Role of L. plantarum KX519413 as Probiotic and Acacia Gum as Prebiotic in Gastrointestinal Tract Strengthening
Abstract
:1. Introduction
2. Results
2.1. Evaluation of the Effect of Oral Administration of Probiotics/Prebiotics/Sybiotic on Balb/c Mice
2.1.1. Persistence Studies
2.1.2. Measurements of General Health
2.1.3. Analysis of Gastrointestinal Tract Colonization
2.1.4. Bacterial Translocation
2.1.5. Histopathological Study
2.1.6. Hematological Parameters of Balb/c Mice
2.1.7. Determination of Biochemical Parameters
2.1.8. Immunomodulatory Effect in Balb/c Mice
Humoral Immune Response
Cell-Mediated Immune Responses
Splenic Lymphocyte Proliferation
2.1.9. Antioxidant Status of Liver
2.1.10. TNF-α Production
2.1.11. Assessment of Procarcinogenic Bacterial Enzyme Assay
Determination of β-Glucuronidase Activity
Determination of β-Glucosidase Activity
3. Discussion
4. Materials and Methods
4.1. Evaluation of the Effect of Oral Administration of Probiotics/Prebiotics/Sybiotics on Balb/c Mice
4.1.1. Persistence Studies
4.1.2. Measurements of General Health
4.1.3. Analysis of Gastrointestinal Tract Colonization
4.1.4. Bacterial Translocation
4.1.5. Histopathological Study
4.1.6. Hematological Parameters of Balb/c Mice
4.1.7. Determination of Biochemical Parameters
4.1.8. Immunomodulatory Effect in Balb/c Mice
Humoral Immune Response
Cell-Mediated Immune Responses
Splenic Lymphocyte Proliferation
4.1.9. Antioxidant Status of Liver
4.1.10. Tumor Necrosis Factor α (TNF-α) Production
4.1.11. Assessment of Procarcinogenic Bacterial Enzyme Assay
Determination of β-Glucuronidase Activity
Determination of β-Glucosidase Activity
4.2. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pandey, K.R.; Naik, S.R.; Vakil, B.H. Probiotics, prebiotics and synbiotics—A review. J. Food Sci. Technol. 2015, 52, 7577–7587. [Google Scholar] [CrossRef] [PubMed]
- Paulina, M.; Katarzyna, S. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lim, S. Probiotic Characteristics of Lactobacillus plantarum FH185 Isolated from Human Feces. Korean J. Food Sci. 2015, 35, 615–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behera, S.S.; Ray, R.C.; Zdolec, N. Lactobacillus plantarum with Functional Properties: An Approach to Increase Safety and Shelf-Life of Fermented Foods. Biomed. Res. Int. 2018, 2018, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, P.; Henriksson, A.; Mitchell, H. Prebiotics enhance survival and prolong the retention period of specific probiotic inocula in an in vivo murine model. J. Appl. Microbiol. 2007, 103, 2392–2400. [Google Scholar] [CrossRef]
- Nakov, G.; Vasileva, N.; Damyanova, S.; Stamatovska, V. Prebiotic Effects of Inulin And Acacia Gum (Review). Food Environ. Saf. 2015, 14, 148–156. [Google Scholar]
- Calame, W.; Weseler, A.R.; Viebke, C.; Flynn, C. Gum arabic establishes prebiotic functionality in healthy human volunteers in a dose-dependent manner. Br. J. Nutr. 2008, 100, 1269–1275. [Google Scholar] [CrossRef]
