Active Fungal Communities in Asymptomatic Eucalyptus grandis Stems Differ between a Susceptible and Resistant Clone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Taxonomic and Functional Classifications of Transcripts
2.2. Pathogen–Host Interaction Prediction
2.3. Prediction of Secreted Proteins
3. Results
3.1. RNA Reads Processing and Filtering of Fungal Sequences
3.2. Taxonomic Affiliation
3.3. GO and KOG Annotation of Transcripts
3.4. Identification of Proteins Involved in Pathogen–Host Interaction
3.5. Secreted Proteins
4. Discussion
4.1. Eucalyptus Fungal Community Includes Known Plant Pathogenic Taxa
4.2. Resistance Breeding Influences the Activity of the Associated Fungal Community
4.3. The Potential Function of Genes Transcribed by the Fungal Community in Non-Symptomatic Stem Tissue
4.3.1. Fungal Virulence and Host Interaction
4.3.2. Plant Penetration and Fungal Nutrition through Polysaccharide Degradation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agrios, G.N. Plant Pathology, 5th ed.; Academic Press: New York, NY, USA, 2005. [Google Scholar]
- Fisher, M.C.; Henk, D.A.; Briggs, C.J.; Brownstein, J.S.; Madoff, L.C.; McCraw, S.L.; Gurr, S.J. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012, 484, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: London, UK, 2008. [Google Scholar]
- Andrews, J.H.; Harris, R.F. The Ecology and Biogeography of Microorganisms on Plant Surfaces. Annu Rev. Phytopathol. 2000, 38, 145–180. [Google Scholar] [CrossRef] [PubMed]
- Arnold, A.E. Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol. Rev. 2007, 21, 51–66. [Google Scholar] [CrossRef]
- Carroll, G. Fungal endophytes in stems and leaves: From latent pathogen to mutualistic symbiont. Ecology 1988, 69, 2–9. [Google Scholar] [CrossRef]
- Busby, P.E.; Peay, K.G.; Newcombe, G. Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity. New Phytol. 2016, 209, 1681–1692. [Google Scholar] [CrossRef] [PubMed]
- Bálint, M.; Tiffin, P.; Hallström, B.; O’Hara, R.B.; Olson, M.S.; Fankhauser, J.D.; Piepenbring, M.; Schmitt, I. Host genotype shapes the foliar fungal microbiome of balsam poplar (Populus balsamifera). PLoS ONE 2013, 8, e53987. [Google Scholar] [CrossRef] [PubMed]
- Kemler, M.; Garnas, J.; Wingfield, M.J.; Gryzenhout, M.; Pillay, K.-A.; Slippers, B. Ion Torrent PGM as tool for fungal community analysis: A case study of endophytes in Eucalyptus grandis reveals high taxonomic diversity. PLoS ONE 2013, 8, e81718. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.; Boberg, J.; Ihrmark, K.; Stenström, E.; Stenlid, J. Do foliar fungal communities of Norway spruce shift along a tree species diversity gradient in mature European forests? Fungal Ecol. 2016, 23, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Zamioudis, C.; Pieterse, C.M.J. Modulation of host immunity by beneficial microbes. MPMI 2011, 25, 139–150. [Google Scholar] [CrossRef]
- Mengiste, T. Plant immunity to necrotrophs. Annu Rev. Phytopathol. 2012, 50, 267–294. [Google Scholar] [CrossRef]
- Cui, H.; Tsuda, K.; Parker, J.E. Effector-triggered immunity: From pathogen perception to robust defense. Annu Rev. Plant Biol. 2015, 66, 487–511. [Google Scholar] [CrossRef] [PubMed]
