RFI period, 
with three consecutive days of sampling (Days 80, 82, and 85), ensuring post-RFI CH4 data 
collection while minimizing measurement errors. 

2.2. Rumen Fluid Sampling 

Rumen fluid samples were collected using a Geishauser oral probe [22] on Days 0 
and 80 in Period 1 and on Days 100 and 180 in Period 2. However, downstream analysis 
was performed only on the samples taken at the end of each period because the washout 
period (adaptation phase) was 20 days (Table S1). Approximately 250 mL of rumen fluid 
was collected in each sampling, snap-frozen into liquid nitrogen, and stored at −80 °C for 
later processing. 

2.3. Feed Chemical Analysis 

Sampling of feeds over the experimental period and how orts were handled were 
described by Thompson [23]. Composited and dried feeds were analyzed for DM (dry 
matter; method 934.01) as described by AOAC [24]. Both neutral (NDF; with α-amylase 
and sodium sulfite) and acid (ADF) detergent fiber [25] were quantified using Ankom 
Fiber Analyzer (Ankom Technology Corporation, Macedon, NY, USA). Starch was deter-
mined by the α-amylase method as described by Hall [26]. A Leco combustion nitrogen 
(N) analyzer (FP-428N Determinator, Leco Corporation, St. Joseph, MI, USA) was used to 
measure N content. Crude protein (CP) was calculated as N × 6.25 [19]. 

2.4. DNA Extraction 

Total DNA was extracted from the ruminal content using the bead-beating method, 
as described by Liet al. [27]. In summary, frozen rumen content was thawed on ice, and 1 
g sample was added in 15 mL falcon tubes, washed in 4 mL of TN150 buffer (10 mM Tris-
HCl [pH 8.0], 150 mM NaCl), and centrifuged at 14,600× g for 5 min at 4 °C. Thereafter, 
samples were physically disrupted in a BioSpec Mini-BeadBeater-8 (BioSpec, Bartlesville, 
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OK, USA) at 246× g for 3 min and subjected to a phenol/chloroform/isoamyl alcohol 
(25:24:1) extraction. The DNA was precipitated with cold ethanol and dissolved in nucle-
ase-free water (30 µL). Lastly, the concentration and quality of DNA were measured using 
Nanodrop® ND-1000 spectrophotometer (Thermo Scientific, Waltham, MA, USA). Quan-
titative real-time PCR (qPCR) was performed only on DNA samples exhibiting a ratio of 
absorbance at 260 nm to 280 nm higher than 1.8 and a ratio of 260 nm wavelength absorb-
ance to 230 nm between 2.0 and 2.2. 

2.5. Quantitative Real-Time PCR Analysis 

The qPCR analysis was performed to estimate microbial abundances by measuring 
the copy numbers of targeted genes using SYBR Green chemistry (Fast SYBR® Green Mas-
ter Mix; Applied Biosystems, Waltham, MA, USA) on a StepOnePlusTM Real-Time PCR 
System (Applied Biosystems). The partial bacterial and archaeal 16S rRNA genes were 
amplified using U2F/U2R (5′-ACTCCTACGGGAGGCAG-3′; 5′-GACTACCAGGG-
TATCTAATCC-3′) [28] and uniMet1-F/uniMet1-R primer pairs (5′-CCGGAGATGGAAC-
CTGAGAC-3′; 5′-CGGTCTTGCCCAGCTCTTATTC-3′) [29]. Protozoa and fungi were am-
plified using P-SSU-316F/P-SSU-539R (5′-GCTTTCGWTGGTAGTGTATT-3′; 5′-CTT-
GCCCTCYAATCGT WCT-3′) [30] and Fungi-F1/Fungi-R1 (5′-GAGGAAGTAAAAGTCG-
TAACAAGGTTTC-3′; 5′-CAAATTCACAAAGGGTAGGATGATT-3′) [31] to target 18S 
rRNA genes. 

