Genomic and Physiological Properties of a Facultative Methane-Oxidizing Bacterial Strain of Methylocystis sp. from a Wetland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enrichment Culture and Isolation
2.2. Physiologic Analysis
2.3. Hydrogen Utilization Test
2.4. Phylogenetic Analysis
2.5. Genomic Analysis
2.6. Data Availability
3. Results and Discussion
3.1. Information on Sampling Site
3.2. Physiological Characterization
3.3. Hydrogen Utilization and Production
3.4. Genomic Features
3.5. Phylogeny
3.6. Pangenome Analysis
3.7. Methanotrophic Pathway
3.8. Nitrogen Metabolism
3.9. Hydrogenase
3.10. Polyhydroxybutyrate (PHB) Synthesis
3.11. Resistance Genes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Whiting, G.J.; Chanton, J.P. Primary production control of methane emission from wetlands. Nat. Cell Biol. 1993, 364, 794–795. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Bernal, B.; Nahlik, A.M.; Mander, Ü.; Zhang, L.; Anderson, C.J.; Jorgensen, S.E.; Brix, H. Wetlands, carbon, and climate change. Landsc. Ecol. 2012, 28, 583–597. [Google Scholar] [CrossRef]
- Shao, X.; Sheng, X.; Wu, M.; Wu, H.; Ning, X. Methane production potential and emission at different water levels in the restored reed wetland of Hangzhou Bay. PLoS ONE 2017, 12, e0185709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirschke, S.; Bousquet, P.; Ciais, P.; Saunois, M.; Canadell, J.G.; Dlugokencky, E.; Bergamaschi, P.; Bergmann, D.; Blake, D.R.; Bruhwiler, L.M.P.; et al. Three decades of global methane sources and sinks. Nat. Geosci. 2013, 6, 813–823. [Google Scholar] [CrossRef]
- Bastviken, D.; Cole, J.; Pace, M.; Tranvik, L. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Glob. Biogeochem. Cycles 2004, 18, 18. [Google Scholar] [CrossRef]
- Conrad, R. The global methane cycle: Recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 2009, 1, 285–292. [Google Scholar] [CrossRef] [PubMed]
- King, G.M. Ecological aspects of methane oxidation, a key determinant of global methane dynamics. In Advances in Microbial Ecology; Springer: Berlin, Germany, 1992; pp. 431–468. [Google Scholar]
- Chowdhury, T.R.; Dick, R.P. Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands. Appl. Soil Ecol. 2013, 65, 8–22. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In Evaluation of Climate Models; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- Dedysh, S.N.; Eknief, C. Diversity and phylogeny of described aerobic methanotrophs. In Methane Biocatalysis: Paving the Way to Sustainability; Springer: Berlin, Germany, 2018; pp. 17–42. [Google Scholar]
- Semrau, J.D.; DiSpirito, A.A.; Yoon, S. Methanotrophs and copper. FEMS Microbiol. Rev. 2010, 34, 496–531. [Google Scholar] [CrossRef] [Green Version]
- Hanson, R.S. The obligate methanotrophic bacteria Merhvlococcus. Methylomonas, and Methylosinus. In The Procaryotes; Springer: Berlin, Germany, 1992; pp. 2350–2364. [Google Scholar]
- Oremland, R.S.; Culbertson, C.W. Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor. Nat. Cell Biol. 1992, 356, 421–423. [Google Scholar] [CrossRef]
- Dalton, H. Methane Oxidation by Methanotrophs. In Methane and Methanol Utilizers; Springer: Berlin, Germany, 1992; pp. 85–114. [Google Scholar]
- Murrell, J.C.; Gilbert, B.; McDonald, I.R. Molecular biology and regulation of methane monooxygenase. Arch. Microbiol. 2000, 173, 325–332. [Google Scholar] [CrossRef]