- Maftei, N. Probiotic, Prebiotic and Synbiotic Products in Human Health. In Frontiers and New Trends in the Science of Fermented Food and Beverages; IntechOpen Limited: London, UK, 2019; pp. 1–20. [Google Scholar]
- Meijerink, M.; Wells, J.M.; Taverne, N.; Brouwer, M.Z.; Hilhorst, B.; Venema, K.; Bilsen, J. Immunomodulatory effects of potential probiotics in a mouse peanut sensitization model. Immunol. Med. Microbiol. 2012, 65, 488–496. [Google Scholar] [CrossRef] [Green Version]
- Honey, C.C.; Keerthi, T.R. Probiotic potency of Lactobacillus plantarum KX519413 and KX519414 isolated from honey bee gut. FEMS Microbiol. Lett. 2018, 365, 1–8. [Google Scholar]
- FAO/WHO. Guidelines for the Evaluation of Probiotics in Food; Food and Agriculture Organization of the United Nations/World Health Organization: London, ON, Canada, 2002; pp. 1–11. [Google Scholar]
- Perlman, R.L. Mouse models of human disease An evolutionary perspective. Evol. Med. Public Health 2016, 2016, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Alarifi, S.; Bell, A.; Walton, G.; Alarifi, S.; Bell, A.; Walton, G. In vitro fermentation of gum acacia – impact on the faecal microbiota In vitro fermentation of gum acacia–impact on the faecal microbiota. Int. J. Food Sci. Nutr. 2018. [Google Scholar] [CrossRef] [PubMed]
- Oguntoyinbo, F.A.; Narbad, A. Multifunctional properties of Lactobacillus plantarum strains isolated from fermented. J. Funct. Foods 2015, 17, 621–631. [Google Scholar] [CrossRef] [Green Version]
- Fonty, G.; Raibaud, P.; Gouet, P. Manipulation of the gut microflora: Experimental approach in animals. Proc. Nutr. Soc. 1993, 52, 345–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ljungh, A.; Wadström, T. Lactic Acid Bacteria as Probiotics Further Reading. Curr. Issues Intest. Microbiol. 2001, 7, 73–90. [Google Scholar]
- Nguyen, T.D.T.; Kang, J.H.; Lee, M.S. Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. Int. J. Food Microbiol. 2007, 113, 358–361. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.O.; Phillips, G.O. Food Hydrocolloids Biofunctional behaviour and health bene fi ts of a speci fi c gum arabic. Food Hydrocoll. 2011, 25, 165–169. [Google Scholar] [CrossRef]
- Zhou, J.S.; Shu, Q.; Rutherfurd, K.J.; Prasad, J.; Birtles, M.J.; Gopal, P.K.; Gill, H.S. Safety assessment of potential probiotic lactic acid bacterial strains. Int. J. Food Microbiol. 2000, 56, 87–96. [Google Scholar] [CrossRef]
- Asaduzzamana, M.; Iehatab, S.; Aktera, S.; Kaderb, A.M.; Ghosha, S.K.; Khana, M.N.A.; Abol-Munaf, A.B. Effects of host gut-derived probiotic bacteria on gut morphology, microbiota composition and volatile short chain fatty acids production of Malaysian Mahseer Tor tambroides. Aquac. Rep. 2018, 9, 53–61. [Google Scholar] [CrossRef]
- Saputri, F.A.; Kang, D.; Kusuma, A.S.W.; Rusdiana, T.; Hasanah, A.N.; Abdulah, R. Lactobacillus plantarum IS-10506 probiotic administration increases amlodipine absorption in a rabbit model. J. Int. Med. Res. 2018, 46, 5004–5010. [Google Scholar] [CrossRef] [Green Version]
