Supplementary information

Name	Sequence $(5 3)$
KHY-F	ttc <u>catatg</u> atggaggcgacccttcc
KHY-R	ttcgaattcctagcgccagaggaccac
Y194H-F	gctacccctcccaccgcctgccc
Y194H-R	gggcaggcggtgggaggggtagc
K166R-F	tgaccccgagagggtgagggcgatcct
K166R-R	aggatcgccctcaccctctcggggtca
H174R-F	ggcttccttcccgcgccgccatccc
H174R-R	gggatggcggcgcgggaaggaagcc

Table S1. Primers used in this study.

Restrictions sites are shown underlined.

Plasmid	Description	Reference
pET22b(+)	Amp ^r , lacl. Expression of genes in <i>E. coli</i> , dependent of T7 phague RNA polymerase	Novagen
pET22b-KHY	Amp ^r . NOX overexpression without C-terminal His-tag (NdeI/EcoRI). DNA fragment (TTC0057 gene from <i>T. thermophilus</i> HB27) amplified with KHY-F and KHY-R primers	[1]
рЕТ22b-КНН	Amp ^r . KHH variant overexpression without C- terminal His-tag (NdeI/EcoRI). The mutation was introduced with Y194H-F and Y194H-R primers, replacing Y/H in Nox postion 194 and using pET22b-KHY as a template	This study
pET22b-RHY	Amp ^r . RHY variant overexpression without C- terminal His-tag (NdeI/EcoRI). The mutation was introduced with K166R-F and K166R-R primers, replacing K/R in NOX position 166 and using pET22b as a template	This study
pET22b-KRY	Amp ^r . KRY variant overexpression without C- terminal His-tag (NdeI/EcoRI). The mutation was introduced with H174R-F and H174R-R primers, replacing H/R in Nox position 174 and using pET22b-KHY as a template	This study
pET22b-RHH	Amp ^r . RHH variant overexpression without C- terminal His-tag (NdeI/EcoRI). The mutation was introduced with K166R-F and K166R-R primers, replacing K/R in NOX position 166 and Y/H in NOX position 194 and using pET22b-KHH as a template	This study
pET22b-KRH	Amp ^r . RRH variant overexpression without C- terminal His-tag (NdeI/EcoRI). The mutation was introduced with H174R-F and H174R-R primers and using pET22b-KHY as a template.	This study
pET22b-RRH	Amp ^r . RRH variant overexpression without C- terminal His-tag (NdeI/EcoRI). The mutation was introduced with K166R-F and K166R-R primers and using pET22b-KRH as a template.	This study

Table S2. Plamids used in this study.

Tt-NOX variant	Cofactor	HPLC method (µM)	Spectrophotometric method (µM)	Enzyme molecules containg flavin cofactor (%)
K166/R174/Y194	FAD	traces	ND	-
	FMN	1.15	1.1	5.5
K166/H174/Y194	FAD	traces	ND	-
	FMN	5.6	5.84	29

 Table S3. Quantification of flavin cofactor content.

Experiments were performed with 20 μ M of purified protein. Flavin content was determined by HPLC and spectrophotometric method as described in methods section. ND: non-detectable.

PDB id.	UNIPROT id.	Chain	Resolution (Å)	Name	Organism	Z- value	RMSd (Å)	id (%)
1nox	Q60049	А	1.59	NADH oxidase		33.6	0.0	100
3gbh	A0A0H2VHN8	А	2.00	Putative NAD(P)H:FMN Oxidoreductase	Staphylococcus epidermidis ATCC 12228	23.9	1.8	23
3bem	P96692	А	1.65	Putative NAD(P)H Nitroreductase YDFN	Bacillus subtilis	23.5	1.7	24
3ge6	B1YG32	А	1.70	Nitroreductase	Exiguobacterium sibiricum	23.3	2.0	28
3of4	Q5R179	В	1.90	FMN/FAD- and NAD(P)H-dependent Nitroreductase	Idiomarina loihiensis L2TR	23.2	1.9	21
3gag	Q8DVW4	В	1.70	Nitroreductase-like protein (smu.346)	Streptococcus mutans	22.6	2.1	25
2b67	A0A0H2UP38	В	1.90	Nitroreductase	Streptococcus pneumoniae TIGR4	22.3	2.3	27
4qly	U6C5W9	D		Enone reductase CLA-ER	Lactobacillus plantarum	22.1	2.4	23
Inec 1kqb 1kqc 1kqd 5j8d 5j8g	Q01234	A	1.95	Nitroreductase	Eneterobacter cloacae	20.2	2.6	25
licu 3x22 3x21 1yki 1ylr 1ylu 1idt 1005 1006 1000 1000 1icr 1icv 1ds7 1idt	P38489	С	1.80	Nitroreductase	Escherichia coli BL21	20.2	2.6	24
2hay	Q9A120	В	2.11	Putative NAD(P)H-Flavin Oxidoreductase	Streptococcus pyogenes	20.0	2.3	24

Table S4. Structural alignment of Tt27-NOX using Dali Server. Best 50 results.

