Effect of Non-Dairy Food Matrices on the Survival of Probiotic Bacteria during Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Inoculation of Non-Dairy Food Matrices with Probiotics
2.3. Survival of Probiotic Bacteria under Two Different Storage Conditions
2.4. Enumeration of Probiotic Bacteria in the Samples
2.5. Statistical Analysis
3. Results and Discussion
Effects of Food Matrix and Storage Conditions on the Survival of Probiotics during Storage
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- FAO; WHO. The Guidelines for the Evaluation of Probiotics in Food. 2002. Available online: http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf?ua=1 (accessed on 22 June 2017).
- Gomes, A.M.P.; Malcata, F.X. Bifidobacterium spp. and Lactobacillus acidophilus: Biological, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci. Technol. 1999, 10, 139–157. [Google Scholar] [CrossRef]
- Jose, N.; Bunt, C.; Hussain, M. Comparison of microbiological and probiotic characteristics of Lactobacilli isolates from dairy food products and animal rumen contents. Microorganisms 2015, 3, 198–212. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, M.K.; Giri, S.K. Probiotic functional foods: Survival of probiotics during processing and storage. J. Funct. Foods 2014, 9, 225–241. [Google Scholar] [CrossRef]
- Granato, D.; Branco, G.F.; Cruz, A.G.; Faria, J.F.; Shah, N.P. Probiotic Dairy Products as Functional Foods. Compr. Rev. Food Sci. Food Saf. 2010, 9, 455–470. [Google Scholar] [CrossRef]
- Rivera-Espinoza, Y.; Gallardo-Navarro, Y. Non-dairy probiotic products. Food Microbiol. 2010, 27, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chaikham, P.; Apichartsrangkoon, A.; Worametrachanon, S.; Supraditareporn, W.; Chokiatirote, E.; Van der Wiele, T. Activities of free and encapsulated Lactobacillus acidophilus LA5 or Lactobacillus casei 01 in processed longan juices on exposure to simulated gastrointestinal tract. J. Sci. Food Agric. 2013, 93, 2229–2238. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.L.F.; Maciel, T.C.; Rodrigues, S. Probiotic beverage from cashew apple juice fermented with Lactobacillus casei. Food Res. Int. 2011, 44, 1276–1283. [Google Scholar] [CrossRef]
- Sharma, V.; Mishra, H.N. Fermentation of vegetable juice mixture by probiotic lactic acid bacteria. Nutrafoods 2013, 12, 17–22. [Google Scholar] [CrossRef]
- De Angelis, M.; Gobbetti, M. Environmental stress responses in Lactobacillus: A review. J. Proteom. 2004, 4, 106–122. [Google Scholar] [CrossRef] [PubMed]
- Saarela, M.; Rantala, M.; Hallamaa, K.; Nohynek, L.; Virkajarvi, I.; Matto, J. Stationary-phase acid and heat treatments for improvement of the viability of probiotic lactobacilli and bifidobacteria. J. Appl. Microbiol. 2004, 96, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
- De Prisco, A.; Mauriello, G. Probiotication of foods: A focus on microencapsulation tool. Trends Food Sci. Technol. 2016, 48, 27–39. [Google Scholar] [CrossRef]
- Martín, M.J.; Lara-Villoslada, F.; Ruiz, M.A.; Morales, M.E. Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innov. Food Sci. Emerg. Technol. 2015, 27, 15–25. [Google Scholar] [CrossRef]
- Pimentel, T.C.; Madrona, G.S.; Garcia, S.; Prudencio, S.H. Probiotic viability, physicochemical characteristics and acceptability during refrigerated storage of clarified apple juice supplemented with Lactobacillus paracasei ssp. paracasei and oligofructose in different package type. LWT-Food Sci. Technol. 2015, 63, 415–422. [Google Scholar] [CrossRef]