The qPCR experiments were performed using the following program: 95 °C for 10 
min, followed by 40 cycles of 95 °C for 20 s and 62 °C for 1 min for bacteria, and 95 °C for 
20 s, followed by 40 cycles of 95 °C for 3 s and 60 °C for 30s for archaea, protozoa, and 
fungi. A standard curve was constructed using serial dilutions of plasmid DNA contain-
ing the 16S rRNA gene sequence for bacteria and methanogens and 18S rRNA gene for 
protozoa and fungi. Copy numbers for each standard curve were calculated based on the 
following equation: (NL × A × 10−9)/(660 × n), in which NL was the Avogadro constant 
(6.02 × 1023), A was the molecular weight of DNA molecules (ηg), and n was the length of 
amplicon (bp) [32]. The copy number of 16S rRNA genes for total bacteria, total methano-
gens, and 18S rRNA gene for protozoa and fungi per sample was calculated using the 
equation of Li, Penner, Hernandez-Sanabria, Oba and Guan [27]: (QM × C × DV)/(S × W), 
where QM was the quantitative mean of the copy number, C was the DNA concentration 
of each sample (ηg/µL), DV was the dilution volume of extracted DNA (µL), S was the 
DNA amount subjected to analysis (ng), and W was the sample weight subjected to DNA 
extraction (g). The microbial abundance values were normalized by incorporating sample 
weight and DNA concentration into the equation above. 

2.6. Statistical Analysis 

The relationship between rumen microbial abundance (bacteria, protozoa, fungi, and 
archaea) and phenotypic traits (DMI, NDF intake, starch intake, CH4/kg DMI, FCR, and 
ADG) was explored through unsupervised preliminary analysis with Principal Compo-
nents (PCA) using the package mixOmics [33]. Then, we implemented the algorithm PC-
Corr—Principal Component-Correlation [34]—to generate discriminative functional net-
works for class labels (forage vs. grain) using p-values of Mann–Whitney tests as evalua-
tors. Features were normalized through z-score (centered to have mean 0 and scaled to 
have standard deviation 1) or log (logarithm base 10 plus 1 applied to each data element 
to avoid problems with 0 values) before building PC-Corr networks in Cytoscape 3.6.0 
[35]. 

Thereafter, microbial copy numbers (𝑦) were analyzed according to the framework 
of generalized linear mixed effects models. Therefore, by considering the fixed effects of 
period and random effects of pens (𝑝), the following framework was adopted: (1) the 
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negative binomial distribution (𝑁𝐵) for microbial copy numbers, i.e., 𝑦 ~ 𝑁𝐵 ቀ𝜆, 𝜆൫1 +𝜙𝜆൯ቁ with mean, 𝜆, and variance is given by the product 𝜆൫1 + 𝜙𝜆൯, in which 𝜙 is 
a scale parameter and (2) the log link function (𝜂 = log൫𝜆൯) for 𝜂 = 𝜂 + 𝛽𝜏 + 𝑝 as the 
linear predictor and an assumed normal (𝑁) distribution for random effect of pen (𝑝), that 
is, 𝑝 ~ 𝑁ሺ0, 𝜎ଶሻ. In the link function, 𝜂 is the intercept, and 𝛽 is the period (𝜏, days) 
slope for a starch-rich diet (𝑖 = 1) or for a predominant fibrous diet (𝑖 = 2). Continuous 
variables such as dry matter intake, average daily gain, and residual feed intake (RFI) were 
analyzed as normally distributed variables, whereas feed conversion ratio (FCR) was as-
sumed to follow the Gamma distribution. The model was fitted with the GLIMMIX pro-
cedure of SAS (SAS® Studio, SAS University Edition, SAS Institute Inc., Cary, NC, USA). 

3. Results 
3.1. Effect of Diet on Phenotypic Traits and Rumen Microbial Counts 

Diet composition significantly influenced both phenotypic traits and rumen micro-
bial abundances (Table 1). Bulls fed grain-based diets exhibited higher dry matter intake 
(12.8 ± 0.11 kg/day) compared to those fed forage-based diets (10.6 ± 0.11 kg/day; p = 0.005). 

Table 1. Predictors, mean ± standard errors (SE), and 95% confidence intervals (Upper–Lower Lim-
its) for the phenotype data and microbial counts in the rumen of bulls fed either forage- or grain-
based diets. 

 Diets (Mean ± SE)  

Predictors Forage 
(Upper–Lower Limits) 

Grain 
(Upper–Lower Limits) 

p-Value 𝐏𝐡𝐞𝐧𝐨𝐭𝐲𝐩𝐞 𝐝𝐚𝐭𝐚 (Unit)    Dry matter intake,  (kg/day) 10.6 ± 0.11 
(10.1–11.1) 

12.8 ± 0.11 
(12.3–13.3) 0.005 

Forage NDF intake, (kg/day) 
4.4 ± 0.06 
(4.2–4.5) 

3.5 ± 0.06 
(3.3–3.6) <0.001 Starch intake, (kg/day) 2.3 ± 0.06 

(2.2–2.4) 
4.0 ± 0.06 
(3.9–4.1) 

