Canine Bone Marrow Mesenchymal Stem Cell Conditioned Media Affect Bacterial Growth, Biofilm-Associated Staphylococcus aureus and AHL-Dependent Quorum Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains And Growth Conditions
2.2. Preparation of cBM MSC CM
2.3. Anti-Bacterial Activity Test
2.4. Biofilm Formation
2.5. Effect of cBM MSC CM on Cell Surface Hydrophobicity (CSH) of S. aureus
2.6. Bioluminescence Assay (BA)
2.7. Statistical Analysis
3. Results
3.1. Antibacterial Disc Diffusion Testing
3.2. Anti-Biofilm SCVA
3.3. Effects of cBM MSC CM on CSH of S. aureus
3.4. Quantification of Bioactivity of cBM MSC CM Exposed to P. aeruginosa CFCS Producing Long-Chain AHLs (C10–C14) Using Luminescence-Based Reporter E. coli JM109 pSB1142
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, D.K.; Chang, Y.S.; Sung, S.I.; Yoo, H.S.; Ahn, S.Y.; Park, W.S. Antibacterial Effect of Mesenchymal Stem Cells against Escherichia Coli Is Mediated by Secretion of Beta- Defensin- 2 via Toll- like Receptor 4 Signalling. Cell. Microbiol. 2016, 18, 424–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, V.; Webb, T.; Norman, A.; Coy, J.; Kurihara, J.; Regan, D.; Dow, S. Activated Mesenchymal Stem Cells Interact with Antibiotics and Host Innate Immune Responses to Control Chronic Bacterial Infections. Sci. Rep. 2017, 7, 9575. [Google Scholar] [CrossRef] [PubMed]
- Prockop, D.J. Marrow Stromal Cells as Stem Cells for Nonhematopoietic Tissues. Science 1997, 276, 71–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pittenger, M.F. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, N.; Krasnodembskaya, A.; Kapetanaki, M.; Mouded, M.; Tan, X.; Serikov, V.; Matthay, M.A. Mesenchymal Stem Cells Enhance Survival and Bacterial Clearance in Murine Escherichia Coli Pneumonia. Thorax 2012, 67, 533–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krasnodembskaya, A.; Samarani, G.; Song, Y.; Zhuo, H.; Su, X.; Lee, J.-W.; Gupta, N.; Petrini, M.; Matthay, M.A. Human Mesenchymal Stem Cells Reduce Mortality and Bacteremia in Gram-Negative Sepsis in Mice in Part by Enhancing the Phagocytic Activity of Blood Monocytes. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012, 302, L1003–L1013. [Google Scholar] [CrossRef] [Green Version]
- Alcayaga-Miranda, F.; Cuenca, J.; Martin, A.; Contreras, L.; Figueroa, F.E.; Khoury, M. Combination Therapy of Menstrual Derived Mesenchymal Stem Cells and Antibiotics Ameliorates Survival in Sepsis. Stem Cell. Res. Ther. 2015, 6, 199. [Google Scholar] [CrossRef] [Green Version]
- Sutton, M.T.; Fletcher, D.; Ghosh, S.K.; Weinberg, A.; van Heeckeren, R.; Kaur, S.; Sadeghi, Z.; Hijaz, A.; Reese, J.; Lazarus, H.M.; et al. Antimicrobial Properties of Mesenchymal Stem Cells: Therapeutic Potential for Cystic Fibrosis Infection, and Treatment. Stem Cells Int. 2016, 2016, 5303048. [Google Scholar] [CrossRef] [Green Version]
- Russell, K.A.; Chow, N.H.C.; Dukoff, D.; Gibson, T.W.G.; LaMarre, J.; Betts, D.H.; Koch, T.G. Characterization and Immunomodulatory Effects of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells. PLoS ONE 2016, 11, e0167442. [Google Scholar] [CrossRef] [Green Version]
- de Bakker, E.; Van Ryssen, B.; De Schauwer, C.; Meyer, E. Canine Mesenchymal Stem Cells: State of the Art, Perspectives as Therapy for Dogs and as a Model for Man. Vet. Q. 2013, 33, 225–233. [Google Scholar] [CrossRef]