- Senz, M.; van Lengerich, B.; Bader, J.; Stahl, U. Control of cell morphology of probiotic Lactobacillus acidophilus for enhanced cell stability during industrial processing. Int. J. Food Microbiol. 2015, 192, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Makinen, K.; Berger, B.; Bel-Rhlid, R.; Ananta, E. Science and technology for the mastership of probiotic applications in food products. J. Biotechnol. 2012, 162, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Salmerón, I.; Thomas, K.; Pandiella, S.S. Effect of substrate composition and inoculum on the fermentation kinetics and flavour compound profiles of potentially non-dairy probiotic formulations. LWT-Food Sci. Technol. 2014, 55, 240–247. [Google Scholar] [CrossRef]
- Siragusa, S.; De Angelis, M.; Calasso, M.; Campanella, D.; Minervini, F.; Di Cagno, R.; Gobbetti, M. Fermentation and proteome profiles of Lactobacillus plantarum strains during growth under food-like conditions. J. Proteom. 2014, 96, 366–380. [Google Scholar] [CrossRef] [PubMed]
- Abe, F.; Miyauchi, H.; Uchijima, A.; Yaeshima, T.; Iwatsuki, K. Effects of storage temperature and water activity on the survival of bifidobacteria in powder form. Int. J. Dairy Technol. 2009, 62, 234–239. [Google Scholar] [CrossRef]
- Klu, Y.A.; Phillips, R.D.; Chen, J. Survival of four commercial probiotic mixtures in full fat and reduced fat peanut butter. Food Microbiol. 2014, 44, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Albadran, H.A.; Chatzifragkou, A.; Khutoryanskiy, V.V.; Charalampopoulos, D. Stability of probiotic Lactobacillus plantarum in dry microcapsules under accelerated storage conditions. Food Res. Int. 2015, 74, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Chávez, B.E.; Ledeboer, A.M. Drying of probiotics: Optimization of formulation and process to enhance storage survival. DRY Technol. 2007, 25, 1193–1201. [Google Scholar] [CrossRef]
- Vesterlund, S.; Salminen, K.; Salminen, S. Water activity in dry foods containing live probiotic bacteria should be carefully considered: A case study with Lactobacillus rhamnosus GG in flaxseed. Int. J. Food Microbiol. 2012, 157, 319–321. [Google Scholar] [CrossRef] [PubMed]
- Dianawati, D.; Shah, N.P. Enzyme stability of microencapsulated Bifidobacterium animalis ssp. lactis Bb12 after freeze drying and during storage in low water activity at room temperature. J. Food Sci. 2011, 76, M463–M471. [Google Scholar] [CrossRef] [PubMed]
- Ananta, E.; Volkert, M.; Knorr, D. Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. Int. Dairy J. 2005, 15, 399–409. [Google Scholar] [CrossRef]
- Bruno, F.A.; Shah, N.P. Viability of two freeze-dried strains of Bifidobacterium of commercial preparations at various temperatures during prolonged storage. J. Food Sci. 2003, 68, 2336–2339. [Google Scholar] [CrossRef]
- Klu, Y.A.K.; Chen, J. Effect of peanut butter matrices on the fate of probiotics during simulated gastrointestinal passage. LWT-Food Sci. Technol. 2015, 62, 983–988. [Google Scholar] [CrossRef]
- Guergoletto, K.B.; Magnani, M.; Martin, J.S.; Andrade, C.G.T.d.J.; Garcia, S. Survival of Lactobacillus casei (LC-1) adhered to prebiotic vegetal fibers. Innov. Food Sci. Emerg. Technol. 2010, 11, 415–421. [Google Scholar] [CrossRef]
