Seasonal and Nutrient Supplement Responses in Rumen Microbiota Structure and Metabolites of Tropical Rangeland Cattle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sampling
2.2. Laboratory Analysis
2.3. Natural Abundance Analysis of Nitrogen Stable Isotopes
2.4. DNA Extractions and Illumina MiSeq Sequencing
2.5. Quantitative PCR Analysis
2.6. Statistical Analyses
3. Results
3.1. Rumen Fermentation, Blood, and Fecal Parameters
3.2. Rumen Microbial Community
3.2.1. Supplementation Response
3.2.2. Seasonal Effect
4. Discussion
4.1. Productivity and Rumen Fermentation Responses
4.2. Rumen Microbial Responses
4.2.1. Bacteria Community
4.2.2. Archaea Community
4.2.3. Protozoa Community
4.2.4. Fungi Community
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Winks, L. Cattle Growth in the Dry Tropics of Australia; Australian Meat Research Committee: Sydney, Australia, 1984; Review number 45. [Google Scholar]
- Dixon, R.M.; Playford, C.; Coates, D.B. Nutrition of beef breeder cows in the dry tropics. 1. Effects of nitrogen supplementation and weaning on breeder performance. Anim. Prod. Sci. 2011, 51, 515–528. [Google Scholar] [CrossRef]
- McLennan, S.; Dunster, P.; O’Rourke, P.; Murphy, G. Comparison of dry season urea supplements containing salt, sulfur or molasses for steers grazing native pasture in the dry tropics of northern Queensland. Aust. J. Exp. Agr. 1981, 21, 457–463. [Google Scholar] [CrossRef]
- Hennessy, D.W.; Williamson, P.J. Feed-intake and liveweight of cattle on subtropical native pasture hays 2. The effect of urea and maize flour, or protected-casein. Aust. J. Agr. Res. 1990, 41, 1179–1185. [Google Scholar] [CrossRef]
- Minson, D. Forage in Ruminant Nutrition; Academic Press: London, UK, 1990. [Google Scholar]
- Dixon, R.; Doyle, P. Straw and low quality roughages as drought feeds. In A User’s Guide Drought Feeding Alternatives; Rowe, J., Cossins, N., Eds.; UNE: Armidale, Australia, 1996; pp. 61–74. [Google Scholar]
- Schatz, T.J. Pre-partum supplementation increases first-lactation heifer re-conception rates in the victoria river district, nt. Anim. Prod. Sci. 2015, 55, 180–184. [Google Scholar] [CrossRef]
- Coates, D.B.; Dixon, R.M. Faecal near infrared reflectance spectroscopy estimates of diet quality and responses to nitrogen supplements by cattle grazing bothriochloa pertusa pastures. Aust. J. Exp. Agr. 2008, 48, 829–834. [Google Scholar] [CrossRef]
- Dixon, R.M.; Coates, D.B. Diet quality estimated with faecal near infrared reflectance spectroscopy and responses to n supplementation by cattle grazing buffel grass pastures. Anim. Feed Sci. Technol. 2010, 158, 115–125. [Google Scholar] [CrossRef]
- Winks, L.; Laing, A.R.; Orourke, P.K.; Wright, G.S. Factors affecting response to urea-molasses supplements by yearling cattle in tropical Queensland. Aust. J. Exp. Agr. 1979, 19, 522–529. [Google Scholar] [CrossRef]
- Mclennan, S.R.; Hirst, D.J.; Shepherd, R.K.; Mcguigan, K.R. A comparison of various methods of feeding supplements of urea, sulfur and molasses to weaner heifers during the dry season in northern Queensland. Aust. J. Exp. Agr. 1991, 31, 153–158. [Google Scholar] [CrossRef]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Janssen, P.H.; Collaborators, G.R.C. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 2015, 5, 14567. [Google Scholar] [CrossRef]
- Holm, A.M.; Eliot, G. Seasonal changes in the nutritive value of some native pasture species in north-western Australia. Rangeland J. 1980, 2, 175–182. [Google Scholar] [CrossRef]