<0.001 

Feed conversion ratio, (kg feed/kg gain) 6.3 ± 0.13 
(6.0–6.7) 

5.8 ± 0.12 
(5.5–6.1) 

<0.001 

CH4/DMI ratio, (Liters CH4/kg DMI) 
18.0 ± 0.45 
(17.1–18.9) 

14.8 ± 0.45 
(13.9–15.7) <0.001 

Average daily gain, (kg/day) 
1.5 ± 0.04 
(1.3–1.6) 

1.8 ± 0.04 
(1.7–2.0) <0.001 𝐌𝐢𝐜𝐫𝐨𝐛𝐢𝐚𝐥 𝐜𝐨𝐩𝐲 𝐧𝐮𝐦𝐛𝐞𝐫𝐬    Bacteria 1 2.8 ± 1.82 × 1011 

(3.9 × 1010–2.0 × 1012) 
1.1 ± 0.7 × 1011 

(1.6 × 1010–8.3 × 1011) 
<0.001 Fungi 2 3.5 ± 2.22 × 104 

(5.4 × 103–2.3 × 105) 
1.5 ± 9.9 × 103 

(2.4 × 103–1.0 × 105) 0.026 Protozoa 3 4.5 ± 1.57 × 107 

(1.7 × 105–1.1 × 108) 
5.3 ± 1.85 × 107 

(1.7 × 107–1.1 × 108) 
0.668 Methanogens 4 4.2 ± 9.7 × 108 

(2.1 × 108–8.3 × 108) 
3.5 ± 8.06 × 108 

(1.8 × 108–6.9 × 108) 
0.247 

1,4 Copy number of 16S rRNA (Mean ± SE)/mL of rumen fluid. 2,3 Copy number of 18S (Mean ± 
SE)/mL of rumen fluid. 

As expected, forage NDF intake was higher in forage-fed bulls (4.4 ± 0.06 vs. 3.5 ± 
0.06 kg/day; p < 0.001), while starch intake was higher in grain-fed bulls (4.0 ± 0.06 vs. 2.3 
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± 0.06 kg/day; p < 0.001). The feed conversion ratio was lower (more efficient) in grain-fed 
bulls (5.8 ± 0.12 vs. 6.3 ± 0.13 kg feed/kg gain; p < 0.001), which was reflected in their higher 
average daily gain (1.8 ± 0.04 vs. 1.5 ± 0.04 kg/day; p < 0.001). The CH4/DMI ratio was lower 
in grain-fed bulls than in those fed forage-based diets (14.8 ± 0.45 vs. 18.0 ± 0.45 L CH4/kg 
DMI; p < 0.001). 

Regarding the rumen microbial populations, bacterial abundance was lower in grain-
fed bulls compared to those fed forage-based diets (1.1 ± 0.7 × 1011 vs. 2.8 ± 1.82 × 1011 
copies of 16S rRNA genes/mL; p < 0.001). Similarly, fungal abundance was reduced in 
grain-fed bulls (1.5 ± 9.9 × 103 vs. 3.5 ± 2.22 × 104 of 18S rRNA genes copies/mL; p = 0.026). 
However, protozoan (5.3 ± 1.85 × 107 vs. 4.5 ± 1.57 × 107 copies of 18S rRNA genes/mL; p = 
0.668) and methanogen (3.5 ± 8.06 × 108 vs. 4.2 ± 9.7 × 108 copies of 16S rRNA genes/mL; p 
= 0.247) abundance did not differ between dietary treatments. 

3.2. Associations Between Phenotypic Traits and Rumen Microbial Counts Across Feeding 
Periods 

Feed intake showed significant associations with bacterial abundance in the rumen 
(Table 2). The dry matter intake model revealed a negative relationship with bacterial 
copy numbers (p = 0.005), with a baseline bacterial population (intercept) of 28.4 ± 0.96 
(log-transformed bacterial copy numbers). This relationship was characterized by nega-
tive associations during both Period 1 (−0.2 ± 0.07) and Period 2 (−0.1 ± 0.05). Similarly, 
forage NDF intake demonstrated an effect on bacterial abundance (p = 0.002, intercept = 
25.3 ± 0.84), with a positive association observed in Period 1 (0.6 ± 0.18) but a weaker rela-
tionship in Period 2 (0.1 ± 0.14). 

Table 2. Predictors, estimates (log-transformed), and confidence intervals derived from the selected 
model for bacterial copy numbers in the rumen of bulls fed forage- or grain-based diets 1. 