- Klinker, M.W. Mesenchymal Stem Cells in the Treatment of Inflammatory and Autoimmune Diseases in Experimental Animal Models. WJSC 2015, 7, 556. [Google Scholar] [CrossRef] [PubMed]
- Dias, I.E.; Pinto, P.O.; Barros, L.C.; Viegas, C.A.; Dias, I.R.; Carvalho, P.P. Mesenchymal Stem Cells Therapy in Companion Animals: Useful for Immune-Mediated Diseases? BMC Vet. Res. 2019, 15, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krešić, N.; Šimić, I.; Lojkić, I.; Bedeković, T. Canine Adipose Derived Mesenchymal Stem Cells Transcriptome Composition Alterations: A Step towards Standardizing Therapeutic. Stem Cells Int. 2017, 2017, 4176292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villatoro, A.J.; Alcoholado, C.; Martín-Astorga, M.C.; Fernández, V.; Cifuentes, M.; Becerra, J. Comparative Analysis and Characterization of Soluble Factors and Exosomes from Cultured Adipose Tissue and Bone Marrow Mesenchymal Stem Cells in Canine Species. Vet. Immunol. Immunopathol. 2019, 208, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Voga, M.; Adamic, N.; Vengust, M.; Majdic, G. Stem Cells in Veterinary Medicine—Current State and Treatment Options. Front. Vet. Sci. 2020, 7, 278. [Google Scholar] [CrossRef] [PubMed]
- Bautista-Hernández, L.A.; Gómez-Olivares, J.L.; Buentello-Volante, B.; Bautista-de Lucio, V.M. Fibroblasts: The Unknown Sentinels Eliciting Immune Responses against Microorganisms. Eur. J. Microbiol. Immunol. 2017, 7, 151–157. [Google Scholar] [CrossRef]
- Kumar, P.; Koul, S.; Patel, S.K.S.; Lee, J.-K.; Kalia, V.C. Heterologous Expression of Quorum Sensing Inhibitory Genes in Diverse Organisms. In Quorum Sensing vs. Quorum Quenching: A Battle with No End in Sight; Kalia, V.C., Ed.; Springer: New Delhi, India, 2015; pp. 343–356. [Google Scholar] [CrossRef]
- Bjarnsholt, T.; Jensen, P.Ø.; Burmølle, M.; Hentzer, M.; Haagensen, J.A.J.; Hougen, H.P.; Calum, H.; Madsen, K.G.; Moser, C.; Molin, S.; et al. Pseudomonas Aeruginosa Tolerance to Tobramycin, Hydrogen Peroxide and Polymorphonuclear Leukocytes Is Quorum-Sensing Dependent. Microbiology 2005, 151, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Humenik, F.; Cizkova, D.; Cikos, S.; Luptakova, L.; Madari, A.; Mudronova, D.; Kuricova, M.; Farbakova, J.; Spirkova, A.; Petrovova, E.; et al. Canine Bone Marrow-Derived Mesenchymal Stem Cells: Genomics, Proteomics and Functional Analyses of Paracrine Factors. Mol. Cell. Proteom. 2019, 18, 1824–1835. [Google Scholar] [CrossRef]
- EUCAST. Disk Diffusion Method for Antimicrobial Susceptibility Testing Version 6.0; European Society of Clinical Microbiology and Infectious Diseases: Basel, Switzerland, 2017. [Google Scholar]
- O’Toole, G.A. Microtiter Dish Biofilm Formation Assay. JoVE 2011, 47, 2437. [Google Scholar] [CrossRef]
- Bermudez-Brito, M.; Muñoz-Quezada, S.; Gomez-Llorente, C.; Matencio, E.; Bernal, M.J.; Romero, F.; Gil, A. Cell-Free Culture Supernatant of Bifidobacterium Breve CNCM I-4035 Decreases Pro-Inflammatory Cytokines in Human Dendritic Cells Challenged with Salmonella Typhi through TLR Activation. PLoS ONE 2013, 8, e59370. [Google Scholar] [CrossRef]
- BosgelmezTinaz, G. Disruption of Bacterial Cell-to-Cell Communication (Quorum Sensing): A Promising Novel Way to Combat Bacteria-Mediated Diseases. Musbed 2013, 1, 1. [Google Scholar] [CrossRef]
- Rutherford, S.T.; Bassler, B.L. Bacterial Quorum Sensing: Its Role in Virulence and Possibilities for Its Control. Cold Spring Harb. Perspect. Med. 2012, 2, a012427. [Google Scholar] [CrossRef] [PubMed]