- Fox, B.G.; Afroland, W.; Jollie, D.R.; Lipscomb, J.D. Methane monooxygenase from Methylosinus trichosporium OB3b. Methods Enzymol. 1990, 188, 191–202. [Google Scholar] [CrossRef] [PubMed]
- DeWitt, J.G.; Bentsen, J.G.; Rosenzweig, A.C.; Hedman, B.; Green, J.; Pilkington, S.; Papaefthymiou, G.C.; Dalton, H.; Hodgson, K.O.; Lippard, S.J. X-ray absorption, Moessbauer, and EPR studies of the dinuclear iron center in the hydroxylase component of methane monooxygenase. J. Am. Chem. Soc. 1991, 113, 9219–9235. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Shiemke, A.K.; Jacobs, S.J.; Hales, B.J.; Lidstrom, M.E.; Chan, S.I. The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Biol. Chem. 1994, 269, 14995–15005. [Google Scholar]
- Anthony, C.; Zatman, L.J. The microbial oxidation of methanol. The prosthetic group of the alcohol dehydrogenase of Pseudomonas sp. M27: A new oxidoreductase prosthetic group. Biochem. J. 1967, 104, 960–969. [Google Scholar] [CrossRef] [Green Version]
- Vorholt, J.A.; Chistoserdova, L.; Lidstrom, M.E.; Thauer, R.K. The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1. J. Bacteriol. 1998, 180, 5351–5356. [Google Scholar] [CrossRef] [Green Version]
- Marx, C.J.; Chistoserdova, L.; Lidstrom, M.E. Formaldehyde-detoxifying role of the tetrahydromethanopterin-linked pathway in Methylobacterium extorquens AM. J. Bacteriol. 2003, 185, 7160–7168. [Google Scholar] [CrossRef] [Green Version]
- Chistoserdova, L.; VanWiggeren, G.D.; Roy, R. C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea. Science 1998, 281, 99–102. [Google Scholar] [CrossRef]
- Strong, P.J.; Xie, S.; Clarke, W.P. Methane as a resource: Can the methanotrophs add value? Environ. Sci. Technol. 2015, 49, 4001–4018. [Google Scholar] [CrossRef]
- Haynes, C.A.; Gonzalez, R. Rethinking biological activation of methane and conversion to liquid fuels. Nat. Chem. Biol. 2014, 10, 331–339. [Google Scholar] [CrossRef]
- Bordel, S.; Rojas, A.; Muñoz, R. Reconstruction of a genome scale metabolic model of the polyhydroxybutyrate producing methanotroph Methylocystis parvus OBBP. Microb. Cell Factories 2019, 18, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Strong, P.J.; Laycock, B.; Mahamud, S.N.S.; Jensen, P.D.; Lant, P.A.; Tyson, G.W.; Pratt, S. The opportunity for high-performance biomaterials from methane. Microorganisms 2016, 4, 11. [Google Scholar] [CrossRef]
- Kalyuzhnaya, M.G.; Yang, S.; Rozova, O.N.; Smalley, N.E.; Clubb, J.; Lamb, A.; Gowda, G.A.N.; Raftery, D.; Fu, Y.; Bringel, F.; et al. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat. Commun. 2013, 4, 1–7. [Google Scholar] [CrossRef]
- Bowman, J.P.; Sly, L.I.; Nichols, P.D.; Hayward, A.C. Revised taxonomy of the methanotrophs: Description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int. J. Syst. Bacteriol. 1993, 43, 735–753. [Google Scholar] [CrossRef]
- Whittenbury, R.; Davies, S.L.; Davey, J.F. Exospores and cysts formed by methane-utilizing bacteria. J. Gen. Microbiol. 1970, 61, 219–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wartiainen, I.; Hestnes, A.G.; McDonald, I.R.; Svenning, M.M. Methylocystis rosea sp. nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (78° N). Int. J. Syst. Evol. Microbiol. 2006, 56, 541–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindner, A.S.; Pacheco, A.; Aldrich, H.C.; Staniec, A.C.; Uz, I.; Hodson, D.J. Methylocystis hirsuta sp. nov., a novel methanotroph isolated from a groundwater aquifer. Int. J. Syst. Evol. Microbiol. 2007, 57, 1891–1900. [Google Scholar] [CrossRef] [PubMed]