Predictors Estimates 95% Confidence Intervals 
(Upper–Lower Limits) 

p-Value 𝐃𝐌𝐈—Dry matter intake    Intercept 28.4 ± 0.96 26.4–30.5 0.005 DMI ∗ Period 1 −0.2 ± 0.07 −0.3–[−0.09]  DMI ∗ Period 2 −0.1 ± 0.05 −0.3–[−0.08]  𝐟𝐍𝐃𝐅—Forage NDF intake    Intercept 25.3 ± 0.84 23.3–27.2 0.002 fNDF ∗ Period 1  0.6 ± 0.18 0.2–1.02  fNDF ∗ Period 2 0.1 ± 0.14 −0.1–0.44  𝐒𝐭𝐚𝐫𝐜𝐡 intake    Intercept 27.4 ± 0.72 25.6–29.2 0.001 Starch ∗ Period 1  −0.5 ± 0.14 −0.7–[−0.24]  Starch ∗ Period 2 −0.4 ± 0.11 −0.6–[−0.19]  𝐅𝐂𝐑—Feed conversion 
ratio    Intercept 11.1 ± 1.18 8.7–13.5 0.508 FCR ∗ Period 1 −0.1 ± 0.18 −0.5–0.17  FCR ∗ Period 2 −0.1 ± 0.17 −0.4–0.19  𝐑𝐅𝐈—Residual feed intake    Intercept 25.9 ± 0.56 24.1–27.7 0.160 RFI ∗ Period 1 −0.2 ± 0.23 −0.7–0.22  RFI ∗ Period 2 −0.2 ± 0.14 −0.5–0.05  
CH4/DMI ratio     Intercept 24.9 ± 0.74 23.2–26.6 0.084 
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CH4/DMI ∗ Period 1 0.0 ± 0.02 0.0–0.10  CH4/DMI ∗ Period 2 0.0 ± 0.03 0.0–0.13  
ADG—Average daily gain    Intercept 25.9 ± 0.99 23.8–27.9 0.310 ADG ∗ Period 1 −0.7 ± 0.75 −2.2–0.72  ADG ∗ Period 2 0.0 ± 0.00 0.0–0.0  
1 Rumen fluid samples were analyzed using qPCR on Days 80 (Period 1) and 180 (Period 2). 

Starch intake also influenced bacterial abundance (p = 0.001, intercept = 27.4 ± 0.72), 
with consistent negative associations across both periods (Period 1: −0.5 ± 0.14; Period 2: 
−0.4 ± 0.11). In contrast, feed efficiency metrics showed no relationship with bacterial 
abundance. The feed conversion ratio (FCR) model showed no significant overall effect (p 
= 0.508), with an intercept of 11.1 ± 1.18 and no period-specific associations with bacterial 
abundance (Period 1: −0.1 ± 0.18; Period 2: −0.1 ± 0.17). Similarly, residual feed intake (RFI) 
demonstrated no relationship with bacterial abundance (p = 0.160). Also, the CH4/DMI 
ratio (p = 0.084) and average daily gain (p = 0.310) models showed no associations with 
bacterial abundance, although the CH4/DMI ratio model suggested a trend (p = 0.084) in 
both periods compared to the intercept. 

Dry matter intake demonstrated a relationship with fungal abundance (p = 0.037), 
with a baseline population (intercept) of 12.7 ± 1.25 (log-transformed fungal copy num-
bers) (Table 3). This relationship was characterized by negative associations in both Period 
1 (−0.2 ± 0.10) and Period 2 (−0.1 ± 0.08). In contrast, forage NDF intake showed no signif-
icant effect on fungal abundance (p = 0.146, intercept = 9.7 ± 1.03), despite displaying a 
positive association in Period 1 (0.5 ± 0.29) and a weaker relationship in Period 2 (0.1 ± 
0.22) (Table 3). 

Table 3. Predictors, estimates (log-transformed), and confidence intervals derived from the selected 
model for fungal copy numbers in the rumen of bulls fed forage- or grain-based diets 1. 