- Kaddam, L.; Almula, I.F.; Eisawi, O.A.; Abdelrazig, H.A.; Elnimeiri, M.; Lang, F.; Saeed, A.M. Gum Arabic as fetal hemoglobin inducing agent in sickle cell anemia; in vivo study. BMC Hematol. 2015, 15, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Eke, B.C.; Jibiri, N.N.; Anusionwu, B.C.; Orji, C.E.; Mbamala, E.C. Effects of the Ingestion of Microwaved Food Items on Some Haematological Parameters in Albino Wistar Rats. Br. J. Appl. Sci. Technol. 2015, 5, 99–103. [Google Scholar] [CrossRef]
- Aboderin, F.I.; Oyetayo, V.O.; Unit, H. Haematological Studies of Rats Fed Different Doses of Probiotic, Lactobacillus plantarum, Isolated from Fermenting Corn Slurry. Pakistan J. Nutr. 2006, 5, 102–105. [Google Scholar]
- Mustari, A.; Ahmad, N. Effects of probiotics on serum biochemical parameters in rats. Bangladesh Vet. 2011, 28, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Chai, Y.; Ha, Y.; Shin, S. Cholesterol Lowering Effect of Lactobacillus plantarum Isolated from Human Feces. J. Microbiol. Biotechnol. 2006, 16, 1201–1209. [Google Scholar]
- Ma, C.; Zhang, S.; Lu, J.; Zhang, C.; Pang, X.; Lv, L. Screening for Cholesterol-Lowering Probiotics from Lactic Acid Bacteria Isolated from Corn Silage Based on Three Hypothesized Pathways. Int. J. Mol. Sci. 2019, 20, 2073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, R.E.; Gadour, M.O.; Adam, I. The lowering effect of Gum Arabic on hyperlipidemia in Sudanese patients. Front. Physiol. 2015, 6, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranji, P.; Agah, S.; Heydari, Z.; Rahmati-yamchi, M.; Mohammad Alizadeh, A. Effects of Lactobacillus acidophilus and Bifidobacterium bifidum probiotics on the serum biochemical parameters, and the vitamin D and leptin receptor genes on mice colon cancer. Iran. J. Basic Med. Sci. 2019, 22, 631–636. [Google Scholar]
- Kaddam, L.; Fadl-elmula, I.; Eisawi, O.A.; Abdelrazig, H.A.; Saeed, A.M. Acacia Senegal (Gum Arabic) Supplementation Modulate Lipid Profile and Ameliorated Dyslipidemia among Sickle Cell Anemia Patients. J. Lipids 2019, 2019, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Capcarova, M.; Kolesrova, A.; Massanyi, P.; Kovacik, J. Selected Blood Biochemical and Haematological Parameters in Turkeys after an Experimental Probiotic Enterococcus faecium M-74 Strain Administration. Int. J. Poult. Sci. 2008, 7, 1194–1199. [Google Scholar] [CrossRef] [Green Version]
- Dubey, M.R.; Patel, V.P.; View, H. Probiotics: A Promising Tool for Calcium Absorption. Open Nutr. J. 2018, 12, 59–69. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, N.; Zhou, M.; Tu, Y.; Deng, K.; Diao, Q. Effects of dietary probiotics on growth performance, faecal microbiota and serum pro fi les in weaned piglets. Anim. Prod. Sci. 2013. [Google Scholar] [CrossRef]
- Kaddam, L.A.; Fdl-elmula, I.; Eisawi, O.A.; Abdelrazig, H.A.; Elnimeiri, M.K.; Saeed, A.M. Biochemical effects and safety of Gum arabic (Acacia Senegal) supplementation in patients with sickle cell anemia. Blood Res. 2019, 54, 1–7. [Google Scholar] [CrossRef]