- Belova, S.E.; Kulichevskaya, I.S.; Bodelier, P.L.E.; Dedysh, S.N. Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. Int. J. Syst. Evol. Microbiol. 2013, 63, 1096–1104. [Google Scholar] [CrossRef] [Green Version]
- Dedysh, S.N.; Belova, S.E.; Bodelier, P.L.E.; Smirnova, K.V.; Khmelenina, V.N.; Chidthaisong, A.; Trotsenko, Y.A.; Liesack, W.; Dunfield, P.F. Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs. Int. J. Syst. Evol. Microbiol. 2007, 57, 472–479. [Google Scholar] [CrossRef] [Green Version]
- Dam, B.; Dam, S.; Blom, J.; Liesack, W. Genome analysis coupled with physiological studies reveals a diverse nitrogen metabolism in Methylocystis sp. strain SC2. PLoS ONE 2013, 8, e74767. [Google Scholar] [CrossRef] [Green Version]
- Stein, L.Y.; Bringel, F.; DiSpirito, A.A.; Han, S.; Jetten, M.S.M.; Kalyuzhnaya, M.G.; Kits, K.D.; Klotz, M.G.; Camp, H.J.M.O.D.; Semrau, J.D.; et al. Genome sequence of the methanotrophic alphaproteobacterium Methylocystis sp. Strain Rockwell (ATCC 49242). J. Bacteriol. 2011, 193, 2668–2669. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Dedysh, S.N.; Liesack, W. Unusual genomic traits suggest Methylocystis bryophila S285 to be well adapted for life in peatlands. Genome Biol. Evol. 2018, 10, 623–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, N.-L.; Yu, W.-J.; Gwak, J.-H.; Kim, S.-J.; Park, S.-J.; Herbold, C.W.; Kim, J.-G.; Jung, M.-Y.; Rhee, S.-K. Genomic insights into the acid adaptation of novel methanotrophs enriched from acidic forest soils. Front. Microbiol. 2018, 9, 1982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorobev, A.; Jagadevan, S.; Jain, S.; Anantharaman, K.; Dick, G.J.; Vuilleumier, S.; Semrau, J.D. Genomic and Transcriptomic analyses of the facultative methanotroph Methylocystis sp. Strain SB2 grown on methane or ethanol. Appl. Environ. Microbiol. 2014, 80, 3044–3052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belova, S.E.; Baani, M.; Suzina, N.E.; Bodelier, P.L.; Liesack, W.; Dedysh, S.N. Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp. Environ. Microbiol. Rep. 2011, 3, 36–46. [Google Scholar] [CrossRef]
- Knief, C.; Dunfield, P.F. Response and adaptation of different methanotrophic bacteria to low methane mixing ratios. Environ. Microbiol. 2005, 7, 1307–1317. [Google Scholar] [CrossRef]
- Dunfield, P.F. The soil methane sink. In Greenhouse Gas Sinks; CABI: Wallingford, CT, USA, 2009; pp. 152–170. [Google Scholar] [CrossRef]
- Smith, E.J.; Davison, W.; Hamilton-Taylor, J. Methods for preparing synthetic freshwaters. Water Res. 2002, 36, 1286–1296. [Google Scholar] [CrossRef]
- Widdel, F.; Bak, F. Gram-Negative Mesophilic sulfate-reducing bacteria. In The Prokaryotes; Springer: Berlin, Germany, 1992; pp. 3352–3378. [Google Scholar]
- Whittenbury, R.; Phillips, K.C.; Wilkinson, J.F. Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 1970, 61, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-J.; Park, S.-J.; Cha, I.-T.; Min, D.; Kim, J.-S.; Chung, W.-H.; Chae, J.-C.; Jeon, C.O.; Rhee, S.-K. Metabolic versatility of toluene-degrading, iron-reducing bacteria in tidal flat sediment, characterized by stable isotope probing-based metagenomic analysis. Environ. Microbiol. 2013, 16, 189–204. [Google Scholar] [CrossRef]