Figure S1. SDS-PAGE analysis of the purification process of the **a**) K166/H174/H194 and **b**) K166/R174/Y194 variants. **a**) Lanes: 1) Molecular weight marker (kDa); 2) Crude protein extract; 3) Supernatant after heat treatment at 80 $^{\circ}$ C for 45 minutes; 4) Supernatant after incubation in presence of PEI-Ag for 45 minutes; 5) Supernatant after incubation in the presence of DS-Ag for 45 minutes. **b**) Lanes: 1) Molecular weight marker (kDa); 2) Empty lane; 3) Crude protein extract; 4) Supernatant after heat treatment at 70 $^{\circ}$ C for 60 minutes; 5) Supernatant after incubation in presence of PEI-Ag for 45 minutes.

sp 060049 NOX THET8	MEATLPVLDAKTAA-LKRRSIRRYRKD-PVPEGLLREILEAALRAPSAWNLOPWRIV	55
tr A0A0H2VHN8 A0A0H2VHN8 STAES	MOKLTR INDENEUL-NSRKSVKVEDENYKI DREEMDET ITKATKA DSSVNMODWRIA	56
en P96692 MHON BACSU		50
+v p1vC22 p1vC22 pvrC2		55
		10
		40
tr Q8DVW4 Q8DVW4_STRMU	MMNDYLNFL-DGRVSVRQFDPDAVLPNDLIKDMLEHASYAPSGNNFQPWRVV	51
tr A0A0H2UP38 A0A0H2UP38_STRPN	MKFLELN-KKRHATKHFTDK-LVDPKDVRTAIEIATLAPSAHNSQPWKFV	48
tr U6C5W9 U6C5W9_LACPN	MSEAVKNLVNNDLADVM-FNRHSVRQFDPNVKIGRDELQKMIAEAATAPSACNLQSWHFV	59
sp Q01234 NFSB_ENTCL	MDIISVA-LKRHSTKAFDASKKLTAEEAEKIKTLLQYSPSSTNSQPWHFI	49
sp P38489 NFSB_ECOLI	MDIISVA-LKRHSTKAFDASKKLTPEQAEQIKTLLQYSPSSTNSQPWHFI	49
tr 09A120 09A120 STRP1	MDQTIHHQIQQAL-HFRTAVRVYKEE-KISDEDLALILDAAWLSPSSIGLEGWRFV	54
	* : : : : * :	
sp Q60049 NOX_THET8	VVRDPATKRALREAAF-GQAHVEEAPVVLVLYADLEDALAHLDEVI-HPGVQGER	108
tr A0A0H2VHN8 A0A0H2VHN8 STAES	VVQSDEMKEKVKESFGF-NSRQLTTSSAMLIIFGDLQNYEKAEQIYG-DAVEQQLM	110
sp P96692 MHON BACSU	TVLDQDVKEKLKQAAN-GQYKVVSSSAVLLVLGDKQAYQQAADIYE-GLKVLGIL	103
tr B1YG32 B1YG32 EXIS2	VIDSEEGKATLAPLAKF-NOVOVETSSAVIAVFGDMKAIDOLENIYD-TAVEKGLM	109
tr 05R179 05R179 IDIL0	VIRNKGLREOLVNHSF-GOOKVADSSALVIFAAKTGAVADIVDPYISELSOOROL	102
tr 08DVW4 08DVW4 STRMU	VVKNKNKOEDLKKLAA-LOPOVATASAVFLLFGDENAVDLT-WWOE-FHVOKGT	103
+r A0A0H211P38 A0A0H211P38 STRPN		100
+r U6C5W9 U6C5W9 IACDN		114
an 001224 NECE ENDOL	VIDIFERRARINGAVINIF NIFUWI DASAUVIADUMI EDUDOFEDCE	100
SP D29490 NECE FOOLT	VASTEEGRARVARSAAGITUF - NERKMIDDASHWWFCARMINDDWILKI WUDGEDADGR	100
Sp P38489 NFSB_ECOLI	VASTEEGRARVARSAAGNIVF - NERKMLDASHVVVF CARTAMDDVWLRLVVDQEDADGRF	100
tr Q9A120 Q9A120_STRP1	VLDNKPIKEEIKPFAWGAQIQLETASHFILLIAEKHAKIDSPAIKN-SLLKRGIK	108
