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Abstract: Clinical emergent bacterial pathogens are a great threat to the global health
system, chiefly Gram-negative carbapenem-resistant Enterobacterales and the Klebsiella
pneumoniae species complex. Here, we present the molecular and phenotypic characteri-
zation of Klebsiella quasipneumoniae subs. similipneumoniae IEC57090 strain, belonging to
ST138 and showing a multidrug resistance phenotype. The blaNDM-7 present in one of
the two resistance plasmids carried by the isolate, the antibiotic resistance genes fosA,
oqxAB, and acrR, and gene mutations on porins ompK36 and ompK37, both associated with
cephalosporin and carbapenem resistance, were detected. Virulence factors such as the
clusters of type I and III fimbria, type IV pili genes, and genes associated with the K1 cap-
sule, siderophore production, and multiple mobile genetic elements (MGE) were predicted.
The emergence of silent pathogens in clinical environments highlights the importance of
active research on new threads that may compromise the last resources of antimicrobials,
such as carbapenems, specifically on mobile genetic elements containing carbapenemases
in emergent pathogens, which can spread these antimicrobial resistance elements. This
study reinforces that molecular biology vigilance can prevent outbreaks and help to better
understand antimicrobial resistance and pathogens in clinical environment dynamics.

Keywords: antibiotic resistance; bacterial genome; carbapenem-resistant; Klebsiella quasip-
neumoniae; New Delhi metallo-beta-lactamase

1. Introduction
Klebsiella pneumoniae is a pathogen currently related to healthcare-associated infections

(HAIs) and antimicrobial resistance (AMR). Two additional species have recently been
described in the genus, Klebsiella variicola and Klebsiella quasipneumoniae, both of which are
opportunistic pathogens associated with urinary tract and bloodstream infections [1].

Klebsiella quasipneumoniae is classified into the subspecies K. quasipneumoniae subs.
quasipneumoniae and K. quasipneumoniae subs. similipneumoniae [2]. Several genomic studies
have shown that approximately 3.6% up to 32.5% of the isolates classified as K. pneumoniae
were inaccurately identified and later reclassified as K. quasipneumoniae. Therefore, this
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species circulates silently in hospital units due to its challenging taxonomic classification
when using traditional biochemical methods commonly used in clinical laboratories [1–3].

Few resistance and virulence mechanisms were initially described for K. quasipneumo-
niae, but recent studies show the opposite [4]. Several types of carbapenemases, such as
KPC, NDM, IMP, GES, and OXA-181, as well as the plasmid-mediated colistin resistance
enzyme MCR, have been described in clinical isolates of K. quasipneumoniae from India,
Brazil, Malaysia, Saudi Arabia, United States, and China. Resistance to other antimicrobial
classes such as tetracyclines and tigecyclines has also been described [5–12].

In Brazil, during the COVID-19 pandemic, an increase in the prevalence of New-Delhi
Metallo-β-lactamase (NDM)-producing Enterobacterales was observed, especially in K.
pneumoniae isolates [13]. Thus, therapeutic options for the treatment of HAIs associated
with this pathogen have become increasingly scarce [13].

In this study, we characterized a multidrug resistant (MDR) NDM-7-producing Kleb-
siella quasipneumoniae subs. Similipneumoniae, isolated from an adult patient admitted to the
intensive care unit (ICU) of a tertiary hospital in the city of Belém, state of Pará, Brazilian
Amazon, during the COVID-19 pandemic. The NDM-7 variant has rarely been reported
in Latin America and was recently described in K. pneumoniae isolates from hospitals in
the northern region of Brazil [14]. To the best of our knowledge, this is the first report of
the NDM-7 variant in a K. quasipneumoniae isolate in Brazil, demonstrating that plasmids
carrying the blaNDM gene can be spread among different members of Enterobacterales. Our
data reinforce the need for additional studies to prevent the spread of this carbapenemase
variant and show that routine practices based on clinical surveillance by active search for
MDR isolates carrying these carbapenemase enzymes are extremely important.

2. Material and Methods
The IEC57090 isolate was obtained from the peritoneal fluid of an adult patient

admitted to the ICU of a 220-bed tertiary hospital in the city of Belém, State of Pará,
in November 2020. Initial taxonomic identification was performed at the hospital of origin,
where the isolate was classified as K. pneumoniae by a Vitek 2 automated system (Biomerieux,
Marcy-l’Étolle, France).