- Streeter, S. Pasture grasses of the Barkly tableland. Agnote 2007, E40, 1–4. [Google Scholar]
- Coates, D.B. Faecal NIRS: Technology for Improving Nutritional Management of Grazing Cattle: Final Report Project NAP3. 121; CSIRO Sustainable Ecosystems and Meat & Livestock: Sydney, Australia, 2004. [Google Scholar]
- Coates, D.B.; Dixon, R.M. Development of near infrared analysis of faeces to estimate non-grass proportions in diets selected by cattle grazing tropical pastures. J. Near Infrared Spectrosc. 2007, 16, 471–480. [Google Scholar] [CrossRef]
- Gagen, E.J.; Wang, J.K.; Padmanabha, J.; Liu, J.; de Carvalho, I.P.C.; Liu, J.X.; Webb, R.I.; Al Jassim, R.; Morrison, M.; Denman, S.E.; et al. Investigation of a new acetogen isolated from an enrichment of the tammar wallaby forestomach. BMC Microbiol. 2014, 14, 314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef] [PubMed]
- Cantalapiedra-Hijar, G.; Ortigues-Marty, I.; Sepchat, B.; Agabriel, J.; Huneau, J.F.; Fouillet, H. Diet-animal fractionation of nitrogen stable isotopes reflects the efficiency of nitrogen assimilation in ruminants. Br. J. Nutr. 2015, 113, 1158–1169. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Fernandez, G.; Denman, S.E.; Yang, C.L.; Cheung, J.E.; Mitsumori, M.; McSweeney, C.S. Methane inhibition alters the microbial community, hydrogen flow, and fermentation response in the rumen of cattle. Front. Microbiol. 2016, 7, 1122. [Google Scholar] [CrossRef] [PubMed]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl. Environ. Microbiol. 2013, 79, 5112–5120. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Asakawa, S.; Nakamura, A.; Nagaoka, K.; Kimura, M. Dgge method for analyzing 16s rDNA of methanogenic archaeal community in paddy field soil. FEMS Microbiol. Lett. 2004, 232, 153–163. [Google Scholar] [CrossRef]
- Skillman, L.C.; Evans, P.N.; Naylor, G.E.; Morvan, B.; Jarvis, G.N.; Joblin, K.N. 16s ribosomal DNA-directed pcr primers for ruminal methanogens and identification of methanogens colonising young lambs. Anaerobe 2004, 10, 277–285. [Google Scholar] [CrossRef]
- Tuckwell, D.S.; Nicholson, M.J.; McSweeney, C.S.; Theodorou, M.K.; Brookman, J.L. The rapid assignment of ruminal fungi to presumptive genera using its1 and its2 rna secondary structures to produce group-specific fingerprints. Microbiology 2005, 151, 1557–1567. [Google Scholar] [CrossRef] [Green Version]
- Ishaq, S.L.; Wright, A.D.G. Design and validation of four new primers for next-generation sequencing to target the 18s rRNA genes of gastrointestinal ciliate protozoa. Appl. Environ. Microbiol. 2014, 80, 5515–5521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Carcer, D.A.; Denman, S.E.; McSweeney, C.; Morrison, M. Strategy for modular tagged high-throughput amplicon sequencing. Appl. Environ. Microbiol. 2011, 77, 6310–6312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. Search and clustering orders of magnitude faster than blast. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callahan, B.J.; McMurdie, P.J.; Holmes, S.P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017, 11, 2639–2643. [Google Scholar] [CrossRef] [Green Version]
- Rohart, F.; Gautier, B.; Singh, A.; Le Cao, K.A. Mixomics: An r package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 2017, 13, e1005752. [Google Scholar] [CrossRef] [Green Version]
- Gloor, G.B.; Macklaim, J.M.; Pawlowsky-Glahn, V.; Egozcue, J.J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 2017, 8, 2224. [Google Scholar] [CrossRef] [Green Version]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [Green Version]