- Jung, M.-Y.; Park, S.-J.; Min, D.; Kim, J.-S.; Rijpstra, W.I.C.; Damsté, J.S.S.; Kim, G.-J.; Madsen, E.L.; Rhee, S.-K. Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a from an agricultural soil. Appl. Environ. Microbiol. 2011, 77, 8635–8647. [Google Scholar] [CrossRef] [Green Version]
- Holmes, A.J.; Costello, A.; Lidstrom, M.E.; Murrell, J.C. Evidence that participate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 1995, 132, 203–208. [Google Scholar] [CrossRef]
- Hakobyan, A.; Zhu, J.; Glatter, T.; Paczia, N.; Liesack, W. Hydrogen utilization by Methylocystis sp. strain SC2 expands the known metabolic versatility of type IIa methanotrophs. Metab. Eng. 2020, 61, 181–196. [Google Scholar] [CrossRef] [PubMed]
- Lane, D. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Wiley: Hoboken, NJ, USA, 1991; pp. 115–175. [Google Scholar]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miguez, C.; Bourque, D.; Sealy, J.; Greer, C.; Groleau, D. Detection and isolation of methanotrophic bacteria possessing soluble methane monooxygenase (sMMO) genes using the polymerase chain reaction (PCR). Microb. Ecol. 1997, 33, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Hutchens, E.; Radajewski, S.; Dumont, M.G.; McDonald, I.R.; Murrell, J.C. Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ. Microbiol. 2003, 6, 111–120. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Lewis, P.O.; Kumar, S.; Tamura, K.; Nei, M. MEGA: Molecular evolutionary genetics analysis, Version 1.02. Syst. Biol. 1995, 44, 576. [Google Scholar] [CrossRef]
- Yoon, S.-H.; Ha, S.-M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.S.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2016, 45, D353–D361. [Google Scholar] [CrossRef] [Green Version]
- Mistry, J.; Bateman, A.; Finn, R.D. Predicting active site residue annotations in the Pfam database. BMC Bioinform. 2007, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.; Kim, Y.O.; Park, S.-C.; Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wu, J.; Yang, J.; Sun, S.; Xiao, J.; Yu, J. PGAP: Pan-genomes analysis pipeline. Bioinformatics 2011, 28, 416–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eren, A.M.; Esen, Ö.C.; Quince, C.; Vineis, J.H.; Morrison, H.G.; Sogin, M.L.; Delmont, T.O. Anvi’o: An advanced analysis and visualization platform for omics data. PeerJ 2015, 3, e1319. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.-L.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef]
- Lee, S.-P.; Park, J.-C. Management of organic matters by constructed treatment wetlands during rainfall events. J. Environ. Sci. Int. 2017, 26, 401–410. [Google Scholar] [CrossRef]
- Kwon, J.-H.; Han, Y.-S.; Cho, Y.-C.; Ahn, J.-S.; Yim, G.-J. Water Quality and Methane emission characteristics of aerobic wetlands constructed in coal mine area. J. Korean Soc. Miner. Energy Resour. Eng. 2018, 55, 371–382. [Google Scholar] [CrossRef]
- Im, J.; Lee, S.-W.; Yoon, S.; DiSpirito, A.A.; Semrau, J.D. Characterization of a novel facultative Methylocystis species capable of growth on methane, acetate and ethanol. Environ. Microbiol. Rep. 2010, 3, 174–181. [Google Scholar] [CrossRef]
- Reid, R.; Mosley, L.M. Comparative contributions of solution geochemistry, microbial metabolism and aquatic photosynthesis to the development of high pH in ephemeral wetlands in South East Australia. Sci. Total. Environ. 2016, 542, 334–343. [Google Scholar] [CrossRef]
