Lysogenization of a Lactococcal Host with Three Distinct Temperate Phages Provides Homologous and Heterologous Phage Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteria and Bacteriophage Preparation
2.2. Phage Enumeration Assays
2.3. Induction Trials of L. lactis 3107
2.4. Generation of Lysogens of TP901-1, LC3 and Dub35A in L. lactis 3107
2.5. Lysozyme and Nsin Susceptibility Assays
2.6. DNA Extraction and Genome Sequencing, Assembly and Annotation
2.7. Bioinformatic Analyses
3. Results
3.1. L. lactis 3107 Harbours Stable Resident Prophages
3.2. Bioinformatic Analysis of 3107-Infecting Temperate Phage Lysogeny Modules
3.3. Prophage Carriage Endows Homologous and Heterologous Phage Resistance
3.4. Location of Lysogens in Host Genome
3.5. Lysogen-Specific Impacts of Antimicrobial Compounds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kelleher, P.; Mahony, J.; Schweinlin, K.; Neve, H.; Franz, C.M.; Van Sinderen, D. Assessing the Functionality and Genetic Diversity of Lactococcal Prophages. Int. J. Food Microbiol. 2018, 272, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Kelly, W.J.; Altermann, E.; Lambie, S.C.; Leahy, S.C. Interaction Between the Genomes of Lactococcus lactis and Phages of the P335 Species. Front. Microbiol. 2013, 4, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, J.; Mahony, J.; Hanemaaijer, L.; Kouwen, T.R.H.M.; Neve, H.; MacSharry, J.; Van Sinderen, D. Detecting Lactococcus lactis Prophages by Mitomycin C-Mediated Induction Coupled to Flow Cytometry Analysis. Front. Microbiol. 2017, 8, 1343. [Google Scholar] [CrossRef] [PubMed]
- Ventura, M.; Zomer, A.; Canchaya, C.; O’Connell-Motherway, M.; Kuipers, O.; Turroni, F.; Ribbera, A.; Foroni, E.; Buist, G.; Wegmann, U.; et al. Comparative Analyses of Prophage-Like Elements Present in Two Lactococcus lactis Strains. Appl. Environ. Microbiol. 2007, 73, 7771–7780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Sullivan, D.; Ross, R.P.; Fitzgerald, G.F.; Coffey, A. Investigation of the Relationship Between Lysogeny and Lysis of Lactococcus lactis in Cheese Using Prophage-Targeted PCR. Appl. Environ. Microbiol. 2000, 66, 2192–2198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buist, G.; Karsens, H.; Nauta, A.; Van Sinderen, D.; Venema, G.; Kok, J. Autolysis of Lactococcus lactis Caused by Induced Overproduction of Its Major Autolysin, AcmA. Appl. Environ. Microbiol. 1997, 63, 2722–2728. [Google Scholar] [CrossRef] [Green Version]
- Visweswaran, G.R.R.; Steen, A.; Leenhouts, K.; Szeliga, M.; Ruban, B.; Hesseling-Meinders, A.; Dijkstra, B.W.; Kuipers, O.P.; Kok, J.; Buist, G. AcmD, a Homolog of the Major Autolysin AcmA of Lactococcus Lactis, Binds to the Cell Wall and Contributes to Cell Separation and Autolysis. PLoS ONE 2013, 8, e72167. [Google Scholar] [CrossRef] [Green Version]
- Mahony, J.; Oliveira, J.; Collins, B.; Hanemaaijer, L.; Lugli, G.A.; Neve, H.; Ventura, M.; Kouwen, T.R.; Cambillau, C.; Van Sinderen, D. Genetic and Functional Characterisation of the Lactococcal P335 Phage-Host Interactions. BMC Genom. 2017, 18, 146. [Google Scholar] [CrossRef] [Green Version]
- Aucouturier, A.; Chain, F.; Langella, P.; Bidnenko, E. Characterization of a Prophage-Free Derivative Strain of Lactococcus lactis ssp. lactis IL1403 Reveals the Importance of Prophages for Phenotypic Plasticity of the Host. Front. Microbiol. 2018, 9, 2032. [Google Scholar] [CrossRef]
- Dhaese, P.; Seurinck, J.; De Smet, B.; Van Montagu, M. Nucleotide Sequence and Mutational Analysis of an Immunity Repressor Gene From Bacillus subtilis temperate Phage ø105. Nucleic Acids Res. 1985, 13, 5441–5455. [Google Scholar] [CrossRef] [Green Version]