- Manefield, M.; de Nys, R.; Naresh, K.; Roger, R.; Givskov, M.; Peter, S.; Kjelleberg, S. Evidence That Halogenated Furanones from Delisea Pulchra Inhibit Acylated Homoserine Lactone (AHL)-Mediated Gene Expression by Displacing the AHL Signal from Its Receptor Protein. Microbiology 1999, 145, 283–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hentzer, M.; Riedel, K.; Rasmussen, T.B.; Heydorn, A.; Andersen, J.B.; Parsek, M.R.; Rice, S.A.; Eberl, L.; Molin, S.; Høiby, N.; et al. Inhibition of Quorum Sensing in Pseudomonas Aeruginosa Biofilm Bacteria by a Halogenated Furanone Compound. Microbiology 2002, 148, 87–102. [Google Scholar] [CrossRef] [Green Version]
- Park, S.Y.; Kang, H.O.; Jang, H.S.; Lee, J.K.; Koo, B.T.; Yum, D.Y. Identification of Extracellular N-Acylhomoserine Lactone Acylase from a Streptomyces Sp. and Its Application to Quorum Quenching. AEM 2005, 71, 2632–2641. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.H.; Gusti, A.R.; Zhang, Q.; Xu, J.L.; Zhang, L.H. Identification of Quorum-Quenching N-Acyl Homoserine Lactonases from Bacillus Species. AEM 2002, 68, 1754–1759. [Google Scholar] [CrossRef] [Green Version]
- Musthafa, K.S.; Ravi, A.V.; Annapoorani, A.; Packiavathy, I.S.V.; Pandian, S.K. Evaluation of Anti-Quorum-Sensing Activity of Edible Plants and Fruits through Inhibition of the N-Acyl-Homoserine Lactone System in Chromobacterium Violaceum and Pseudomonas Aeruginosa. Chemotherapy 2010, 56, 333–339. [Google Scholar] [CrossRef]
- Nithya, C.; Aravindraja, C.; Pandian, S.K. Bacillus Pumilus of Palk Bay Origin Inhibits Quorum-Sensing-Mediated Virulence Factors in Gram-Negative Bacteria. Res. Microbiol. 2010, 161, 293–304. [Google Scholar] [CrossRef]
- Musthafa, K.S.; Saroja, V.; Pandian, S.K.; Ravi, A.V. Antipathogenic Potential of Marine Bacillus Sp. SS4 on N-Acyl-Homoserine-Lactone-Mediated Virulence Factors Production in Pseudomonas Aeruginosa (PAO1). J. Biosci. 2011, 36, 55–67. [Google Scholar] [CrossRef]
- Kim, J.; Hematti, P. Mesenchymal Stem Cell–Educated Macrophages: A Novel Type of Alternatively Activated Macrophages. Exp. Hematol. 2009, 37, 1445–1453. [Google Scholar] [CrossRef] [Green Version]
- Raffaghello, L.; Bianchi, G.; Bertolotto, M.; Montecucco, F.; Busca, A.; Dallegri, F.; Ottonello, L.; Pistoia, V. Human Mesenchymal Stem Cells Inhibit Neutrophil Apoptosis: A Model for Neutrophil Preservation in the Bone Marrow Niche. Stem Cells 2008, 26, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Cassatella, M.A.; Mosna, F.; Micheletti, A.; Lisi, V.; Tamassia, N.; Cont, C.; Calzetti, F.; Pelletier, M.; Pizzolo, G.; Krampera, M. Toll-Like Receptor-3-Activated Human Mesenchymal Stromal Cells Significantly Prolong the Survival and Function of Neutrophils. Stem Cells 2011, 29, 1001–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maqbool, M.; Vidyadaran, S.; George, E.; Ramasamy, R. Human Mesenchymal Stem Cells Protect Neutrophils from Serum-Deprived Cell Death. Cell Biol. Int. 2011, 35, 1247–1251. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Araya, Y.; Amilon, K.; Rink, B.E.; Black, G.; Lisowski, Z.; Donadeu, F.X.; Esteves, C.L. Comparison of Antibacterial and Immunological Properties of Mesenchymal Stem/Stromal Cells from Equine Bone Marrow, Endometrium, and Adipose Tissue. Stem Cells Dev. 2018, 27, 1518–1525. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.R.R.; Tsoyi, K.; Ith, B.; Padera, R.F.; Lederer, J.A.; Wang, Z.; Liu, X.; Perrella, M.A. Mesenchymal Stromal Cells Improve Survival During Sepsis in the Absence of Heme Oxygenase-1: The Importance of Neutrophils. Stem Cells 2013, 31, 397–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.W.; Krasnodembskaya, A.; McKenna, D.H.; Song, Y.; Abbott, J.; Matthay, M.A. Therapeutic Effects of Human Mesenchymal Stem Cells in Ex Vivo Human Lungs Injured with Live Bacteria. Am. J. Respir. Crit. Care Med. 2013, 187, 751–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Feng, X.; Abbott, J.; Fang, X.; Hao, Q.; Monsel, A.; Qu, J.; Matthay, M.A.; Lee, J.W. Human Mesenchymal Stem Cell Microvesicles for Treatment of Escherichia Coli Endotoxin-Induced Acute Lung Injury in Mice: MSC MV Attenuates ALI in Part Through KGF. Stem Cells 2014, 32, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Seo, M.-D.; Won, H.-S.; Kim, J.-H.; Mishig-Ochir, T.; Lee, B.-J. Antimicrobial Peptides for Therapeutic Applications: A Review. Molecules 2012, 17, 12276–12286. [Google Scholar] [CrossRef] [Green Version]
- Park, S.A.; Reilly, C.M.; Wood, J.A.; Chung, D.J.; Carrade, D.D.; Deremer, S.L.; Seraphin, R.L.; Clark, K.C.; Zwingenberger, A.L.; Borjesson, D.L.; et al. Safety and Immunomodulatory Effects of Allogeneic Canine Adipose-Derived Mesenchymal Stromal Cells Transplanted into the Region of the Lacrimal Gland, the Gland of the Third Eyelid and the Knee Joint. Cytotherapy 2013, 15, 1498–1510. [Google Scholar] [CrossRef]
- Lee, W.S.; Suzuki, Y.; Graves, S.S.; Iwata, M.; Venkataraman, G.M.; Mielcarek, M.; Peterson, L.J.; Ikehara, S.; Torok-Storb, B.; Storb, R. Canine Bone Marrow-Derived Mesenchymal Stromal Cells Suppress Alloreactive Lymphocyte Proliferation in Vitro but Fail to Enhance Engraftment in Canine Bone Marrow Transplantation. Biol. Blood Marrow Transplant. 2011, 17, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.W.; Kang, K.-S.; Koo, H.C.; Park, J.R.; Choi, E.W.; Park, Y.H. Soluble Factors–Mediated Immunomodulatory Effects of Canine Adipose Tissue–Derived Mesenchymal Stem Cells. Stem Cells Dev. 2008, 17, 681–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harman, R.M.; Yang, S.; He, M.K.; Van de Walle, G.R. Antimicrobial Peptides Secreted by Equine Mesenchymal Stromal Cells Inhibit the Growth of Bacteria Commonly Found in Skin Wounds. Stem Cell Res. Ther. 2017, 8, 157. [Google Scholar] [CrossRef] [PubMed]
- Gaglione, R.; Dell’Olmo, E.; Bosso, A.; Chino, M.; Pane, K.; Ascione, F.; Itri, F.; Caserta, S.; Amoresano, A.; Lombardi, A.; et al. Novel Human Bioactive Peptides Identified in Apolipoprotein B: Evaluation of Their Therapeutic Potential. Biochem. Pharmacol. 2017, 130, 34–50. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.A.; Harrison, I.; McKnight, Á.; Dobson, C.B. Anti-Infective Activity of Apolipoprotein Domain Derived Peptides in vitro: Identification of Novel Antimicrobial Peptides Related to Apolipoprotein B with Anti-HIV Activity. BMC Immunol. 2010, 11, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, D.K.V.; Choi, S.H.; Washicosky, K.J.; Eimer, W.A.; Tucker, S.; Ghofrani, J.; Lefkowitz, A.; McColl, G.; Goldstein, L.E.; Tanzi, R.E.; et al. Amyloid-β Peptide Protects against Microbial Infection in Mouse and Worm Models of Alzheimer’s Disease. Sci. Transl. Med. 2016, 8, 340ra72. [Google Scholar] [CrossRef] [Green Version]