- Dianou, D.; Adachi, K.; Dianou, D. Characterization of methanotrophic bacteria isolated from a subtropical paddy field. FEMS Microbiol. Lett. 1999, 173, 163–173. [Google Scholar] [CrossRef]
- Hou, C.T.; Laskin, A.I.; Patel, R.N. Growth and polysaccharide production by Methylocystis parvus OBBP on methanol. Appl. Environ. Microbiol. 1979, 37, 800–804. [Google Scholar] [CrossRef] [Green Version]
- Jo, S.Y.; Na Rhie, M.; Jung, S.M.; Sohn, Y.J.; Yeon, Y.J.; Kim, M.-S.; Park, C.; Lee, J.; Park, S.J.; Na, J.-G. Hydrogen production from methane by Methylomonas sp. DH-1 under micro-aerobic conditions. Biotechnol. Bioprocess Eng. 2020, 25, 71–77. [Google Scholar] [CrossRef]
- Dam, B.; Kube, M.; Dam, S.; Reinhardt, R.; Liesack, W. Complete sequence analysis of two methanotroph-specific repABC-containing plasmids from Methylocystis sp. strain SC2. Appl. Environ. Microbiol. 2012, 78, 4373–4379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konstantinidis, K.T.; Tiedje, J.M. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 2005, 187, 6258–6264. [Google Scholar] [CrossRef] [Green Version]
- Konstantinidis, K.T.; Ramette, A.N.; Tiedje, J.M. The bacterial species definition in the genomic era. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 1929–1940. [Google Scholar] [CrossRef]
- Tatusov, R.L.; Koonin, E.V.; Lipman, D.J. A Genomic perspective on protein families. Science 1997, 278, 631–637. [Google Scholar] [CrossRef] [Green Version]
- Oshkin, I.Y.; Miroshnikov, K.K.; Grouzdev, D.S.; Dedysh, S.N. Pan-genome-based analysis as a framework for demarcating two closely related methanotroph genera Methylocystis and Methylosinus. Microorganisms 2020, 8, 768. [Google Scholar] [CrossRef]
- Stolyar, S.; Costello, A.M.; Peeples, T.L.; Lidstrom, M.E. Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath. Microbiology 1999, 145, 1235–1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsen, J.B.; Yang, S.; Stein, L.Y.; Beck, D.A.; Kalyuzhanaya, M.G. Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: Transcriptomic study. Front. Microbiol. 2013, 4, 40. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Zheng, Y.; Bodelier, P.L.E.; Conrad, R.; Jia, Z. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat. Commun. 2016, 7, 11728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baani, M.; Liesack, W. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc. Natl. Acad. Sci. USA 2008, 105, 10203–10208. [Google Scholar] [CrossRef] [Green Version]
- Dunfield, P.F.; Liesack, W.; Henckel, T.; Knowles, R.; Conrad, R. High-affinity methane oxidation by a soil enrichment culture containing a type II methanotroph. Appl. Environ. Microbiol. 1999, 65, 1009–1014. [Google Scholar] [CrossRef] [Green Version]
- Anthony, C.; Ghosh, M.; Blake, C.C.F. The structure and function of methanol dehydrogenase and related quinoproteins containing pyrrolo-quinoline quinone. Biochem. J. 1994, 304, 665–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anthony, C.; Williams, P. The structure and mechanism of methanol dehydrogenase. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2003, 1647, 18–23. [Google Scholar] [CrossRef]
- Nakagawa, T.; Mitsui, R.; Tani, A.; Sasa, K.; Tashiro, S.; Iwama, T.; Hayakawa, T.; Kawai, K. A Catalytic Role of XoxF1 as La3+-dependent methanol dehydrogenase in Methylobacterium extorquens strain AM1. PLoS ONE 2012, 7, e50480. [Google Scholar] [CrossRef] [Green Version]