Predictors Estimates 95% Confidence Intervals 
(Upper–Lower Limits) p-Value 𝐃𝐌𝐈—Dry matter intake    Intercept 12.7 ± 1.25 10.2–15.25 0.037 DMI ∗ Period 1 −0.2 ± 0.10 −0.4–[−0.05]  DMI ∗ Period 2 −0.1 ± 0.08 −0.3–[−0.01]  𝐟𝐍𝐃𝐅—Forage NDF 

intake 
   Intercept 9.7 ± 1.03 7.5–11.8 0.146 fNDF ∗ Period 1  0.5 ± 0.29 0.0–1.16  fNDF ∗ Period 2 0.1 ± 0.22 −0.3–0.58  𝐒𝐭𝐚𝐫𝐜𝐡 intake    Intercept 11.4 ± 0.81 9.6–13.2 0.027 Starch ∗ Period 1  −0.5 ± 0.20 −0.9–[−0.12]  Starch ∗ Period 2 −0.3 ± 0.16 −0.6–[−0.01]  𝐅𝐂𝐑—Feed conversion 

ratio 
   Intercept 11.5 ± 1.39 8.7–14.3 0.723 FCR ∗ Period 1 0.1 ± 0.38 −0.6–0.88  FCR ∗ Period 2 0.0 ± 0.00 0.0–0.00  𝐑𝐅𝐈—Residual feed 

intake 
   Intercept 10.0 ± 0.50 8.4–11.7 0.365 RFI ∗ Period 1 −0.3 ± 0.36 −1.0–0.36  
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RFI ∗ Period 2 −0.2 ± 0.22 −0.6–0.21  
CH4/DMI ratio     Intercept 10.4 ± 0.86 8.6–12.2 0.706 CH4/DMI ∗ Period 1 0.0 ± 0.03 −0.1–0.05  CH4/DMI ∗ Period 2 0.0 ± 0.04 −0.1–0.07  
ADG—Average daily 
gain 

   Intercept 10.8 ± 1.00 8.7–12.8 0.398 ADG ∗ Period 1 −0.5 ± 0.55 −1.6–0.54  ADG ∗ Period 2 −0.3 ± 0.47 −1.2–0.61  
1 Rumen fluid samples were analyzed using qPCR on Days 80 (Period 1) and 180 (Period 2). 

Starch intake influenced fungal copy numbers (p = 0.027, intercept = 11.4 ± 0.81), with 
consistent negative associations across both periods (Period 1: −0.5 ± 0.20; Period 2: −0.3 ± 
0.16) (Table 3). Feed efficiency metrics showed no significant relationships with fungal 
abundances. The feed conversion ratio model revealed no significant effect (p = 0.723, in-
tercept = 11.5 ± 1.39), with no period-specific associations (Period 1: 0.1 ± 0.38; Period 2: 
0.0 ± 0.00). Similarly, residual feed intake showed no significant relationship with fungal 
abundances (p = 0.365). The CH4/DMI ratio (p = 0.706) and average daily gain (p = 0.398) 
models demonstrated no significant associations with fungal copy numbers and no rela-
tionship across both feeding periods (Period 1: 0.0 ± 0.03; Period 2: 0.0 ± 0.04). The ADG 
model showed no effect on fungal abundances (p = 0.398), exhibiting weak negative asso-
ciations in both periods (Period 1: −0.5 ± 0.55; Period 2: −0.3 ± 0.47). 

None of the phenotypic traits showed associations with either protozoan or methan-
ogen population abundances (log-transformed) across the experimental periods (Tables 4 
and 5). 

Table 4. Predictors, estimates (log-transformed), and confidence intervals derived from the selected 
model for protozoan copy numbers in the rumen of bulls fed forage- or grain-based diets 1. 

Predictors Estimates 95% Confidence Intervals 
(Lower–Upper Limits) 

p-Value 𝐃𝐌𝐈—Dry matter intake    Intercept 8.9 ± 1.25 6.4–11.46 0.365 DMI ∗ Period 1 0.0 ± 0.11 −0.1–0.29  DMI ∗ Period 2 0.0 ± 0.09 −0.1–0.21  𝐟𝐍𝐃𝐅—Forage NDF intake    Intercept 18.6 ± 0.94 16.7–20.62 0.422 fNDF ∗ Period 1  0.0 ± 0.31 −0.5–0.67  fNDF ∗ Period 2 −0.3 ± 0.24 −0.8–0.17  𝐒𝐭𝐚𝐫𝐜𝐡 intake    Intercept 9.1 ± 0.69 7.7–10.60 0.401 Starch ∗ Period 1  0.1 ± 0.22 −0.2–0.62  Starch ∗ Period 2 0.0 ± 0.18 −0.3–0.41  𝐅𝐂𝐑—Feed conversion ratio    Intercept 10.7 ± 1.06 8.6–12.88 0.215 FCR ∗ Period 1 −0.1 ± 0.22 −0.5–0.16  FCR ∗ Period 2 −0.2 ± 0.16 −0.5–0.10  𝐑𝐅𝐈—Residual feed intake    Intercept 9.5 ± 0.27 8.6–10.39 0.417 RFI ∗ Period 1 −0.4 ± 0.35 −1.1–0.23  RFI ∗ Period 2 −0.0 ± 0.21 −0.4–0.42  
CH4/DMI ratio    
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Intercept 9.8 ± 0.75 8.3–11.39 0.235 CH4/DMI ∗ Period 1 0.0 ± 0.03 0.0–0.06  CH4/DMI ∗ Period 2 0.0 ± 0.04 −0.1–0.05  
ADG—Average daily gain     Intercept 8.5 ± 0.89 6.7–10.28 0.203 ADG ∗ Period 1 0.7 ± 0.54 −0.3–1.83  ADG ∗ Period 2 0.4 ± 0.46 −0.4–1.37  
1 Rumen fluid samples were analyzed using qPCR on Days 80 (Period 1) and 180 (Period 2). 