- Garcia, K.; Delaux, P.; Cope, K.R.; Ané, J. Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses. New Phytol. 2015, 208, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.; Kohler, A.; Murat, C.; Veneault-Fourrey, C.; Hibbett, D.S. Unearthing the roots of ectomycorrhizal symbioses. Nat. Rev. Microbiol. 2016, 14, 760–773. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Garcia, E.; Valent, B. How eukaryotic filamentous pathogens evade plant recognition. Curr. Opin. Microbiol. 2015, 26, 92–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, M.; Agarkar, G. Plant–fungal interactions: What triggers the fungi to switch among lifestyles? Crit. Rev. Microbiol. 2016, 42, 428–438. [Google Scholar] [CrossRef]
- Sharpton, T.J. An introduction to the analysis of shotgun metagenomic data. Front. Plant Sci. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Lu, X.; Zhang, W.; Huang, R.; Chen, S.; Zheng, Y. Transcriptome sequencing and analysis of leaf tissue of Avicennia marina using the Illumina platform. PLoS ONE 2014, 9, e108785. [Google Scholar] [CrossRef] [PubMed]
- Delhomme, N.; Sundström, G.; Zamani, N.; Lantz, H.; Lin, Y.-C.; Hvidsten, T.R.; Höppner, M.P.; Jern, P.; de Peer, Y.V.; Lundeberg, J.; et al. Serendipitous meta-transcriptomics: The fungal community of Norway spruce (Picea abies). PLoS ONE 2015, 10, e0139080. [Google Scholar] [CrossRef]
- Mangwanda, R.; Myburg, A.A.; Naidoo, S. Transcriptome and hormone profiling reveals Eucalyptus grandis defence responses against Chrysoporthe austroafricana. BMC Genom. 2015, 16, 319. [Google Scholar] [CrossRef]
- Myburg, A.; Grattapaglia, D.; Tuskan, G.; Jenkins, J.; Schmutz, J.; Mizrachi, E.; Hefer, C.; Pappas, G.; Sterck, L.; Van De Peer, Y.; et al. The Eucalyptus grandis Genome Project: Genome and transcriptome resources for comparative analysis of woody plant biology. BMC Proc. 2011, 5, I20. [Google Scholar] [CrossRef]
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Celaj, A.; Markle, J.; Danska, J.; Parkinson, J. Comparison of assembly algorithms for improving rate of metatranscriptomic functional annotation. Microbiome 2014, 2, 39. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Huson, D.H.; Mitra, S.; Ruscheweyh, H.-J.; Weber, N.; Schuster, S.C. Integrative analysis of environmental sequences using MEGAN4. Genome Res. 2011, 21, 1552–1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, A.J.; Ginzburg, S.; Xu, M.; Fisher, C.R.; Rahmatpour, N.; Mitton, J.B.; Paul, R.; Wegrzyn, J.L. EnTAP: Bringing faster and smarter functional annotation to non-model eukaryotic transcriptomes. bioRxiv 2018, 307868. [Google Scholar]
- Götz, S.; García-Gómez, J.M.; Terol, J.; Williams, T.D.; Nagaraj, S.H.; Nueda, M.J.; Robles, M.; Talón, M.; Dopazo, J.; Conesa, A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008, 36, 3420–3435. [Google Scholar] [CrossRef]
- Tang, S.; Lomsadze, A.; Borodovsky, M. Identification of protein coding regions in RNA transcripts. Nucleic Acids Res. 2015, 43, e78. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.; Binns, D.; Chang, H.-Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef] [Green Version]