- Soscia, S.J.; Kirby, J.E.; Washicosky, K.J.; Tucker, S.M.; Ingelsson, M.; Hyman, B.; Burton, M.A.; Goldstein, L.E.; Duong, S.; Tanzi, R.E.; et al. The Alzheimer’s Disease-Associated Amyloid β-Protein Is an Antimicrobial Peptide. PLoS ONE 2010, 5, e9505. [Google Scholar] [CrossRef]
- Arockiaraj, J.; Kumaresan, V.; Chaurasia, M.K.; Bhatt, P.; Palanisamy, R.; Pasupuleti, M.; Gnanam, A.J.; Kasi, M. Molecular Characterization of a Novel Cathepsin B from Striped Murrel Channa striatus: Bioinformatics Analysis, Gene Expression, Synthesis of Peptide and Antimicrobial Property. Turk. J. Fish. Aquat. Sci. 2014, 14, 379–389. [Google Scholar] [CrossRef]
- Majewski, P.; Majchrzak-Gorecka, M.; Grygier, B.; Skrzeczynska-Moncznik, J.; Osiecka, O.; Cichy, J. Inhibitors of Serine Proteases in Regulating the Production and Function of Neutrophil Extracellular Traps. Front. Immunol. 2016, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bian, L.; Strzyz, P.; Jonsson, I.M.; Erlandsson, M.; Hellvard, A.; Brisslert, M.; Ohlsson, C.; Ambartsumian, N.; Grigorian, M.; Bokarewa, M. S100A4 Deficiency Is Associated With Efficient Bacterial Clearance and Protects Against Joint Destruction During Staphylococcal Infection. J. Infect. Dis. 2011, 204, 722–730. [Google Scholar] [CrossRef] [Green Version]
- Feeley, E.M.; Pilla-Moffett, D.M.; Zwack, E.E.; Piro, A.S.; Finethy, R.; Kolb, J.P.; Martinez, J.; Brodsky, I.E.; Coers, J. Galectin-3 Directs Antimicrobial Guanylate Binding Proteins to Vacuoles Furnished with Bacterial Secretion Systems. Proc. Natl. Acad. Sci. USA 2017, 114, E1698–E1706. [Google Scholar] [CrossRef] [Green Version]
- Elezagic, D.; Mörgelin, M.; Hermes, G.; Hamprecht, A.; Sengle, G.; Lau, D.; Höllriegl, S.; Wagener, R.; Paulsson, M.; Streichert, T.; et al. Antimicrobial Peptides Derived from the Cartilage-Specific C-Type Lectin Domain Family 3 Member A (CLEC3A)—Potential in the Prevention and Treatment of Septic Arthritis. Osteoarthr. Cartil. 2019, 27, 1564–1573. [Google Scholar] [CrossRef] [PubMed]
- Andrés, M.T.; Fierro, J.F. Antimicrobial Mechanism of Action of Transferrins: Selective Inhibition of H+-ATPase. AAC 2010, 54, 4335–4342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruhn, O.; Grötzinger, J.; Cascorbi, I.; Jung, S. Antimicrobial Peptides and Proteins of the Horse—Insights into a Well-Armed Organism. Vet. Res. 2011, 42, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, M.M.; Mack, J.L.; Hall, P.R.; Alsup, A.A.; Alexander, S.M.; Sully, E.K.; Sawires, Y.S.; Cheung, A.L.; Otto, M.; Gresham, H.D. Apolipoprotein B Is an Innate Barrier against Invasive Staphylococcus Aureus Infection. Cell Host Microbe 2008, 4, 555–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flynn, P.B.; Busetti, A.; Wielogorska, E.; Chevallier, O.P.; Elliott, C.T.; Laverty, G.; Gorman, S.P.; Graham, W.G.; Gilmore, B.F. Non-Thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence. Sci. Rep. 2016, 6, 26320. [Google Scholar] [CrossRef] [PubMed]
- Kalia, V.C.; Purohit, H.J. Quenching the Quorum Sensing System: Potential Antibacterial Drug Targets. Crit. Rev. Microbiol. 2011, 37, 121–140. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Jangid, K. Fungal Quorum Sensing Inhibitors. In Quorum Sensing vs. Quorum Quenching: A Battle with No End in Sight; Kalia, V.C., Ed.; Springer: New Delhi, India, 2015; pp. 237–257. [Google Scholar]