Table 5. Predictors, estimates (log-transformed), and confidence intervals derived from the selected 
model for methanogen copy numbers in the rumen of bulls fed forage- or grain-based diets 1. 

Predictors Estimates 95% Confidence Intervals 
(Lower–Upper Limits) 

p-Value 𝐃𝐌𝐈—Dry matter intake    Intercept 20.1 ± 0.54 19.0–21.26 0.530 DMI ∗ Period 1 0.0 ± 0.04 −0.1–0.05  DMI ∗ Period 2 0.0 ± 0.04 −0.1–0.05  𝐟𝐍𝐃𝐅—Forage NDF intake    Intercept 19.8 ± 0.43 18.9–20.73 0.170 fNDF ∗ Period 1  0.2 ± 0.12 0.0–0.48  fNDF ∗ Period 2 0.0 ± 0.09 −0.1–0.18  𝐒𝐭𝐚𝐫𝐜𝐡 intake (?)    Intercept 20.0 ± 0.33 19.3–20.77 0.324 Starch ∗ Period 1  −0.1 ± 0.09 −0.3–0.06  Starch ∗ Period 2 0.0 ± 0.07 −0.2–0.08  𝐅𝐂𝐑—Feed conversion ratio    Intercept 19.1 ± 0.48 18.2–20.16 0.313 FCR ∗ Period 1 0.0 ± 0.07 0.0–0.24  FCR ∗ Period 2 0.1 ± 0.07 0.0–0.24  𝐑𝐅𝐈—Residual feed intake    Intercept 19.7 ± 0.17 19.2–20.35 0.672 RFI ∗ Period 1 0.1 ± 0.15 −0.1–0.44  RFI ∗ Period 2 0.0 ± 0.09 −0.2–0.16  
CH4/DMI ratio     Intercept 19.5 ± 0.34 18.8–20.29 0.550 CH4/DMI ∗ Period 1 0.0 ± 0.01 0.0–0.04  CH4/DMI ∗ Period 2 0.0 ± 0.02 0.0–0.05  
ADG—Average daily gain     Intercept 20.3 ± 0.41 19.5–21.21 0.211 ADG ∗ Period 1 −0.4 ± 0.24 −0.8–0.06  ADG ∗ Period 2 −0.3 ± 0.20 −0.7–0.10  
1 Rumen fluid samples were analyzed using qPCR on days 80 (Period 1) and 180 (Period 2). 

3.3. PC-Corr Analysis of Microbial Counts and Phenotypic Traits 

The PC-Corr algorithm revealed distinct clustering patterns between forage and 
grain-fed treatments under different normalization methods (Figure 1). 
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Figure 1. Rumen microbial population and phenotypic traits in response to diet changes. Linear 
dimensionality reduction by PC-Corr separated rumen microbes (A) and phenotypic traits (C) rec-
orded in cattle fed forage (black) or grain diets (red). PC-Corr detected differences (Mann–Whitney 
test, p < 0.01) in rumen microbes between forage and grain diets along principal component 6 (PC6), 
whose loadings were used to build a microbial network at a cut-off (Pearson correlation) of 0.27 (B). 
Differences (Mann–Whitney test, p < 0.01) in phenotypic traits were also observed for forage and 
grain diets along PC1 and PC6, whose loadings were used for the construction of a network at a cut-
off of 0.50 (D). 