- Huerta-Cepas, J.; Forslund, K.; Coelho, L.P.; Szklarczyk, D.; Jensen, L.J.; von Mering, C.; Bork, P. Fast Genome-Wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 2017, 34, 2115–2122. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Cepas, J.; Szklarczyk, D.; Forslund, K.; Cook, H.; Heller, D.; Walter, M.C.; Rattei, T.; Mende, D.R.; Sunagawa, S.; Kuhn, M.; et al. eggNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016, 44, D286–D293. [Google Scholar] [CrossRef] [PubMed]
- Tatusov, R.L.; Fedorova, N.D.; Jackson, J.D.; Jacobs, A.R.; Kiryutin, B.; Koonin, E.V.; Krylov, D.M.; Mazumder, R.; Mekhedov, S.L.; Nikolskaya, A.N.; et al. The COG database: An updated version includes eukaryotes. BMC Bioinform. 2003, 4, 41. [Google Scholar] [CrossRef] [PubMed]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Winnenburg, R.; Baldwin, T.K.; Urban, M.; Rawlings, C.; Köhler, J.; Hammond-Kosack, K.E. PHI-base: A new database for pathogen host interactions. Nucleic Acids Res. 2006, 34, D459–D464. [Google Scholar] [CrossRef] [PubMed]
- Bendtsen, D.J.; Nielsen, H.; von Heijne, G.; Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 2004, 340, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Emanuelsson, O.; Brunak, S.; von Heijne, G.; Nielsen, H. Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocols 2007, 2, 953–971. [Google Scholar] [CrossRef] [PubMed]
- Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E.L.L. Predicting transmembrane protein topology with a hidden markov model: Application to complete genomes. J. Mol. Biol. 2001, 305, 567–580. [Google Scholar] [CrossRef] [PubMed]
- Lum, G.; Min, X.J. FunSecKB: The Fungal Secretome KnowledgeBase. Database (Oxford) 2011, 2011. [Google Scholar] [CrossRef]
- Finn, R.D.; Clements, J.; Eddy, S.R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011, 39, W29–W37. [Google Scholar] [CrossRef]
- Eddy, S.R. A new generation of homology search tools based on probabilistic inference. In Genome Informatics 2009; Imperial College Press: London, UK, 2009; pp. 205–211. ISBN 978-1-84816-562-5. [Google Scholar]
- Yin, Y.; Mao, X.; Yang, J.; Chen, X.; Mao, F.; Xu, Y. dbCAN: A web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012, 40, W445–W451. [Google Scholar] [CrossRef]
- Zhang, H.; Yohe, T.; Huang, L.; Entwistle, S.; Wu, P.; Yang, Z.; Busk, P.K.; Xu, Y.; Yin, Y. dbCAN2: A meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018, 46, W95–W101. [Google Scholar] [CrossRef] [PubMed]
- Vivas, M.; Kemler, M.; Mphahlele, M.M.; Wingfield, M.J.; Slippers, B. Maternal effects on phenotype, resistance and the structuring of fungal communities in Eucalyptus grandis. Environ Exp. Bot. 2017, 140, 120–127. [Google Scholar] [CrossRef]
- Jiang, Y.; Xiong, X.; Danska, J.; Parkinson, J. Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality. Microbiome 2016, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Marsberg, A.; Slippers, B.; Wingfield, M.J.; Gryzenhout, M. Endophyte isolations from Syzygium cordatum and a Eucalyptus clone (Myrtaceae) reveal new host and geographical reports for the Mycosphaerellaceae and Teratosphaeriaceae. Australasian Plant Pathol. 2014, 43, 503–512. [Google Scholar] [CrossRef]
- Ganley, R. Density and diversity of fungal endophytes isolated from needles of Pinus radiata. SCION 2008, 12. [Google Scholar]