- Keltjens, J.T.; Pol, A.; Reimann, J.; Camp, H.J.M.O.D. PQQ-dependent methanol dehydrogenases: Rare-earth elements make a difference. Appl. Microbiol. Biotechnol. 2014, 98, 6163–6183. [Google Scholar] [CrossRef]
- Picone, N.; Camp, H.J.M.O.D. Role of rare earth elements in methanol oxidation. Curr. Opin. Chem. Biol. 2019, 49, 39–44. [Google Scholar] [CrossRef]
- Krause, S.M.B.; Johnson, T.; Karunaratne, Y.S.; Fu, Y.; Beck, D.A.C.; Chistoserdova, L.; Lidstrom, M.E. Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions. Proc. Natl. Acad. Sci. USA 2016, 114, 358–363. [Google Scholar] [CrossRef] [Green Version]
- Salisbury, S.A.; Forrest, H.S.; Cruse, W.B.T.; Kennard, O. A novel coenzyme from bacterial primary alcohol dehydrogenases. Nat. Cell Biol. 1979, 280, 843–844. [Google Scholar] [CrossRef]
- Anthony, C. The quinoprotein dehydrogenases for methanol and glucose. Arch. Biochem. Biophys. 2004, 428, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Murrell, J.C.; Dalton, H. Nitrogen fixation in obligate methanotrophs. Microbiology 1983, 129, 3481–3486. [Google Scholar] [CrossRef] [Green Version]
- Auman, A.J.; Speake, C.C.; Lidstrom, M.E. nifH Sequences and nitrogen fixation in type I and type II methanotrophs. Appl. Environ. Microbiol. 2001, 67, 4009–4016. [Google Scholar] [CrossRef] [Green Version]
- Dedysh, S.N.; Ricke, P.; Liesack, W. NifH and NifD phylogenies: An evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria. Microbiology 2004, 150, 1301–1313. [Google Scholar] [CrossRef] [Green Version]
- Bédard, C.; Knowles, R. Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol. Rev. 1989, 53, 68–84. [Google Scholar] [CrossRef] [PubMed]
- Graf, E.-G.; Thauer, R.K. Hydrogenase from methanobacterium thermoautotrophicum, a nickel-containing enzyme. FEBS Lett. 1981, 136, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Thauer, R.K.; Klein, A.A.R.; Hartmann, G.C. Reactions with molecular hydrogen in microorganisms: Evidence for a purely organic hydrogenation catalyst. Chem. Rev. 1996, 96, 3031–3042. [Google Scholar] [CrossRef]
- Pavlov, M.; Siegbahn, P.E.M.; Blomberg, M.R.A.; Crabtree, R.H. Mechanism of H−H activation by nickel−iron hydrogenase. J. Am. Chem. Soc. 1998, 120, 548–555. [Google Scholar] [CrossRef]
- Greening, C.; Biswas, A.; Carere, C.R.; Jackson, C.J.; Taylor, M.C.; Stott, M.B.; Cook, G.M.; Morales, S.E. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2015, 10, 761–777. [Google Scholar] [CrossRef] [Green Version]
- Cal, A.J.; Sikkema, W.D.; Ponce, M.I.; Franqui-Villanueva, D.; Riiff, T.J.; Orts, W.J.; Pieja, A.J.; Lee, C.C. Methanotrophic production of polyhydroxybutyrate-co-hydroxyvalerate with high hydroxyvalerate content. Int. J. Biol. Macromol. 2016, 87, 302–307. [Google Scholar] [CrossRef] [Green Version]
- Khosravi-Darani, K.; Mokhtari, Z.-B.; Amai, T.; Tanaka, K. Microbial production of poly(hydroxybutyrate) from C1 carbon sources. Appl. Microbiol. Biotechnol. 2013, 97, 1407–1424. [Google Scholar] [CrossRef] [PubMed]
- Byrom, D.P. Plastics from Microbes: Microbial Synthesis of Polymers and Polymer Precursors; Hanser: Munich, Germany, 1994; p. 5. [Google Scholar]
- Braunegg, G.; Sonnleitner, B.; Lafferty, R.M. A rapid gas chromatographic method for the determination of poly-?-hydroxybutyric acid in microbial biomass. Appl. Microbiol. Biotechnol. 1978, 6, 29–37. [Google Scholar] [CrossRef]