- Murali, A.; Bhargava, A.; Wright, E.S. Idtaxa: A novel approach for accurate taxonomic classification of microbiome sequences. Microbiome 2018, 6, 140. [Google Scholar] [CrossRef]
- Seedorf, H.; Kittelmann, S.; Henderson, G.; Janssen, P.H. RIM-DB: A taxonomic framework for community structure analysis of methanogenic archaea from the rumen and other intestinal environments. PeerJ 2014, 2, e494. [Google Scholar] [CrossRef] [Green Version]
- Kittelmann, S.; Devente, S.R.; Kirk, M.R.; Seedorf, H.; Dehority, B.A.; Janssen, P.H. Phylogeny of intestinal ciliates, including charonina ventriculi, and comparison of microscopy and 18s rRNA gene pyrosequencing for rumen ciliate community structure analysis. Appl. Environ. Microbiol. 2015, 81, 2433–2444. [Google Scholar] [CrossRef] [Green Version]
- Koetschan, C.; Kittelmann, S.; Lu, J.; Al-Halbouni, D.; Jarvis, G.N.; Müller, T.; Wolf, M.; Janssen, P.H. Internal transcribed spacer 1 secondary structure analysis reveals a common core throughout the anaerobic fungi (neocallimastigomycota). PLoS ONE 2014, 9, e91928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denman, S.E.; McSweeney, C.S. Development of a real-time pcr assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 2006, 58, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, J.T.; Karnati, S.K.R.; Yu, Z.; Morrison, M.; Firkins, J.L. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J. Nutr. 2004, 134, 3378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(t)(-delta delta c) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Detmann, E.; Valente, É.E.; Batista, E.D.; Huhtanen, P. An evaluation of the performance and efficiency of nitrogen utilization in cattle fed tropical grass pastures with supplementation. Livest. Sci. 2014, 162, 141–153. [Google Scholar] [CrossRef]
- Mackie, R.; Kistner, A. Some frontiers of research in basic ruminant nutrition. South Afr. J. Anim. Sci. 1985, 15, 72–85. [Google Scholar]
- Morrison, M.; Mackie, R.I. Nitrogen metabolism by ruminal microorganisms: Current understanding and future perspectives. Aust. J. Agr Res. 1996, 47, 227–246. [Google Scholar] [CrossRef]
- Satter, L.; Slyter, L. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 1974, 32, 199–208. [Google Scholar] [CrossRef]
- Russell, J.B.; Strobel, H.J. Concentration of ammonia across cell membranes of mixed rumen bacteria. J. Dairy Sci. 1987, 70, 970–976. [Google Scholar] [CrossRef]
- Boniface, A.; Murray, R.; Hogan, J. Optimum level of ammonia in the rumen liquor of cattle fed tropical pasture hay. In Proceedings of the Australian Society of Animal Production, Canberra, Australia, February 1986. [Google Scholar]
- Eggington, A.; McCosker, T.; Graham, C. Intake of lick block supplements by cattle grazing native monsoonal tallgrass pastures in the northern territory. Rangeland J. 1990, 12, 7–13. [Google Scholar] [CrossRef]
- Hammond, A. Use of blood urea nitrogen concentration to guide protein supplementation in cattle. In Proceedings of the 3rd Annual Florida Ruminant Nutrition Symposium, Gainesville, FL, USA, January 1992. [Google Scholar]
- Hammond, A.; Bowers, E.; Kunkle, W.; Genho, P.; Moore, S.; Crosby, C.; Ramsay, K.; Harris, J.; Essig, H. Use of blood urea nitrogen concentration to determine time and level of protein supplementation in wintering cows. Prof. Anim. Sci. 1994, 10, 24–31. [Google Scholar] [CrossRef]
- Cantalapiedra-Hijar, G.; Dewhurst, R.J.; Cheng, L.; Cabrita, A.R.J.; Fonseca, A.J.M.; Noziere, P.; Makowski, D.; Fouillet, H.; Ortigues-Marty, I. Nitrogen isotopic fractionation as a biomarker for nitrogen use efficiency in ruminants: A meta-analysis. Animal 2018, 12, 1827–1837. [Google Scholar] [CrossRef] [PubMed]