- Martín, J.A.; Witzell, J.; Blumenstein, K.; Rozpedowska, E.; Helander, M.; Sieber, T.N.; Gil, L. Resistance to Dutch elm disease reduces presence of xylem endophytic fungi in elms (Ulmus spp.). PLoS ONE 2013, 8, e56987. [Google Scholar] [CrossRef]
- Horton, M.W.; Bodenhausen, N.; Beilsmith, K.; Meng, D.; Muegge, B.D.; Subramanian, S.; Vetter, M.M.; Vilhjálmsson, B.J.; Nordborg, M.; Gordon, J.I.; et al. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat. Commun. 2014, 5, 5320. [Google Scholar] [CrossRef]
- Wille, L.; Messmer, M.M.; Studer, B.; Hohmann, P. Insights to plant–microbe interactions provide opportunities to improve resistance breeding against root diseases in grain legumes. Plant Cell Environ 2019, 42, 20–40. [Google Scholar] [CrossRef]
- Lo Presti, L.; Lanver, D.; Schweizer, G.; Tanaka, S.; Liang, L.; Tollot, M.; Zuccaro, A.; Reissmann, S.; Kahmann, R. Fungal effectors and plant susceptibility. Annu. Rev. Plant Biol. 2015, 66, 513–545. [Google Scholar] [CrossRef]
- Breitenbach, M.; Weber, M.; Rinnerthaler, M.; Karl, T.; Breitenbach-Koller, L. Oxidative stress in fungi: Its function in signal transduction, interaction with plant hosts, and lignocellulose degradation. Biomolecules 2015, 5, 318–342. [Google Scholar] [CrossRef] [PubMed]
- Heller, J.; Tudzynski, P. Reactive oxygen species in phytopathogenic fungi: Signaling, development, and disease. Annu Rev. Phytopathol. 2011, 49, 369–390. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Kahmann, R. Manipulation of Phytohormone Pathways by Effectors of Filamentous Plant Pathogens. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Mendgen, K.; Hahn, M. Plant infection and the establishment of fungal biotrophy. Trends Plant Sci. 2002, 7, 352–356. [Google Scholar] [CrossRef] [Green Version]
- Kolattukudy, P.E. Enzymatic penetration of the plant cuticle by fungal pathogens. Annu Rev. Phytopathol. 1985, 23, 223–250. [Google Scholar] [CrossRef]
- Deising, H.; Nicholson, R.L.; Haug, M.; Howard, R.J.; Mendgen, K. Adhesion pad formation and the involvement of cutinase and esterases in the attachment of uredospores to the host cuticle. Plant Cell 1992, 4, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Skamnioti, P.; Gurr, S.J. Cutinase and hydrophobin interplay. Plant Signal Behav. 2008, 3, 248–250. [Google Scholar] [CrossRef] [Green Version]
- Kolattukudy, P.E.; Rogers, L.M.; Li, D.; Hwang, C.S.; Flaishman, M.A. Surface signaling in pathogenesis. PNAS 1995, 92, 4080–4087. [Google Scholar] [CrossRef]
- Busk, P.K.; Lange, L. Classification of fungal and bacterial lytic polysaccharide monooxygenases. BMC Genom. 2015, 16, 368. [Google Scholar] [CrossRef]
- Ipcho, S.V.S.; Hane, J.K.; Antoni, E.A.; Ahren, D.; Henrissat, B.; Friesen, T.L.; Solomon, P.S.; Oliver, R.P. Transcriptome analysis of Stagonospora nodorum: Gene models, effectors, metabolism and pantothenate dispensability. Mol. Plant Pathol. 2012, 13, 531–545. [Google Scholar] [CrossRef]
- Liu, B.; Olson, Å.; Wu, M.; Broberg, A.; Sandgren, M. Biochemical studies of two lytic polysaccharide monooxygenases from the white-rot fungus Heterobasidion irregulare and their roles in lignocellulose degradation. PLoS ONE 2017, 12, e0189479. [Google Scholar] [CrossRef] [PubMed]