The isolate was sent to the Evandro Chagas Institute for antimicrobial resistance
surveillance, where the carbapenemase-encoding genes blaNDM, blaKPC, blaIMP, blaVIM, and
blaOXA-48 were investigated by Polymerase Chain Reaction (PCR). The primers, master mix
composition, and cycling conditions have been previously described by Han et al. [15]. The
GoTaq™ G2 Flexi DNA Polymerase kit (Promega, Madison, WI, USA) was used for PCR,
with the follow conditions: one cycle of 95 ◦C for 2 min, 35 cycles of amplification (95 ◦C
for 30 s, 52 ◦for 40 s, 72 ◦C for 50 s) and one cycle of 72 ◦C for 10 min. Amplicons were
visualized in a 1% agarose gel electrophoresis with SafeDye Nucleic Acid Stain (Cellco, São
Paulo, Brazil). Sanger sequencing to verify the NDM allele was conducted with a BigDye™
Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific, Cleveland, OH, USA) in a
3500xL Genetic Analyzer (Thermo Fisher Scientific, Cleveland, OH, USA).

Antimicrobial susceptibility testing (AST) was performed by agar dilution or broth
microdilution methods using Sensititre Gram-negative GNX3F AST CI (TREK Diagnostic
Systems, Thermo Fisher Scientific, Cleveland, OH, USA), according to the Clinical and
Laboratory Standard Institute (CLSI) and Food and Drug Administration (FDA) criteria for
the antimicrobials ampicillin, piperacillin/tazobactam, cefuroxime, ceftazidime, cefepime,
aztreonam, imipenem, meropenem, gentamicin, amikacin, tetracycline, ciprofloxacin, col-
istin, polymyxin, and tigecycline [16,17].

Whole-genome sequencing was performed on the Illumina HiSeq platform using
2 × 150 bp paired-end libraries (Illumina Inc., San Diego, CA, USA). Bacterial DNA was
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extracted using the NucleoSpin Microbial DNA Kit (Macherey-Nagel, Dueren, Germany),
according to the manufacturer’s protocol. A bacterial colony from an agar nutrient plate
culture was eluted in 300 µL of ultra-pure water, mixed until homogeneous, and then
centrifuged at 13,000× g. The supernatant was discarded and 100 µL of elution buffer was
added. After mixing, the solution was transferred to a MN Tube Type B for bacterial lysis,
and 40 µL of buffer MG and 10 µL of liquid proteinase K were also added. The microtube
was agitated for 12 min and centrifuged 30 s at 11,000× g. After adjusting the binding
conditions, 600 µL of the solution was transferred to the NucleoSpin® Microbial DNA
Column. The silica column was washed with 500 µL of BW and 500 µL of B5 solutions,
and then centrifuged at 11,000× g for 30 s. The column was placed in a final collection
microtube and eluted with 50 µL of elution buffer. Raw data were filtered and trimmed
using Sickle v.1.33 [18], and bases with less than Phred 20 quality and reads shorter than
40 bases were eliminated. Genome assembly was performed using SPAdes v.3.13.0 [19],
and the gaps were closed using GMCloser v.1.5 [20]. Finally, the consensus sequence was
generated using AlignGraph v.1 [21] and MeDuSa v.1.6 [22].

Antimicrobial resistance genes (ARGs) were detected using ResFinder v.4.1 [23] and
CARD RGI v.6.0.3 [24]. The plasmid sequence was detected using PlasmidFinder v.2.1 [25]
and MOB-Suite v.3.1.4 [26]. Virulence factors were predicted using VFanalyzer [27],
and Multi-Locus Sequence Typing (MLST) analysis was achieved using PathogenWatch
(http://www.pathogen.watch, 5 May 2023). Mobile Genetic Elements (MGEs), Genomic
Islands (GIs), and prophages were predicted using MGEFinder v.1.0.3 IslandViewer v.4 and
PHASTER (http://www.phaster.ca, 25 January 2024), respectively [28–30].

3. Results and Discussion
Antimicrobial susceptibility testing of the IEC57090 isolate revealed high values of

minimum inhibitory concentrations (MIC) for several drugs, including beta-lactams such
as ampicillin, ampicillin/sulbactam, piperacillin/tazobactam, cefuroxime, ceftazidime,
cefepime, imipenem, meropenem, doripenem, and intermediate to doxycycline. The strain
showed in vitro susceptibility to aztreonam, gentamicin, amikacin, tobramycin, tetracy-
cline, ciprofloxacin, levofloxacin, minocycline, tigecycline, sulfamethoxazole/trimethoprim,
polymyxin B, and colistin. Based on its resistance profile, the isolate was classified as MDR
(Table 1) [31]. The blaNDM gene was detected by PCR and subjected to Sanger sequencing,
being classified into the NDM-7 variant by alignment with the 47 blaNDM alleles from
CARD [24] on BioEdit v.7.7.

Subsequently, the whole genome of the IEC57090 isolate was sequenced and assembled
into a consensus sequence of 5.5 Mbp, with a coverage of approximately 235×, 58.73% of
GC content, and 5.230 coding sequences (CDSs). Taxonomic classification was performed
based on rpoB and whole-genome sequence using TYGS v.391 [32] with available reference
Klebsiella spp. genomes (Supplementary Material S1). The genome sequence was deposited
in GenBank under the accession number CP178200.