- Herias, M.V.; Hessle, C.; Telemo, E.; Midtvedt, T. Immunomodulatory effects of Lactobacillus plantarum colonizing the intestine of gnotobiotic rats. Clin. Exp. Immunol. 1999, 116, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, Y.; Kunitoh-asari, A.; Hayakawa, K.; Imai, S.; Kasuya, K.; Abe, K.; Adachi, Y.; Fukudome, S.; Hachimura, S. Oral Administration of Lactobacillus plantarum Strain AYA Enhances IgA Secretion and Provides Survival Protection against Influenza Virus Infection in Mice. PLoS ONE 2014, 9, e86416. [Google Scholar] [CrossRef] [Green Version]
- Galdeano, C.M.; Cazorla, S.I.; Dumit, J.M.L.; Vélez, E.; Perdigón, G. Beneficial Effects of Probiotic Consumption on the Immune System. Ann. Nutr. Metab. 2019, 74, 115–124. [Google Scholar]
- Grieshop, C.M.; Flickinger, E.A.; Fahey, G.C. Oral Administration of Arabinogalactan Affects Immune Status and Fecal Microbial Populations in Dogs. Nutr. Immunol. 2002, 132, 478–482. [Google Scholar] [CrossRef]
- Rayes, A.A.H. Comparative studies between Gum Arabic recognized as a natural prebiotic. World Rural Obs. 2013, 5, 128–135. [Google Scholar]
- Parvez, S.; Malik, K.A.; Ah Kang, S.; Kim, H.Y. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 2006, 100, 1171–1185. [Google Scholar] [CrossRef]
- Kalui, C.M.; Mathara, J.M.; Kutima, P.M.; Kiiyukia, C.; Wongo, L.E. Functional characteristics of Lactobacillus plantarum and Lactobacillus rhamnosus from ikii, a Kenyan traditional fermented maize porridge. Afr. J. Biotechnol. 2009, 8, 4363–4373. [Google Scholar]
- Sharp, G.J.E.; Secombes, C.J. The role of reactive oxygen species in the killing of the bacterial pathogen Aeromonas salminicida by rainbow trout macrophages. Fish Shellfish Immunol. 1993, 3, 119–129. [Google Scholar] [CrossRef]
- Reid, G.; Jass, J.; Sebulsky, M.T.; Mccormick, J.K. Potential Uses of Probiotics in Clinical Practice Potential Uses of Probiotics in Clinical Practice. Clin. Microbiol. Rev. 2014, 16, 658–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunil, M.A.; Sunitha, V.S.; Ashitha, A.; Neethu, S.; Midhun, S.J.; Radhakrishnan, E.K.; Jyothis, M. ScienceDirect Catechin rich butanol fraction extracted from Acacia catechu L. (a thirst quencher) exhibits immunostimulatory potential. J. Food Drug Anal. 2018, 27, 195–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Y.; Li, B.; Zhan, M.; Lu, J.; Huo, G. Immunomodulatory activity of Lactobacillus plantarum KLDS1.0318 in cyclophosphamide-treated mice. Food Nutr. Res. 2018, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, Y.; Zhang, L.; Zhang, X.; Huang, L.; Li, D.; Niu, C. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem. 2012, 135, 1914–1919. [Google Scholar] [CrossRef] [PubMed]
- Faggio, C.; Fazio, F.; Marafiot, S.; Arfuso, F.; Piccione, G. Oral administration of Gum Arabic: Effects on haematological parameters and oxidative stress markers in Mugil cephalus. Iran. J. Fish. Sci. 2015, 14, 60–72. [Google Scholar]
- Puertollano, E.; Puertollano, A.; Cruz-chamorro, L.; Gerardo, A.; Puertollano, E.; Ruiz-bravo, A.; Pablo, M.A.D. Orally administered Lactobacillus plantarum reduces pro-inflammatory interleukin secretion in sera from Listeria monocytogenes infected mice. Br. J. Nutr. 2008, 99, 819–825. [Google Scholar] [CrossRef] [Green Version]