- Wheadon, N.M.; Mcgee, M.; Edwards, G.R.; Dewhurst, R.J. Plasma nitrogen isotopic fractionation and feed efficiency in growing beef heifers. Br. J. Nutr. 2014, 111, 1705–1711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCann, J.C.; Wiley, L.M.; Forbes, T.D.; Rouquette, F.M., Jr.; Tedeschi, L.O. Relationship between the rumen microbiome and residual feed intake-efficiency of brahman bulls stocked on bermudagrass pastures. PLoS ONE 2014, 9, e91864. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Fernandez, G.; Denman, S.E.; McSweeney, C.S. Sample processing methods impacts on rumen microbiome. Front. Microbiol. 2019, 10, 861. [Google Scholar] [CrossRef] [Green Version]
- Solden, L.M.; Hoyt, D.W.; Collins, W.B.; Plank, J.E.; Daly, R.A.; Hildebrand, E.; Beavers, T.J.; Wolfe, R.; Nicora, C.D.; Purvine, S.O.; et al. New roles in hemicellulosic sugar fermentation for the uncultivated bacteroidetes family bs11. ISME J. 2017, 11, 691–703. [Google Scholar] [CrossRef]
- Ormerod, K.L.; Wood, D.L.A.; Lachner, N.; Gellatly, S.L.; Daly, J.N.; Parsons, J.D.; Dal’Molin, C.G.O.; Palfreyman, R.W.; Nielsen, L.K.; Cooper, M.A.; et al. Genomic characterization of the uncultured bacteroidales family s24-7 inhabiting the guts of homeothermic animals. Microbiome 2016, 4, 36. [Google Scholar] [CrossRef] [Green Version]
- Di Rienzi, S.C.; Sharon, I.; Wrighton, K.C.; Koren, O.; Hug, L.A.; Thomas, B.C.; Goodrich, J.K.; Bell, J.T.; Spector, T.D.; Banfield, J.F.; et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to cyanobacteria. eLife 2013, 2, e01102. [Google Scholar] [CrossRef]
- Qiu, Q.; Gao, C.; Aziz ur Rahman, M.; Cao, B.; Su, H. Digestive ability, physiological characteristics, and rumen bacterial community of holstein finishing steers in response to three nutrient density diets as fattening phases advanced. Microorganisms 2020, 8, 335. [Google Scholar] [CrossRef] [Green Version]
- McGovern, E.; Kenny, D.A.; McCabe, M.S.; Fitzsimons, C.; McGee, M.; Kelly, A.K.; Waters, S.M. 16s rrna sequencing reveals relationship between potent cellulolytic genera and feed efficiency in the rumen of bulls. Front. Microbiol. 2018, 9, 1842. [Google Scholar] [CrossRef]
- Purushe, J.; Fouts, D.E.; Morrison, M.; White, B.A.; Mackie, R.I.; Coutinho, P.M.; Henrissat, B.; Nelson, K.E.; North American Consortium for Rumen Bacteria. Comparative genome analysis of prevotella ruminicola and prevotella bryantii: Insights into their environmental niche. Microb. Ecol. 2010, 60, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.N.; Méndez–García, C.; Geier, R.R.; Iakiviak, M.; Chang, J.; Cann, I.; Mackie, R.I. Metabolic networks for nitrogen utilization in prevotella ruminicola 23. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wolin, M.; Miller, T.; Stewart, C. Microbe-microbe interactions. In The Rumen Microbial Ecosystem, 1st ed.; Hobson, P.N., Stewart, C.S., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 467–491. [Google Scholar]
- Strobel, H.J. Vitamin B12-dependent propionate production by the ruminal bacterium prevotella ruminicola 23. Appl. Environ. Microbiol. 1992, 58, 2331–2333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarvis, G.N.; Strömpl, C.; Burgess, D.M.; Skillman, L.C.; Moore, E.R.; Joblin, K.N. Isolation and identification of ruminal methanogens from grazing cattle. Curr. Microbiol. 2000, 40, 327–332. [Google Scholar] [CrossRef]