- Duplessis, S.; Cuomo, C.A.; Lin, Y.-C.; Aerts, A.; Tisserant, E.; Veneault-Fourrey, C.; Joly, D.L.; Hacquard, S.; Amselem, J.; Cantarel, B.L.; et al. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. PNAS 2011, 108, 9166–9171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; Liu, H.; Wang, C.; Xu, J.-R. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genom. 2013, 14, 274. [Google Scholar] [CrossRef] [PubMed]
Raw Reads (Forward; Reverse) | Unmapped Transcripts after TopHat | Unmapped % | Transcripts after Trinity | Trinity % | Fungal Transcripts | Fungi % | |
---|---|---|---|---|---|---|---|
TAG5_Control_BR1TP1 | 39,273,762; 39,273,762 | 8,093,926 | 20.61 | 8689 | 0.11 | 472 | 5.43 |
TAG5_Control_BR2TP1 | 39,195,029; 39,195,029 | 8,012,422 | 20.44 | 8934 | 0.11 | 335 | 3.75 |
TAG5_Control_BR3TP1 | 39,370,778; 39,370,778 | 8,152,959 | 20.71 | 9111 | 0.11 | 383 | 4.20 |
ZG14_Control_ BR1TP1 | 37,594,917; 37,594,917 | 8,052,598 | 21.42 | 9231 | 0.11 | 1373 | 14.87 |
ZG14_Control_ BR2TP1 | 38,697,190; 38,697,190 | 8,483,221 | 21.92 | 9138 | 0.11 | 1358 | 14.86 |
ZG14_Control_ BR3TP1 | 38,856,446; 38,856,446 | 7,875,385 | 20.27 | 8922 | 0.11 | 843 | 9.45 |
TAG5_Infected_BR1TP1 | 37,617,103; 37,617,103 | 7,323,565 | 19.47 | 6860 | 0.09 | 1798 | 26.21 |
TAG5_Infected_BR2TP1 | 37,390,551; 37,390,551 | 7,952,651 | 21.27 | 10,526 | 0.13 | 2722 | 25.86 |
TAG5_Infected_BR3TP1 | 38,684,116; 38,684,116 | 8,488,972 | 21.94 | 9973 | 0.12 | 1870 | 18.75 |
ZG14_Infected_ BR1TP1 | 38,062,937; 38,062,937 | 7,919,759 | 20.81 | 10,687 | 0.13 | 3096 | 28.97 |
ZG14_Infected_ BR2TP1 | 34,373,634; 34,373,634 | 7,177,341 | 20.88 | 9888 | 0.14 | 2364 | 23.91 |
ZG14_Infected_ BR3TP1 | 36,626,103; 36,626,103 | 7,778,486 | 21.24 | 10,954 | 0.14 | 3221 | 29.40 |
EnTAP/GenMarkS-T | PHI-base | KOG | SignalP | TargetP | TMHMM | FunSecKB | dbCAN2 | |
---|---|---|---|---|---|---|---|---|
TAG5 Control | 1061 | 396 | 793 | 108 | 103 | 79 | 45 | 11 |
ZG14 Control | 1405 | 581 | 1271 | 153 | 142 | 121 | 96 | 24 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Messal, M.; Slippers, B.; Naidoo, S.; Bezuidt, O.; Kemler, M. Active Fungal Communities in Asymptomatic Eucalyptus grandis Stems Differ between a Susceptible and Resistant Clone. Microorganisms 2019, 7, 375. https://doi.org/10.3390/microorganisms7100375
Messal M, Slippers B, Naidoo S, Bezuidt O, Kemler M. Active Fungal Communities in Asymptomatic Eucalyptus grandis Stems Differ between a Susceptible and Resistant Clone. Microorganisms. 2019; 7(10):375. https://doi.org/10.3390/microorganisms7100375
Chicago/Turabian StyleMessal, Mandy, Bernard Slippers, Sanushka Naidoo, Oliver Bezuidt, and Martin Kemler. 2019. "Active Fungal Communities in Asymptomatic Eucalyptus grandis Stems Differ between a Susceptible and Resistant Clone" Microorganisms 7, no. 10: 375. https://doi.org/10.3390/microorganisms7100375
APA StyleMessal, M., Slippers, B., Naidoo, S., Bezuidt, O., & Kemler, M. (2019). Active Fungal Communities in Asymptomatic Eucalyptus grandis Stems Differ between a Susceptible and Resistant Clone. Microorganisms, 7(10), 375. https://doi.org/10.3390/microorganisms7100375