- Ladero, V.; García, P.; Bascarán, V.; Herrero, M.; Alvarez, M.A.; Suárez, J.E. Identification of the Repressor-Encoding Gene of the Lactobacillus Bacteriophage A2. J. Bacteriol. 1998, 180, 3474–3476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durmaz, E.; Madsen, S.M.; Israelsen, H.; Klaenhammer, T.R. Lactococcus Lactis Lytic Bacteriophages of the P335 Group Are Inhibited by Overexpression of a Truncated CI Repressor. J. Bacteriol. 2002, 184, 6532–6544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahony, J.; McGrath, S.; Fitzgerald, G.F.; Van Sinderen, D. Identification and Characterization of Lactococcal-Prophage-Carried Superinfection Exclusion Genes. Appl. Environ. Microbiol. 2008, 74, 6206–6215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGrath, S.; Fitzgerald, G.F.; Van Sinderen, D. Identification and Characterization of Phage-Resistance Genes in Temperate Lactococcal Bacteriophages. Mol. Microbiol. 2002, 43, 509–520. [Google Scholar] [CrossRef]
- Ainsworth, S.; Sadovskaya, I.; Vinogradov, E.; Courtin, P.; Guerardel, Y.; Mahony, J.; Grard, T.; Cambillau, C.; Chapot-Chartier, M.-P.; Van Sinderen, D. Differences in Lactococcal Cell Wall Polysaccharide Structure Are Major Determining Factors in Bacteriophage Sensitivity. mBio 2014, 5, e00880-14. [Google Scholar] [CrossRef] [Green Version]
- Garzon, A.E.; Mahony, J.; Bottacini, F.; Kelleher, P.; Van Sinderen, D. Complete Genome Sequence of Lactococcus lactis subsp. cremoris 3107, Host for the Model Lactococcal P335 Bacteriophage TP901-1. Microbiol. Resour. Announc. 2019, 8, e01635-18. [Google Scholar] [CrossRef] [Green Version]
- Mahony, J.; Randazzo, W.; Neve, H.; Settanni, L.; Van Sinderen, D. Lactococcal 949 Group Phages Recognize a Carbohydrate Receptor on the Host Cell Surface. Appl. Environ. Microbiol. 2015, 81, 3299–3305. [Google Scholar] [CrossRef] [Green Version]
- Lillehaug, D. An Improved Plaque Assay for Poor Plaque-Producing Temperate Lactococcal Bacteriophages. J. Appl. Microbiol. 1997, 83, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Lugli, G.A.; Milani, C.; Mancabelli, L.; van Sinderen, D.; Ventura, M. MEGAnnotator: A user-friendly pipeline for microbial genomes assembly and annotation. FEMS Microbiol. Lett. 2016, 363. [Google Scholar] [CrossRef] [Green Version]
- Chevreux, B.; Wetter, T.; Suhai, S. Genome Sequence Assembly Using Trace Signals and Additional Sequence Information. In Computer Science and Biology: Proceedings of the German Conference on Bioinformatics (GCB) 99; Wingender, E., Ed.; GBF-Braunschweig: Hannover, Germany, 1999; pp. 45–56. [Google Scholar]
- Hyatt, D.; Chen, G.L.; Locascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translat. BMC Bioinf. 2010, 11, 119. [Google Scholar] [CrossRef] [Green Version]
- Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple Alignment of Conserved Genomic Sequence with Rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef] [Green Version]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A Better, Faster Version of the PHAST Phage Search Tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, B.; Johnsen, M.G.; Stenby, E.; Vogensen, F.K.; Hammer, K. Characterization of the Lactococcal Temperate Phage TP901-1 and Its Site-Specific Integration. J. Bacteriol. 1994, 176, 1069–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lillehaug, D.; Birkeland, N.K. Characterization of Genetic Elements Required for Site-Specific Integration of the Temperate Lactococcal Bacteriophage Phi LC3 and Construction of Integration-Negative Phi LC3 Mutants. J. Bacteriol. 1993, 175, 1745–1755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Söding, J.; Biegert, A.; Lupas, A.N. The HHpred Interactive Server for Protein Homology Detection and Structure Prediction. Nucleic Acids Res. 2005, 33, W244–W248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.R.; Luciani, A.; Potter, A.C.; Qureshi, M.; Richardson, L.J.; Salazar, G.A.; Smart, A. The Pfam Protein Families Database in 2019. Nucleic Acids Res. 2019, 47, D427–D432. [Google Scholar] [CrossRef]