- Gunes, A.; Pilbeam, D.J.; Inal, A. Effect of arsenic–phosphorus interaction on arsenic-induced oxidative stress in chickpea plants. Plant Soil 2008, 314, 211–220. [Google Scholar] [CrossRef]
- Slyemi, D.; Bonnefoy, V. How prokaryotes deal with arsenic†. Environ. Microbiol. Rep. 2011, 4, 571–586. [Google Scholar] [CrossRef]
- Herath, I.; Vithanage, M.; Bundschuh, J.; Maity, J.P.; Bhattacharya, P. Natural arsenic in global groundwaters: Distribution and geochemical triggers for mobilization. Curr. Pollut. Rep. 2016, 2, 68–89. [Google Scholar] [CrossRef] [Green Version]
- Patil, Y.B.; Paknikar, K. Development of a process for biodetoxification of metal cyanides from waste waters. Process. Biochem. 2000, 35, 1139–1151. [Google Scholar] [CrossRef]
- Gupta, N.; Balomajumder, C.; Agarwal, V.K. Enzymatic mechanism and biochemistry for cyanide degradation: A review. J. Hazard. Mater. 2010, 176, 1–13. [Google Scholar] [CrossRef]
- Dash, H.R.; Das, S. Bioremediation of mercury and the importance of bacterial mer genes. Int. Biodeterior. Biodegrad. 2012, 75, 207–213. [Google Scholar] [CrossRef]
- Vorobev, A.; Jagadevan, S.; Baral, B.S.; DiSpirito, A.A.; Freemeier, B.C.; Bergman, B.H.; Bandow, N.L.; Semrau, J.D. Detoxification of mercury by methanobactin from Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 2013, 79, 5918–5926. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.-D.; Chen, Y.-S.; Du, J.-J.; Hu, Y.-Q.; Shapleigh, J.P.; Zhao, H.-P. Metagenomic evidence for a Methylocystis species capable of bioremediation of diverse heavy metals. Front. Microbiol. 2019, 9, 3297. [Google Scholar] [CrossRef]
- Boden, R.; Murrell, J.C. Response to mercury (II) ions in Methylococcus capsulatus (Bath). FEMS Microbiol. Lett. 2011, 324, 106–110. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Gu, W.; Zhao, L.; Haque, M.F.U.; DiSpirito, A.A.; Semrau, J.D.; Gu, B. Methylmercury uptake and degradation by methanotrophs. Sci. Adv. 2017, 3, e1700041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Properties | Sampling Water |
---|---|
Sampling date | 29 Jun 2017 |
Temperature (°C) | 26.1 |
pH | 6.46 |
EC (μS/cm) | 670 |
DO (mg/L) | 6.82 |
ORP (mV) | 84.7 |
Ca2+ (mg/L) | 23.58 |
K+ (mg/L) | 16.43 |
Mg2+ (mg/L) | 6.49 |
Na+ (mg/L) | 83.71 |
Fluoride (mg/L) | 3.19 |
Chloride (mg/L) | 151.56 |
Nitrite (mg/L) | 1.7 |
Nitrate (mg/L) | 26.48 |
Sulfate (mg/L) | 33.22 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
Cell size (µm) | 0.7 × 1.5 | 0.3–0.6 × 0.7–1.0 | 0.8–1.1 × 1.1–2.5 | 0.5 × 0.5–2.0 | 0.5 × 0.5–1.0 | 0.9–1.4 × 1.8–3.4 | 0.8–1.2 × 1.4–4.0 |
Cell shape | Rod | Dumbbell | Rod | Coccobacillus, rod | Coccobacillus, rod | Small, curved coccoids, short | straight or regularly curved rod, ovoid |
Colony color | Cream | Cream | Pink-red | White, buff | Diffusion brown, pale pink | Light cream | White |
Temperature (°C) | 15–37 | <37 | 5–37 | 20–28 | ~20–37 | 8–37 | 5–30 |
Optimum Temperature (°C) | 30–35 | 30 | 27 | 25–28 | 30–37 | 25–30 | 25 |
pH | 6.5–10.0 | 4.0–9.0 | 5.5–9.0 | 5.0–9 | 5.5–8.8 | 4.2–7.6 | 4.4–7.5 |
Optimum pH | 8.5–9.0 | 7.0 | NR | 6.5–7 | 7.5 | 6.0–6.5 | 5.8–6.2 |
NaCl (%) | 0–0.5 | NR | 0=< | 0–1.0 | 0–2.0 | 0–0.1 | 0–0.5 |
Optimum NaCl (%) | 0–0.5 | NR | NR | NR | NR | NR | NR |
Oxidase | + | + | + | + | + | + | + |
Catalase | + | + | + | + | + | + | + |