- Kelly, W.J.; Leahy, S.C.; Li, D.; Perry, R.; Lambie, S.C.; Attwood, G.T.; Altermann, E. The complete genome sequence of the rumen methanogen methanobacterium formicicum brm9. Stand. Genom. Sci. 2014, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Deb, S.; Dey, A.; Somvanshi, S.; Singh, D.; Rathore, R.; Stiverson, J. 16s rDNA analysis of archaea indicates dominance of methanobacterium and high abundance of methanomassiliicoccaceae in rumen of nili-ravi buffalo. Anaerobe 2015, 35, 3–10. [Google Scholar] [CrossRef]
- Saengkerdsub, S.; Ricke, S.C. Ecology and characteristics of methanogenic archaea in animals and humans. Crit. Rev. Microbiol. 2014, 40, 97–116. [Google Scholar] [CrossRef]
- Sirohi, S.; Pandey, N.; Singh, B.; Puniya, A. Rumen methanogens: A review. Indian J. Microbiol. 2010, 50, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Kelly, W.J.; Leahy, S.C.; Kamke, J.; Soni, P.; Koike, S.; Mackie, R.; Seshadri, R.; Cook, G.M.; Morales, S.E.; Greening, C. Occurrence and expression of genes encoding methyl-compound production in rumen bacteria. Anim. Microbiome 2019, 1, 15. [Google Scholar] [CrossRef]
- Rittenhouse, L.R.; Roath, L.R. Forage quality: Primary chemistry of grasses. In Integrated Pest Management on Rangeland—A Shortgrass Prairie Perspective; Westview Press: Boulder, CO, USA, 1987; pp. 25–37. [Google Scholar]
- Williams, A.G.; Coleman, G.S. The Rumen Protozoa, 1st ed.; Springer-Verlag: New York, NY, USA, 1992. [Google Scholar]
- Newbold, C.J.; de la Fuente, G.; Belanche, A.; Ramos-Morales, E.; McEwan, N.R. The role of ciliate protozoa in the rumen. Front. Microbiol. 2015, 6, 1313. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.; Coleman, G. The rumen protozoa. In The Rumen Microbial Ecosystem, 1st ed.; Hobson, P.N., Stewart, C.S., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 73–139. [Google Scholar]
- Belanche, A.; De la Fuente, G.; Moorby, J.; Newbold, C.J. Bacterial protein degradation by different rumen protozoal groups. J. Anim. Sci. 2012, 90, 4495–4504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerling, B. Rumen ciliate fauna of semi-domestic reindeer (rangifer tarandus l.) in Finland: Composition, volume and some seasonal variations. Acta Zoologica Fennica 1970, 127, 1–76. [Google Scholar]
- Van der Wath, J.; Myburgh, S. Studies on the alimentary tract of merino sheep in south africa. VI. The role of infusoria in ruminal digestion with some remarks on ruminal bacteria. Onderstepoort J. Vet. Sci. 1941, 17, 61–88. [Google Scholar]
- Martinele, I.; Santos, G.; Matos, D.; Batista, A.; D’Agosto, M. Diet botanical composition and rumen protozoa of sheep in brazilian semi-arid area. Archivos Zootecnia. 2010, 59, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Gruninger, R.J.; Puniya, A.K.; Callaghan, T.M.; Edwards, J.E.; Youssef, N.; Dagar, S.S.; Fliegerova, K.; Griffith, G.W.; Forster, R.; Tsang, A.; et al. Anaerobic fungi (phylum neocallimastigomycota): Advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol. Ecol. 2014, 90, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Shi, Q.; Sun, R.; Liang, D.; Li, Y.; Jin, W.; Zhu, W. The biotechnological potential of anaerobic fungi on fiber degradation and methane production. World J. Microbiol. Biotechnol. 2018, 34, 155. [Google Scholar] [CrossRef]
- Hanafy, R.A.; Lanjekar, V.B.; Dhakephalkar, P.K.; Callaghan, T.M.; Dagar, S.S.; Griffith, G.W.; Elshahed, M.S.; Youssef, N.H. Seven new neocallimastigomycota genera from wild, zoo-housed, and domesticated herbivores greatly expand the taxonomic diversity of the phylum. Mycologia 2020, 1–28. [Google Scholar] [CrossRef]