The taxonomic classification performed by TYGS based on phylogenomic analysis
classified the IEC57090 strain as K. quasipneumoniae subs. similipneumoniae (Figure 1). In
contrast, the phylogenetic tree calculated based on the rpoB gene sequence alone did not
provide sufficient resolution to distinguish the species of the K. pneumoniae species complex.
Thus, phylogenomic and Average Nucleotide Identity (ANI) analyses of whole-genome
sequences were the most effective methods for taxonomic classification [2,33].

http://www.pathogen.watch
http://www.phaster.ca
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Table 1. Antimicrobial susceptibility profile of K. quasipneumoniae IEC57090 strain.

Antimicrobial MIC (µg/mL) Interpretation

Ampicillin >256 R
Ampicilin/sulbactam >256/4 R

Piperacillin/tazobactam >256/4 R
Cefuroxime >256 R
Ceftazidime >256 R

Cefepime 256 R
Aztreonam ≤1 S
Imipenem 32 R

Meropenem 64 R
Doripenem >4 R
Gentamicin ≤1 S
Amikacin 4 S

Tobramycin 2 S
Tetracycline 2 S

Ciprofloxacin 2 S
Levofloxacin ≤1 S
Doxycyclin 8 I
Minocycline 4 S
Tigecycline 0.5 S

Sulfamethoxazole/trimethoprim ≤0.5/9.5 S
Colistin ≤0.25 S

Polymyxin B ≤0.25 S
R: resistant, I: intermediate, and S: susceptible.

Microorganisms 2025, 13, x FOR PEER REVIEW 4 of 9 
 

 

Table 1. Antimicrobial susceptibility profile of K. quasipneumoniae IEC57090 strain. 

Antimicrobial MIC (µg/mL) Interpretation 
Ampicillin >256 R 

Ampicilin/sulbactam >256/4 R 
Piperacillin/tazobactam >256/4 R 

Cefuroxime >256 R 
Ceftazidime >256 R 

Cefepime 256 R 
Aztreonam ≤1  S 
Imipenem 32 R 

Meropenem 64 R 
Doripenem >4 R 
Gentamicin ≤1  S 
Amikacin 4 S 

Tobramycin 2 S 
Tetracycline 2 S 

Ciprofloxacin 2 S 
Levofloxacin ≤1 S 
Doxycyclin 8 I 
Minocycline 4 S 
Tigecycline 0.5 S 

Sulfamethoxazole/trimethoprim ≤0.5/9.5 S 
Colistin ≤0.25 S 

Polymyxin B ≤0.25 S 
R: resistant, I: intermediate, and S: susceptible. 

 

Figure 1. Taxonomic classification of the isolate IEC57090. The phylogenomic tree was calculated in 
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each branch. 

Two plasmids were detected in the genome of the IEC57090 isolate belonging to the 
IncFIIB and IncX3 incompatibility groups, with average sizes of 176 kbp and 44 kbp, re-
spectively. The pIEC57090-FIIB plasmid has 175,805 bp, 180 CDSs, and showed 99.96% 
identity with the pA2508-emrE plasmid from a K. quasipneumoniae isolate (accession num-
ber MN310379.1). Among the main genes found in pIEC57090-FIIB, we highlight the 

Figure 1. Taxonomic classification of the isolate IEC57090. The phylogenomic tree was calculated in
the Type Strain Genome Server, based on the core genome of isolate IEC57090 and other members of
the K. pneumoniae species complex. Bootstrap values for 100 replicates are shown in blue next to each
branch.

Two plasmids were detected in the genome of the IEC57090 isolate belonging to the
IncFIIB and IncX3 incompatibility groups, with average sizes of 176 kbp and 44 kbp, re-
spectively. The pIEC57090-FIIB plasmid has 175,805 bp, 180 CDSs, and showed 99.96%
identity with the pA2508-emrE plasmid from a K. quasipneumoniae isolate (accession num-
ber MN310379.1). Among the main genes found in pIEC57090-FIIB, we highlight the
traAEDILMJXY conjugation system, the toxin–antitoxin (TA) systems vapBC and higAB, the
copper resistance determinant pco, and resistance to quaternary ammonium compounds
gene qacE.
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Regarding plasmid pIEC57090-X3, from 44 kbp size, 58 CDS were predicted, of which
the main genes found were blaNDM-7 and the type IV secretion system virB (Figure 2). The
blaNDM-7 gene was embedded in a Tn125-like element that was composed of the structure
dsbD-trpF-bleMBL-blaNDM-7-IS5-ISAba125-IS3000-hin. The same structure was observed in
the pYUSBH035 plasmid (accession number LC716358.1), which showed 99.99% identity
and 93% coverage with pIEC57090-X3 and was detected in a K. quasipneumoniae ST 196 strain
from a patient in China [34].