Methanol (%) | 0.05–1 | + | - | 0.2 | 5 | ≤0.15 | ≤1 |
Optimum Methanol (%) | 0.1 | NR | - | NR | NR | NR | 0.1 |
Carbon Source | |||||||
Ethanol | - | NR | - | NR | NR | ± | NR |
Acetate | + | w * | - | w * | - | + | w * |
Pyruvate | - | NR | NR | NR | NR | ± | NR |
Nitrogen Source | |||||||
Cysteine | + | NR | NR | - | - | + | - |
Yeast extract | + | NR | NR | + | + | + | + |
Casamino acid | - | NR | NR | + | + | NR | NR |
Betaine | - | NR | NR | - | - | NR | NR |
Carsitone | - | NR | NR | NR | NR | NR | NR |
(NH4)2SO4 | + | NR | + | + | + | + | + |
Nitrate | + | + | + | + | + | + | + |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Genome size (bp) | 3,409,164 | 4,726,034 | 4,213,043 | 3,773,444 | 3,912,050 | 4,475,912 | 3,359,940 | 4,707,971 | 4,690,566 | 4,364,363 | 3,644,633 |
GC content | 59.9 | 62.8 | 62.4 | 63.4 | 62.5 | 63.4 | 63.1 | 63.1 | 63 | 62.5 | 62.7 |
N50 (bp) | 386,567 | 3,131,807 | 3,776,027 | 3,773,444 | 1,614,040 | 95,607 | 917.805 | 4,532,950 | 3,287,239 | 136,571 | 54,643 |
Coverage (×) | 132.6 | 30 | 252.0 | 53 | unknown | 33 | 280.0 | 34.7 | 53.0 | 60 | 2.0 |
Contig number | 28 | 7 | 4 | 1 | 4 | 108 | 9 | 2 | 12 | 55 | 158 |
Protein coding genes | 3176 | 4307 | 4036 | 3583 | 3709 | 4160 | 3576 | 4148 | 3987 | 4043 | 3433 |
rRNA operons | 3 | 6 | 3 | 3 | 3 | 3 | NR | 6 | 5 | 3 | 16 |
tRNA genes | 47 | 53 | 49 | 47 | 50 | 46 | NR | 47 | 54 | 50 | 45 |
Genbankaccession number | VBTZ00000000 | AEVM00000000 | QWDD00000000 | HE956757 | ARCT00000000 | AJTV00000000 | PHSQ00000000 | CP019948 | SOPH00000000 | PYDU00000000 | AYNA00000000 |
Heavy Metal Related Genes | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mercury reductase (merA) | + | + | + | + | + | - | + | - | - | - | + | - |
Arsenate reductase (arsC) | + | + | + | + | + | + | + | + | + | + | + | + |
Arsenite oxidase | - | - | - | + | - | - | - | - | - | - | - | - |
Arsenite methyltransferase | - | - | - | - | - | - | + | - | - | - | - | - |
Arsenite efflux transporter | + | - | - | - | + | - | - | - | - | - | - | - |
Cobalt-zinc-cadmium resistance protein | - | + | - | - | - | + | + | - | - | + | - | + |
Tellurite resistance protein | + | - | + | - | + | - | - | - | + | - | - | - |
Copper resistance protein | + | + | + | + | + | + | + | + | + | - | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, G.-Y.; Rhee, S.-K.; Han, Y.-S.; Kim, S.-J. Genomic and Physiological Properties of a Facultative Methane-Oxidizing Bacterial Strain of Methylocystis sp. from a Wetland. Microorganisms 2020, 8, 1719. https://doi.org/10.3390/microorganisms8111719
Jung G-Y, Rhee S-K, Han Y-S, Kim S-J. Genomic and Physiological Properties of a Facultative Methane-Oxidizing Bacterial Strain of Methylocystis sp. from a Wetland. Microorganisms. 2020; 8(11):1719. https://doi.org/10.3390/microorganisms8111719
Chicago/Turabian StyleJung, Gi-Yong, Sung-Keun Rhee, Young-Soo Han, and So-Jeong Kim. 2020. "Genomic and Physiological Properties of a Facultative Methane-Oxidizing Bacterial Strain of Methylocystis sp. from a Wetland" Microorganisms 8, no. 11: 1719. https://doi.org/10.3390/microorganisms8111719
APA StyleJung, G. -Y., Rhee, S. -K., Han, Y. -S., & Kim, S. -J. (2020). Genomic and Physiological Properties of a Facultative Methane-Oxidizing Bacterial Strain of Methylocystis sp. from a Wetland. Microorganisms, 8(11), 1719. https://doi.org/10.3390/microorganisms8111719