Using log normalization for the microbial copy number of targeted genes (Figure 
1A,B), PC6 showed significant discrimination between dietary groups (p < 0.010) with 
high predictive performance (AUC = 0.882, AUPR = 0.871), while PC1 showed no signifi-
cant separation (p = 0.681, AUC = 0.522, AUPR = 0.48). Under z-score normalization for 
the phenotypic data (Figure 1C), PC1 demonstrated group separation between diets (p < 
0.010, AUC = 0.982, AUPR = 0.966), with PC6 also showing significant but lower discrim-
inatory power (p < 0.010, AUC = 0.757, AUPR = 0.705). 

Network analysis revealed distinct correlation patterns among microbial groups and 
phenotypic traits (Figure 1B,D). The microbial network (Figure 1B) showed positive cor-
relations among all microbial groups, with the strongest correlation observed between 
fungi and protozoa (0.467), followed by bacteria and protozoa (0.301) and methanogens 
and protozoa (0.284), respectively. Bacteria and methanogens also showed a positive cor-
relation (0.487). 

The phenotypic trait network (Figure 1D) demonstrated clear dietary effects. Feed 
efficiency metrics (FCR) were negatively correlated with ADG (−0.597), and forage NDF 
intake (fNDF) showed a negative correlation with starch intake (−0.619). The CH4/DMI 
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ratio exhibited a negative correlation with both DMI (−0.627) and starch intake (−0.577). 
Among grain-associated diets (shown in red), positive correlations were observed be-
tween DMI and starch intake (0.862), DMI and ADG (0.744), and starch intake and ADG 
(0.702). 

4. Discussion 
This study highlights the impact of feed composition on rumen microbial popula-

tions and host phenotypes, underscoring the complex interplay between diet, microbiome 
dynamics, and phenotypic traits in beef cattle. The application of network analysis and 
comparative analysis across feeding periods provided novel insights into microbial inter-
actions and adaptation to dietary changes. Grain-based diets significantly reduced bacte-
rial and fungal populations’ copy numbers while maintaining stable protozoan and meth-
anogen copy numbers across feeding periods. Methane emissions per unit of dry matter 
intake were significantly lower in grain-fed bulls, emphasizing how feed composition in-
fluences hydrogen availability, the principal substrate for rumen methanogenesis [36]. 

The decline in bacterial and fungal copy numbers associated with grain-based diets 
reflects shifts in the rumen microbial ecology, driven by starch availability and increased 
feed passage rates. These results align with prior research suggesting that starch-rich diets 
encourage the competitive exclusion of fiber-digesting microbes [37]. However, this ob-
served decline contrasts with studies that reported increased microbial growth under car-
bohydrate-rich dietary conditions [8]. This discrepancy highlights the complexity of ru-
men microbial adaptation, wherein factors such as feed particle size, passage rates, and 
microbial cross-feeding mediate microbial responses to dietary composition [37,38]. Bac-
terial abundance showed significant associations with dry matter (DM) and neutral deter-
gent fiber (NDF) intakes (Table 2). These findings emphasize the pivotal role of bacteria 
in fiber degradation, consistent with previous studies [39]. Although fungi displayed as-
sociations with DM intake and no effect on NDF intake (Table 3), they facilitate bacterial 
colonization by physically disrupting plant cell walls [40–42]. This interdependent rela-
tionship underscores the significance of fungal–bacterial interactions in optimizing fiber 
utilization within the rumen. 

The stability of protozoan and methanogen population across dietary treatments and 
phenotypic traits underscores their functional resilience within the rumen ecosystem. In-
ter-species associations between protozoans and methanogens are critical for methane 
production, as protozoa shield methanogens from being washed out of the rumen due to 
their slower passage rate compared to bacteria and fungi [1]. These methanogen–proto-
zoan interactions ensure consistent methane production, even amidst fluctuations in bac-
terial and fungal populations. While these interactions are well-documented [43], evi-
dence suggests that methane emissions are influenced more by the activity and composi-
tion of specific methanogen species as opposed to population size in the rumen (Zhou et 
al., 2011) [44]. The absence of significant correlations between protozoan or methanogen 
populations and phenotypic traits, such as feed conversion ratio (FCR) or average daily 
gain (ADG), implies that their roles in rumen metabolic processes may be indirect, acting 
through mechanisms like hydrogen transfer or modulation of volatile fatty acid profiles 
[4]. Protozoa also control bacterial numbers via predation [45], further contributing to mi-
crobial turnover and functional stability, which ultimately influence host phenotypes in 
response to feed composition and intake. 