MLST analysis assigned the isolate to IEC57090 belonging to the sequence type ST138,
an undefined clonal complex in PubMLST (http://www.pubmlst.org, 5 May 2023), com-
posed of blaGES-producing K. michiganensis isolates [35], blaGES-5-producing K. quasipneumo-
niae isolates from a wastewater treatment plant in Slovenia [36], and other K. quasipneumo-
niae strains with multiple mechanisms of AMR and virulence that were isolated from an
international space station [37]. Thus, this is the first report of a blaNDM-harboring IncX3
plasmid in an isolate belonging to ST138.

Acman and colleagues (2022) examined 6000 bacterial genomes harboring the blaNDM

gene and described the IncFII and IncX3 incompatibility groups as the main carriers of
this gene [38]. Interestingly, both incompatibility groups’ plasmids were detected in the
genome of K. quasipneumoniae IEC57090 strain. Although the pIEC57090-FIIB plasmid does
not carry any resistance genes, it has 14 insertion sequences in its structure, making it
possible to acquire the blaNDM gene in recombination events.
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Figure 2. Synteny of the blaNDM-harboring MGE found in the pIEC57090-X3 plasmid. The sequence
was compared with the pYUSBH035, p14ARS_MMH0055-5, p3804_NDM, and pKW53T-NDM plas-
mids, which were found to be the most closely related to pIEC57090-X3 according to BLASTn analysis.
The figure was drawn using SimpleSyteny v.1.6 [39].

In addition to the blaNDM-7 gene, resistome analysis also revealed the presence of
fosA (fosfomycin). The outer membrane porins ompK36 and ompK37, both associated with
cephalosporin and carbapenem resistance, were also detected. The viruloma analysis
revealed the presence of complete clusters of type I and III fimbria, and type IV pili genes.
It is worth noting that type III fimbria have been described as the major adhesion factor in
K. quasipneumoniae [40], in contrast to K. pneumoniae, which preferentially express the type I
gene cluster.

Nine families of insertion sequences were found in the K. quasipneumoniae IEC57090
genome (IS5, ISKpn19, ISKpn21, ISKox3, ISSen4, ISKpn26, ISEhe3, ISEhe3, ISEam1) and five
intact prophages containing CDSs encoding transposases, endonucleases, integrases, and
endolysins in addition to typical phage proteins. Twenty-six GIs were predicted to harbor

http://www.pubmlst.org
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multiple insertion sequences, a type IV secretion system, endonucleases, an ABC-type
ferric iron transporter, a cus efflux system, and the quinolone resistance gene norB. Some
prophages were found to have overlapping GI sequences, such as the region encoding
the terL endonuclease subunit, an enzyme related to viral translocation [41]. The detailed
results are presented in Supplementary Material S2.

Our results raise that the dissemination of carbapenemase genes among species of
the Klebsiella pneumoniae complex is probably underestimated. Low-resolution methods of
bacterial identification have also led to misidentifications, underestimating other species
in the complex. In addition, the selective pressure of the hospital environment promotes
the spread of carbapenemases among phylogenetically related pathogenic bacteria [2].
Mathers and colleagues (2019) demonstrated that K. quasipneumoniae was susceptible to
acquiring plasmids from other Enterobacterales [9] a finding of public health importance
because some bacterial species may serve as sentinels for the presence of MGEs carrying
ARGs and virulence factors in hospitals. Under selective pressure, these genes can be trans-
ferred to well-established pathogens, increasing public health expenditures and impacting
population health.

4. Conclusions
In our study, we characterized the genome of a multidrug-resistant and carbapenemase-

producing K. quasipneumoniae subs. similipneumoniae IEC57090 strain from a hospital in the
Amazon region, Brazil. Our data showed that in addition to K. pneumoniae, other members
of the K. pneumoniae complex are silently circulating in hospitals in the northern region.
The IEC57090 isolate presented several ARGs, MGEs, virulence factors, and two plasmids
belonging to incompatibility groups commonly related to antimicrobial resistance gene
carriers. Thus, our study highlights the importance of using genomic tools in epidemiologic
studies for AMR surveillance.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/microorganisms13020314/s1, Supplementary Material S1: Type
Strain Genome Server core genome of isolate of the Klebsiella pneumoniae species complex utilized for
the phylogenomic tree with Klebsiella quasipneumoniae IEC57090, Supplementary Material S2: VFana-
lyzer, MGE Finder, PHASTER and IslandViewer4 results for Klebsiella quasipneumoniae IEC57090.
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