- Chopin, M.-C.; Chopin, A.; Bidnenko, E. Phage Abortive Infection in Lactococci: Variations on a Theme. Curr. Opin. Microbiol. 2005, 8, 473–479. [Google Scholar] [CrossRef]
- Javan, R.R.; Ramos-Sevillano, E.; Akter, A.; Brown, J.S.; Brueggemann, A.B. Prophages and Satellite Prophages Are Widespread in Streptococcus and May Play a Role in Pneumococcal Pathogenesis. Nat. Commun. 2019, 10, 4852. [Google Scholar] [CrossRef] [Green Version]
- Foley, S.; Lucchini, S.; Zwahlen, M.-C.; Brüssow, H. A Short Noncoding Viral DNA Element Showing Characteristics of a Replication Origin Confers Bacteriophage Resistance to Streptococcus thermophilus. Virology 1998, 250, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Desiere, F.; Lucchini, S.; Bruttin, A.; Zwahlen, M.-C.; Brüssow, H. A Highly Conserved DNA Replication Module From Streptococcus thermophilus Phages Is Similar in Sequence and Topology to a Module From Lactococcus lactis Phages. Virology 1997, 234, 372–382. [Google Scholar] [CrossRef] [Green Version]
- Farenc, C.; Spinelli, S.; Vinogradov, E.; Tremblay, D.; Blangy, S.; Sadovskaya, I.; Moineau, S.; Cambillau, C. Molecular Insights on the Recognition of a Lactococcus lactis Cell Wall Pellicle by the Phage 1358 Receptor Binding Protein. J. Virol. 2014, 88, 7005–7015. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, D.M.; Tegoni, M.; Spinelli, S.; Campanacci, V.; Blangy, S.; Huyghe, C.; Desmyter, A.; Labrie, S.; Moineau, S.; Cambillau, C. Receptor-Binding Protein of Lactococcus lactis Phages: Identification and Characterization of the Saccharide Receptor-Binding Site. J. Bacteriol. 2006, 188, 2400–2410. [Google Scholar] [CrossRef] [Green Version]
- Ostergaard Breum, S.; Neve, H.; Heller, K.J.; Vogensen, F.K. Temperate Phages Tp901-1 and PhiLC3, Belonging to the P335 Species, Apparently Use Different Pathways for DNA Injection in Lactococcus lactis Subsp. cremoris 3107. FEMS Microbiol. Lett. 2007, 276, 156–164. [Google Scholar] [CrossRef] [PubMed]
Prophage Region | Status * | Region Length (kb) | Coordinates on 3107 Genome | AT% Content | Related (pro)Phages (%id/%Coverage) |
---|---|---|---|---|---|
1 | Intact | 42.6 | 848,137–890,802 | 64.09 | TP901-1 (93/47) |
2 | Questionable | 16 | 1,610,756–1,626,788 | 64.90 | TP712 (99.95/51) |
3 | Intact | 48.8 | 1,936,000–1,984,883 | 65.45 | bIL309 (96.94/23) |
4 | Incomplete | 28.9 | 2,055,457–2,084,400 | 64.93 | bIL310 (86.95/18) |
5 | Incomplete a | 13.1 | 2,128,356–2,141,525 | 65.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Cruz, S.; Parlindungan, E.; Erazo Garzon, A.; Alqarni, M.; Lugli, G.A.; Ventura, M.; van Sinderen, D.; Mahony, J. Lysogenization of a Lactococcal Host with Three Distinct Temperate Phages Provides Homologous and Heterologous Phage Resistance. Microorganisms 2020, 8, 1685. https://doi.org/10.3390/microorganisms8111685
Ruiz-Cruz S, Parlindungan E, Erazo Garzon A, Alqarni M, Lugli GA, Ventura M, van Sinderen D, Mahony J. Lysogenization of a Lactococcal Host with Three Distinct Temperate Phages Provides Homologous and Heterologous Phage Resistance. Microorganisms. 2020; 8(11):1685. https://doi.org/10.3390/microorganisms8111685
Chicago/Turabian StyleRuiz-Cruz, Sofia, Elvina Parlindungan, Andrea Erazo Garzon, Mona Alqarni, Gabriele A. Lugli, Marco Ventura, Douwe van Sinderen, and Jennifer Mahony. 2020. "Lysogenization of a Lactococcal Host with Three Distinct Temperate Phages Provides Homologous and Heterologous Phage Resistance" Microorganisms 8, no. 11: 1685. https://doi.org/10.3390/microorganisms8111685
APA StyleRuiz-Cruz, S., Parlindungan, E., Erazo Garzon, A., Alqarni, M., Lugli, G. A., Ventura, M., van Sinderen, D., & Mahony, J. (2020). Lysogenization of a Lactococcal Host with Three Distinct Temperate Phages Provides Homologous and Heterologous Phage Resistance. Microorganisms, 8(11), 1685. https://doi.org/10.3390/microorganisms8111685