Methane emissions per unit DMI were considerably lower in grain-fed bulls, under-
scoring the role of microbial interactions in regulating hydrogen flux—a vital precursor 
for methanogenesis. The reduction in bacterial and fungal populations associated with 
grain diets likely limited hydrogen availability, thus restricting substrate supply for meth-
anogens. This was also likely due to less hydrogen production with an increase in 
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propionate in high-grain diets [9]. Network analysis confirmed significant correlations be-
tween bacteria and methanogens (r = 0.4873), emphasizing the importance of hydrogen 
producers in influencing methane output. Grain-based diets achieved a reduction in me-
thane production per kg DMI by approximately 18% (Table 1), thereby showcasing the 
potential of dietary manipulation as a strategy for methane mitigation. Dietary supple-
mentation with feed additives (e.g., 3-nitrooxypropanol) [46], combined with strategies 
that promote alternative hydrogen sinks, e.g., propionate synthesis [10], offers a comple-
mentary approach to dietary manipulation for reducing methane emissions from rumi-
nants. 

Comparative analysis across feeding periods revealed adaptive shifts in microbial 
populations during dietary transitions. Microbial communities in the rumen exhibit re-
markable adaptability to changes in dietary composition, with bacteria and fungi playing 
distinct roles in this process [47]. The observed reduction in bacterial abundance associ-
ated with NDF intake across feeding periods (Table 2) highlights how bacterial popula-
tions adjust their metabolic strategies to accommodate shifts in substrate availability. This 
adaptation may involve the expansion in numbers of previously underutilized microbial 
species or may increase activity in functional pathways, enabling the community to main-
tain fiber degradation despite changing environmental conditions. No effect of fungal re-
sponses to dietary fiber suggests a secondary (as compared to bacteria) but supportive 
role in microbial succession (Tables 2 and 3), underscoring the importance of microbial 
networks in maintaining rumen functionality. These findings align with previous studies 
demonstrating the need for microbial adaptation during dietary changes [39]. While sig-
nificant shifts in bacterial and fungal populations were observed, no direct correlations 
were found between rumen microbial abundance and feed efficiency metrics such as FCR 
and RFI. This aligns with the concept of functional redundancy, where different microbial 
taxa fulfill overlapping roles to ensure metabolic stability [48]. Grain-fed bulls demon-
strated improved FCR, potentially linked to enhanced nutrient digestibility associated 
with starch-rich diets. However, the absence of direct microbial correlations suggests that 
host factors, such as nutrient absorption efficiency and metabolic adaptability, may play 
a more dominant role in driving feed efficiency [49]. These findings underscore the im-
portance of considering both microbial network dynamics and host physiological adapta-
tions in optimizing feed efficiency in ruminants. Further investigations are needed to 
move beyond abundance data and explore the metabolic roles and functional interactions 
within the rumen microbial community. 

To fully understand these complex interactions and translate them into practical ap-
plications requires addressing certain limitations in the current study. First, the reliance 
on qPCR-based microbial quantification provides a snapshot of microbial abundance but 
does not capture functional activity or metabolic contributions. Additionally, inter-indi-
vidual variation in baseline microbiota composition may significantly influence microbial 
responses to dietary changes, potentially complicating the interpretation of phenotypic 
trait outcomes. Investigating these variations could shed light on the role of host-microbi-
ome individuality in driving phenotypic traits. Finally, validating these findings across 
diverse production systems and cattle breeds will be essential to develop robust strategies 
for enhancing ruminant productivity and sustainability. 

5. Conclusions 
This study highlights the impact of feed composition on rumen microbial dynamics 

and methane emissions. While protozoan and methanogen populations remained stable 
across dietary treatments, bacterial and fungal copy numbers were significantly reduced 
in grain-fed bulls, reflecting a microbial ecological shift driven by starch availability. As 
expected, methane emissions per unit of dry matter intake were significantly lower in 
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grain-fed bulls, suggesting that the reduced emissions may be attributed to the movement 
of hydrogen into alternative sinks, typically linked to bacterial and fungal activity, rather 
than direct alterations in protozoan or methanogen population densities. 

No direct correlations were found between microbial abundance and feed efficiency 
metrics, suggesting that metabolic function and microbial network dynamics, in addition 
to taxonomic composition, play a more significant role in driving feed efficiency. Inter-
period feeding shifts revealed adaptive microbial responses to dietary transitions between 
forage- and grain-based diets, particularly in bacterial and fungal populations. These find-
ings demonstrate the adaptability of the rumen microbiome to feeding conditions and 
underscore its potential as a target for strategies aimed at improving ruminant productiv-
ity and sustainability. 
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