- Saarela, M.; Virkajarvi, I.; Nohynek, L.; Vaari, A.; Matto, J. Fibres as carriers for Lactobacillus rhamnosus during freeze-drying and storage in apple juice and chocolate-coated breakfast cereals. Int. J. Food Microbiol. 2006, 112, 171–178. [Google Scholar] [CrossRef] [PubMed]
Food Matrix | B. longum ATCC15707T | L. acidophilus ATCC4356T | L. plantarum RC30 | |||
---|---|---|---|---|---|---|
20 °C 20% RH | 30 °C 50% RH | 20 °C 20% RH | 30 °C 50% RH | 20 °C 20% RH | 30 °C 50% RH | |
Rice collet | ||||||
week 0 | 6.22 ± 0.10 jkl | 6.16 ± 0.11 ijk | 4.70 ± 0.07 klmn | 4.58 ± 0.12 klm | 5.10 ± 0.23 lmn | 4.93 ± 0.25 lm |
week 2 | 5.80 ± 0.11 h | 3.90 ± 0.30 d | 3.63 ± 0.33 gh | <1 a | 4.01 ± 0.19 hij | 1.35 ± 0.20 c |
week 4 | 5.84 ± 0.21 g | 2.25 ± 0.20 c | 2.97 ± 0.20 de | <1 a | 3.97 ± 0.02 hi | <1 a |
Peanut | ||||||
week 0 | 7.07 ± 0.05 st | 7.15 ± 0.07 t | 5.01 ± 0.04 nop | 5.20 ± 0.04 op | 6.29 ± 0.06 q | 6.18 ± 0.21 q |
week 2 | 6.63 ± 0.08 mnopq | 5.56 ± 0.07 h | 3.96 ± 0.56 hi | 2.89 ± 0.43 de | 3.64 ± 0.22 gh | 2.25 ± 0.48 e |
week 4 | 6.53 ± 0.04 lmnop | 4.54 ± 0.22 f | 3.15 ± 0.38 ef | 2.00 ± 0.59 c | 3.57 ± 0.15 gh | 1.22 ± 0.43 c |
Coconut | ||||||
week 0 | 7.04 ± 0.01 rst | 7.09 ± 0.08 st | 4.88 ± 0.03 lmno | 4.90 ± 0.05 mno | 5.42 ± 0.22 no | 5.28 ± 0.20 lmno |
week 2 | 6.42 ± 0.02 klmn | 5.18 ± 0.05 g | 3.40 ± 0.18 fg | 2.67 ± 0.10 d | 2.76 ± 0.28 f | 1.46 ± 0.18 cd |
week 4 | 6.29 ± 0.09 klm | 3.58 ± 0.14 d | 3.20 ± 0.05 ef | 1.18 ± 0.33 b | 1.57 ± 0.14 cd | <1 a |
Raisin | ||||||
week 0 | 7.07 ± 0.05 st | 7.06 ± 0.05 rst | 5.34 ± 0.03 p | 5.33 ± 0.05 p | 5.56 ± 0.26 op | 5.48 ± 0.45 no |
week 2 | 6.49 ± 0.03 klmno | <1 a | 4.56 ± 0.08 kl | <1 a | 2.17 ± 0.20 e | <1 a |
week 4 | 5.07 ± 0.33 g | 0.98 ± 0.85 b | 2.97 ± 0.28 de | <1 a | 0.55 ± 0.52 b | <1 a |
Oat | ||||||
week 0 | 6.87 ± 0.10 pqrst | 6.98 ± 0.23 qrst | 4.67 ± 0.14 klmn | 4.49 ± 0.08 jk | 6.12 ± 0.33 q | 5.95 ± 0.26 pq |
week 2 | 6.77 ± 0.12 opqrs | 4.93 ± 0.15 g | 4.13 ± 0.09 i | 2.05 ± 0.18 c | 5.33 ± 0.08 lmno | 3.34 ± 0.53 g |
week 4 | 6.51 ± 0.17 lmno | 4.26 ± 0.32 ef | 3.75 ± 0.15 h | 0.09 ± 0.11 a | 4.88 ± 0.06 kl | 1.24 ± 0.56 c |
Wheat bran | ||||||
week 0 | 6.88 ± 0.44 pqrst | 7.02 ± 0.05 rst | 5.22 ± 0.14 op | 5.25 ± 0.01 p | 5.35 ± 0.39 mno | 5.16 ± 0.10 lmno |
week 2 | 6.96 ± 0.10 qrst | 5.89 ± 0.21 hij | 4.19 ± 0.13 ij | 3.97 ± 0.27 hi | 4.43 ± 0.40 jk | 1.91 ± 0.47 de |
week 4 | 6.71 ± 0.14 nopqr | 3.93 ± 0.21 de | 3.91 ± 0.04 hi | 1.35 ± 0.11 b | 4.17 ± 0.01 ij | 0.34 ± 0.02 ab |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, M.; Bunt, C.R.; Mason, S.L.; Bennett, G.N.; Hussain, M.A. Effect of Non-Dairy Food Matrices on the Survival of Probiotic Bacteria during Storage. Microorganisms 2017, 5, 43. https://doi.org/10.3390/microorganisms5030043
Min M, Bunt CR, Mason SL, Bennett GN, Hussain MA. Effect of Non-Dairy Food Matrices on the Survival of Probiotic Bacteria during Storage. Microorganisms. 2017; 5(3):43. https://doi.org/10.3390/microorganisms5030043
Chicago/Turabian StyleMin, Min, Craig R. Bunt, Susan L. Mason, Grant N. Bennett, and Malik A. Hussain. 2017. "Effect of Non-Dairy Food Matrices on the Survival of Probiotic Bacteria during Storage" Microorganisms 5, no. 3: 43. https://doi.org/10.3390/microorganisms5030043
APA StyleMin, M., Bunt, C. R., Mason, S. L., Bennett, G. N., & Hussain, M. A. (2017). Effect of Non-Dairy Food Matrices on the Survival of Probiotic Bacteria during Storage. Microorganisms, 5(3), 43. https://doi.org/10.3390/microorganisms5030043