- Huma, N. Diversity and Polymorphism in AHL-Lactonase Gene (AiiA) of Bacillus. J. Microbiol. Biotechnol. 2011, 21, 1001–1011. [Google Scholar] [CrossRef] [Green Version]
- Mandrich, L.; Porzio, E.; Andrenacci, D.; Manco, G. Exploring Paraoxonases/Lactonases as a Tool to Interfere with Pseudomonas Aeruginosa Infection. Biotechnol. Biomater. 2014, 3, 5. [Google Scholar] [CrossRef]
- Dong, Y.H.; Wang, L.H.; Xu, J.L.; Zhang, H.B.; Zhang, X.F.; Zhang, L.H. Quenching Quorum-Sensing-Dependent Bacterial Infection by an N-Acyl Homoserine Lactonase. Nature 2001, 411, 813–817. [Google Scholar] [CrossRef]
- Teiber, J.F.; Horke, S.; Haines, D.C.; Chowdhary, P.K.; Xiao, J.; Kramer, G.L.; Haley, R.W.; Draganov, D.I. Dominant Role of Paraoxonases in Inactivation of the Pseudomonas Aeruginosa Quorum-Sensing Signal N-(3-Oxododecanoyl)-l-Homoserine Lactone. IAI 2008, 76, 2512–2519. [Google Scholar] [CrossRef] [Green Version]
MSCs CM Samples | Inhibition Zone (mm) | ||||||
---|---|---|---|---|---|---|---|
SA 11 | SA 14 | S. aureus CCM 3953 | S. agalacticae CCM 6187 | E. coli C 1971 | S. enteritidis CCM 4420 | B. cereus CCM 869 | |
CM AM | 25 | R | 10 | 10 | R | R | R |
CM L | 30 | R | 8 | 8 | R | R | R |
CM AST | 20 | R | 7 | 8 | R | R | R |
CM P | 27 | R | 11 | 12 | R | R | R |
CM E | 24 | R | 10 | 10 | R | R | R |
CM B | 21 | R | 12 | 12 | R | R | R |
NC | R | R | R | R | R | R | R |
Indices | cBM MSC CM Effects | ||
---|---|---|---|
Anti-Biofilm a (A550 ± SD) | Anti-CSH b (A570 ± SD) | Anti-QS c (RLU/A550 ± SD) | |
PC | 0.391 ± 0.062 | 0.331 ± 0.022 (59%) | 11,714 ± 1362 |
NC | 0.346 ± 0.099 | 0.349 ± 0.054 (56%) | 12,253 ± 332 |
CM AM | 0.274 ± 0.133 * | 0.437 ± 0.032 (45%) *** | 7753 ± 700 *** |
CM L | 0.197 ± 0.092 *** | 0.440 ± 0.025 (45%) *** | 10,294 ± 387 * |
CM AST | 0.246 ± 0.055 * | 0.440 ± 0.052 (45%) *** | 7803 ± 162 *** |
CM P | 0.150 ± 0.096 *** | 0.450 ± 0.040 (44%) *** | 9735 ± 547 *** |
CM E | 0.215 ± 0.047 ** | 0.451 ± 0.053 (44%) *** | 10,230 ± 532 ** |
CM B | 0.257 ± 0.183 ** | 0.556 ± 0.053 (31%) *** | 8920 ± 237 *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bujňáková, D.; Čuvalová, A.; Čížek, M.; Humenik, F.; Salzet, M.; Čížková, D. Canine Bone Marrow Mesenchymal Stem Cell Conditioned Media Affect Bacterial Growth, Biofilm-Associated Staphylococcus aureus and AHL-Dependent Quorum Sensing. Microorganisms 2020, 8, 1478. https://doi.org/10.3390/microorganisms8101478
Bujňáková D, Čuvalová A, Čížek M, Humenik F, Salzet M, Čížková D. Canine Bone Marrow Mesenchymal Stem Cell Conditioned Media Affect Bacterial Growth, Biofilm-Associated Staphylococcus aureus and AHL-Dependent Quorum Sensing. Microorganisms. 2020; 8(10):1478. https://doi.org/10.3390/microorganisms8101478
Chicago/Turabian StyleBujňáková, Dobroslava, Anna Čuvalová, Milan Čížek, Filip Humenik, Michel Salzet, and Daša Čížková. 2020. "Canine Bone Marrow Mesenchymal Stem Cell Conditioned Media Affect Bacterial Growth, Biofilm-Associated Staphylococcus aureus and AHL-Dependent Quorum Sensing" Microorganisms 8, no. 10: 1478. https://doi.org/10.3390/microorganisms8101478
APA StyleBujňáková, D., Čuvalová, A., Čížek, M., Humenik, F., Salzet, M., & Čížková, D. (2020). Canine Bone Marrow Mesenchymal Stem Cell Conditioned Media Affect Bacterial Growth, Biofilm-Associated Staphylococcus aureus and AHL-Dependent Quorum Sensing. Microorganisms, 8(10), 1478. https://doi.org/10.3390/microorganisms8101478