- Hanafy, R.A.; Elshahed, M.S.; Liggenstoffer, A.S.; Griffith, G.W.; Youssef, N.H. Pecoramyces ruminantium, gen. Nov., sp nov., an anaerobic gut fungus from the feces of cattle and sheep. Mycologia 2017, 109, 231–243. [Google Scholar] [CrossRef]
- Sridhar, M.; Kumar, D.; Anandan, S. Cyllamyces icaris sp. Nov., a new anaerobic gut fungus with nodular sporangiophores isolated from indian water buffalo (bubalus bubalis). Int. J. Curr. Res. Acad. Rev. 2014, 2, 7–24. [Google Scholar]
- Couger, M.B.; Youssef, N.H.; Struchtemeyer, C.G.; Liggenstoffer, A.S.; Elshahed, M.S. Transcriptomic analysis of lignocellulosic biomass degradation by the anaerobic fungal isolate orpinomyces sp. Strain C1A. Biotechnol. Biofuels 2015, 8, 208. [Google Scholar] [CrossRef] [Green Version]
- Loeffler, C.; Karlsberg, A.; Eskin, E.; Koslicki, D.; Mangul, S. Analysis of multiple fungal sequence repositories highlights shortcomings in microbial databases. bioRxiv 2019, 497867. [Google Scholar]
Un-Supplemented | Supplemented | SEM | p-Value | |
---|---|---|---|---|
Body weight (Kg) | 379 | 437 | 8.17 | 0.002 |
N intake kg/day | 0.002 | 0.023 | 0.001 | 0.001 |
Supplement intake kg/day | 0.015 | 0.153 | 0.001 | 0.001 |
ADWG (Kg) | −0.374 | 0.674 | 0.09 | 0.001 |
δ 15Nplasma protein | 7.11 | 5.44 | 0.11 | 0.001 |
Fecal N % | 1.10 | 1.12 | 0.03 | 0.72 |
Ammonia-N mg/L | 14.3 | 23.9 | 3.17 | 0.15 |
BUN mg/100 mL | 4.66 | 4.75 | 0.30 | 0.89 |
Total VFA mM | 75.8 | 75.8 | 3.31 | 0.99 |
Fatty acid % | ||||
Acetate | 73.2 | 74.5 | 0.27 | 0.031 |
Propionate | 18.2 | 14.0 | 0.38 | 0.005 |
Butyrate | 7.70 | 8.65 | 0.16 | 0.007 |
iso-Butyrate | 0.25 | 0.34 | 0.03 | 0.084 |
Valerate | 0.37 | 0.41 | 0.01 | 0.167 |
iso-Valerate | 0.24 | 0.32 | 0.03 | 0.161 |
Acetic:Propionic ratio | 4.08 | 4.73 | 0.11 | 0.008 |
Mid-Dry Season | Wet Season | SEM | p-Value | |
---|---|---|---|---|
Body weight (Kg) | 399 | 389 | 7.06 | 0.168 |
Fecal N % | 0.97 | 2.12 | 0.03 | 0.001 |
Ammonia-N mg/L | 11.9 | 70.2 | 2.34 | 0.001 |
BUN mg/100 mL | 2.79 | 9.04 | 0.40 | 0.001 |
Total VFA mM | 84.0 | 64.2 | 3.15 | 0.001 |
Fatty acid % | ||||
Acetate | 75.6 | 75.8 | 0.16 | 0.601 |
Propionate | 14.1 | 12.0 | 0.13 | 0.001 |
Butyrate | 8.99 | 9.37 | 0.07 | 0.085 |
iso-Butyrate | 0.48 | 0.89 | 0.03 | 0.001 |
Valerate | 0.34 | 0.64 | 0.01 | 0.001 |
iso-Valerate | 0.44 | 1.09 | 0.03 | 0.001 |
Acetic:Propionic ratio | 5.38 | 6.18 | 0.06 | 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Fernandez, G.; Jiao, J.; Padmanabha, J.; Denman, S.E.; McSweeney, C.S. Seasonal and Nutrient Supplement Responses in Rumen Microbiota Structure and Metabolites of Tropical Rangeland Cattle. Microorganisms 2020, 8, 1550. https://doi.org/10.3390/microorganisms8101550
Martinez-Fernandez G, Jiao J, Padmanabha J, Denman SE, McSweeney CS. Seasonal and Nutrient Supplement Responses in Rumen Microbiota Structure and Metabolites of Tropical Rangeland Cattle. Microorganisms. 2020; 8(10):1550. https://doi.org/10.3390/microorganisms8101550
Chicago/Turabian StyleMartinez-Fernandez, Gonzalo, Jinzhen Jiao, Jagadish Padmanabha, Stuart E. Denman, and Christopher S. McSweeney. 2020. "Seasonal and Nutrient Supplement Responses in Rumen Microbiota Structure and Metabolites of Tropical Rangeland Cattle" Microorganisms 8, no. 10: 1550. https://doi.org/10.3390/microorganisms8101550
APA StyleMartinez-Fernandez, G., Jiao, J., Padmanabha, J., Denman, S. E., & McSweeney, C. S. (2020). Seasonal and Nutrient Supplement Responses in Rumen Microbiota Structure and Metabolites of Tropical Rangeland Cattle. Microorganisms, 8(10), 1550. https://doi.org/10.3390/microorganisms8101550