COLOGO AND THETS	PEACEC	156
		162
T DOGGO MUON DAGGU		102
Sp P30032 MIQN_BACSU		100
tr BIYG32 BIYG32_EXIS2	PQEVRDRQVPAIQGMYENVPASALKDSILIDSGLVSMQLMLVARAHGYDTNP	101
tr Q5RI /9 Q5RI /9_IDILO	TNEEAENTRNYFTQKLQAMSAATRKEWAVRQAYIGLGTFLLAAAELEVDSCP	154
tr Q8DVW4 Q8DVW4_STRMU	TKDEAAARAERIRQYFDLHPEDKETQGLRLDVGLFAMNLMQVVRVYGYDSVP	155
tr A0A0H2UP38 A0A0H2UP38_STRPN	SEEQLQYFMKNLPAEFARYSEQQVSDYLALNAGLVAMNLVLALTDQGIGSNI	152
tr U6C5W9 U6C5W9_LACPN	TKERLDQILGTFLPLYENATPDFLKFDATIDCSVVGMQLLLVARAHGYDANA	166
sp Q01234 NFSB_ENTCL	NTPEAKAANHKGRTYFADMHRVDLKDDDQWMAKQVYLNVGNFLLGVGAMGLDAVP	163
sp P38489 NFSB_ECOLI	ATPEAKAANDKGRKFFADMHRKDLHDDAEWMAKQVYLNVGNFLLGVAALGLDAVP	163
tr Q9A120 Q9A120 STRP1	EGDGLNSRLKLYESFQKEDMDMADNPRALFDWTAKQTYIALGNMMMTAALLGIDTCP	165
	1 1 11 .1	
sp Q60049 NOX_THET8	MLGFDPERVRAILGLPSHAAIPALVALGYPAEEGYPSHRLPLERVVLWR- 205	
tr A0A0H2VHN8 A0A0H2VHN8 STAES	IGGFDKENIADIIGYDSDRYVPVLAIAIGKKAQDAHDSVRLPIDDVREFL- 212	
sp P96692 MHON BACSU	MIGFDAEAVKRILNIDDQFEVVMMITIGKEKTESRRPRGYRKPVNEFVEYM- 206	
tr B1YG32 B1YG32 EXIS2	IGGYEKDOIAEAFGMEKURYVPVMLLSIGKAVDAGYPSVRLPINDIADWK- 211	
tr 05R179 05R179 IDIL0	MEGIEHDAYDNILSLKDIGLSTVFACPVGYRSEADTTOFOKFVROPLSRFKVVL- 208	
tr 08DVW4 08DVW4 STRMU	MRGVDFDATKTYLDMPNEWEPTLMLPVGKALOAGNPHVRKSVAEFAETTE 205	
tr A0A0H2UP38 A0A0H2UP38 STRPN	ILGEDKSKVNEVLETEDEFEPELLITVGYTDEKLEPSYRLPVDETTEKR- 201	
tr U6C5W9 U6C5W9 LACPN	ESGIDEEKMIPTLGLDPHRVVPVMGIAIGKAAOEPLHTTRVDAKTOTDELA 217	
en 001234 NESB ENTCL	TECEDAATIDEEECLKENCETSLUVUDUCHHSVEDENATLDISET DI STUTUEEC_ 217	
SP 234480 NECE ECOLT		
+* 002130 002130 CMDD1		
CT QANIZO QANIZO _ STRPI	TEGLUIDVAMUTTPAVUMAIDTUTEGIKSMPSPGIKPKDAVHWAAKKAKEKEAISAAK 551	

Figure S2. Sequence alignment of enzymes included in Table S1.

Arg166 and Arg174

Figure S3. Hydrogen bond network of Arg174 and Arg166 of Tt27-NOX (PDB id. 1NOX). The two monomers of the enzyme are colored in green and in blue, respectively. FMN is shown in sticks.

Figure S4. RMSd (Å) evolution of the two variants K166/H174/Y194 and K166/R174/Y194 along 0.5 µs of unbiased MD simulation.

Figure S5. Native contacts (%) evolution of the two variants K166/H174/Y194 and K166/R174/Y194 along 0.5 μ s of unbiased MD simulations at different temperatures. Together with the global number of native contacts, the evolution of the residues of the lid is also shown.