- Ali, B.H.; Al-husseni, I.; Beegam, S.; Al-shukaili, A.; Nemmar, A. Effect of Gum Arabic on Oxidative Stress and Inflammation in Adenine – Effect of Gum Arabic on Oxidative Stress and Inflammation in Adenine – Induced Chronic Renal Failure in Rats. PLoS ONE 2013, 8, e55242. [Google Scholar] [CrossRef] [Green Version]
- Kamal, E.; Kaddam, L.A.; Dahawi, M.; Osman, M.; Salih, M.A.; Alagib, A.; Saeed, A. Gum Arabic Fibers Decreased Inflammatory Markers and Disease Severity Score among Rheumatoid Arthritis Patients, Phase II Trial. Int. J. Rheumatol. 2018, 2018, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ambalam, P.; Raman, M.; Purama, R.K.; Doble, M. Probiotics, Prebiotics and Colorectal Cancer Prevention. Clin. Gastroenterol. 2016, 30, 119–131. [Google Scholar] [CrossRef]
- Cole, C.B.; Fuller, R.; Carter, S.M. Microbial Ecology in Health and Disease Effect of Probiotic Supplements of Lactobacillus acidophilus and Bifidobacterium adolescentis 2204 on β-glueosidase and β-glueuronidase Activity in the Lower Gut of Rats Associated with a Human Faecal Flora Effect. Microb. Ecol. Health Dis. 1989, 2, 223–225. [Google Scholar] [CrossRef]
- Mroczyńska, M.; Gałęcka, M.; Szachta, P.; Kamoda, D.; Libudzisz, Z.; Dorota, R. Beta-glucuronidase and beta-glucosidase Activity in Stool Specimens of Children with Inflammatory Bowel Disease β-glucuronidase and β-glucosidase Activity in Stool Specimens of Children with Inflammatory Bowel Disease. Pol. J. Microbiol. 2013, 62, 319–325. [Google Scholar]
- Bennett, M.F.; Clune, Y.E.; Shanahan, F.; Sullivan, G.O. Synbiotics and colon cancer in Functional Foods, Ageing and Degenerative Disease. In Woodhead Publishing Series in Food Science and Technology; Woodhead Publishing Limited: Cambridge, UK, 2004; pp. 524–580. [Google Scholar]
- Brown, A.C.; Valiere, A. Probiotics and Medical Nutrition Therapy. NIH Public Access. 2006, 7, 56–68. [Google Scholar]
- Goldin, B.R.; Gorbach, S.L. The effect of milk and lactobacillus feeding on human intestinal bacterial enzyme activity. Am. J. Clin. Nutr. 1984, 39, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Wagner, R.D.; Warner, T.; Roberts, L.; Farmer, J.; Balish, E. Colonization of Congenitally Immunodeficient Mice with Probiotic Bacteria. Infect. Immun. 1997, 65, 3345–3351. [Google Scholar] [PubMed]
- Chaudhary, Z.; Iqbal, J. Incidence, biochemical and haematological alterations induced by natural trypanosomosis in racing dromedary camels. Acta Trop. 2000, 77, 209–213. [Google Scholar] [CrossRef]
- Drabkin, D.; Austin, J. Spectrophotometric constants for common hemoglobin derivatives in human, dog, rabbit blood. J. Biol. Chem. 1932, 98, 719–733. [Google Scholar]
- Ray, A.; Dittel, B.N. Isolation of Mouse Peritoneal Cavity Cells. J. Vis. Exp. 2010, 35, 9–11. [Google Scholar] [CrossRef]
- Wadekar, R.R.; Agrawal, S.V.; Tewari, K.M.; Shinde, R.D.; Mate, S. Effect of Baliospermum montanum root extract on phagocytosis by human neutrophils. Int. J. Green Pharm. 2008, 2, 46–49. [Google Scholar] [CrossRef] [Green Version]
- Freeman, R.; King, B. Technique for the performance of the nitro-blue tetrazolium (NBT) test. J. Clin. Pathol. 1972, 912–914. [Google Scholar] [CrossRef] [Green Version]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
Parameters | Probiotic | Synbiotic | Prebiotic | Control |
---|---|---|---|---|
Hb (g/dL) | 12.2 ± 0.17 c | 12.85 ± 0.03 b | 11.4 ± 0.16 a | 11.13 ± 0.14 a |
WBC count (×109) | 9.06 ± 0.93 a | 9.1 ± 0.34 a | 8.5 ± 0.08 a | 8.9 ± 0.14 a |
MCV (fL) | 45.2 ± 2.6 a | 43.6 ± 2.7 a | 46.13 ± 0.9 a | 45.4 ± 1.5 a |
MCH (pg) | 15.3 ± 0.11 a | 15.08 ± 0.03 a | 15.27 ± 0.12 a | 15.25 ± 0.07 a |
RBC count (×1012) | 8.75 ± 0.13 c | 9.3 ± 0.3 b | 8.4 ± 0.08 a | 7.4 ± 0.26 a |
Parameters | Probiotic | Synbiotic | Prebiotic | Control |
---|---|---|---|---|
Cholesterol (mg/dL) | 104.9 ± 2.5 a | 100.7 ± 1.7 a | 113.3 ± 3.1 b | 113.6 ± 2.7 b |
Triglycerides (mg/dL) | 124 ± 2.5 a | 110 ± 4.9 b | 138 ± 0.5 c | 153 ± 1.7 d |
HDL (mg/dL) | 23.6 ± 1.2 a | 25 ± 0.5 a | 23.3 ± 0.66 a | 23.43 ± 3.1 a |
LDL (mg/dL) | 54.6 ± 0.12 a | 49.26 ± 0.03 b | 47.8 ± 0.1 c | 57.6 ± 0.2 d |
Total Protein (mg/dL) | 5.71 ± 0.008 a | 5.63 ± 0.017 a | 5.23 ± 0.035 c | 5.17 ± 0.037 c |
Calcium (mg/dL) | 9.17 ± 0.035 a | 8.6 ± 0.31 a | 8.67 ± 0.035 a | 7.7 ± 0.006 b |
Phosphorous (mg/dL) | 9.6 ± 0.21 a | 9.65 ± 0.02 a | 9.49 ± 0.003 a | 9.03 ± 0.06 b |
Immunoglobulin | Probiotic | Synbiotic | Prebiotic | Control |
---|---|---|---|---|
Ig G (g/L) | 1.7 ± 0.01 ab | 1.77 ± 0.008 a | 1.6 ± 0.008 b | 1.68 ± 0.02 b |
Ig M (g/L) | 1.04 ± 0.09 a | 0.84 ± 0.02 a | 0.91 ± 0.008 a | 1.06 ± 0.03 a |
Ig A (g/L) | 2.49 ± 0.008 a | 1.91 ± 0.01 b | 0.85 ± 0.03 c | 1.97 ± 0.03 b |
Secretory Ig A (g/L) | 3.14 ± 0.026 a | 2.72 ± 0.021 b | 1.56 ± 0.12 c | 2.1 ± 0.057 d |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chundakkattumalayil, H.C.; Kumar, S.; Narayanan, R.; Thalakattil Raghavan, K. Role of L. plantarum KX519413 as Probiotic and Acacia Gum as Prebiotic in Gastrointestinal Tract Strengthening. Microorganisms 2019, 7, 659. https://doi.org/10.3390/microorganisms7120659
Chundakkattumalayil HC, Kumar S, Narayanan R, Thalakattil Raghavan K. Role of L. plantarum KX519413 as Probiotic and Acacia Gum as Prebiotic in Gastrointestinal Tract Strengthening. Microorganisms. 2019; 7(12):659. https://doi.org/10.3390/microorganisms7120659
Chicago/Turabian StyleChundakkattumalayil, Honey Chandran, Sreelekshmi Kumar, Rakhie Narayanan, and Keerthi Thalakattil Raghavan. 2019. "Role of L. plantarum KX519413 as Probiotic and Acacia Gum as Prebiotic in Gastrointestinal Tract Strengthening" Microorganisms 7, no. 12: 659. https://doi.org/10.3390/microorganisms7120659
APA StyleChundakkattumalayil, H. C., Kumar, S., Narayanan, R., & Thalakattil Raghavan, K. (2019). Role of L. plantarum KX519413 as Probiotic and Acacia Gum as Prebiotic in Gastrointestinal Tract Strengthening. Microorganisms, 7(12), 659. https://doi.org/10.3390/microorganisms7120659