Multidrug-Resistant Proteus mirabilis Strain with Cointegrate Plasmid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain Isolation
2.2. Determination of Antibiotic Susceptibility
2.3. DNA Isolation, Sequencing, and Genome Assembly
2.4. Data Processing
2.5. Ethical Statement
3. Results
3.1. Antibiotic Resistance
3.2. Plasmid Structure
3.3. Virulence Factors
3.4. CRISPR-Cas System
3.5. Phage Genome
3.6. Phylogenetic Comparison
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schaffer, J.N.; Pearson, M.M. Proteus mirabilis and Urinary Tract Infections. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slattery, S.; Tony Pembroke, J.; Murnane, J.G.; Ryan, M.P. Isolation, nucleotide sequencing and genomic comparison of a Novel SXT/R391 ICE mobile genetic element isolated from a municipal wastewater environment. Sci. Rep. 2020, 10, 8716. [Google Scholar] [CrossRef] [PubMed]
- Adamus-Bialek, W.; Zajac, E.; Parniewski, P.; Kaca, W. Comparison of antibiotic resistance patterns in collections of Escherichia coli and Proteus mirabilis uropathogenic strains. Mol. Biol. Rep. 2013, 40, 3429–3435. [Google Scholar] [CrossRef] [Green Version]
- Mac Aogain, M.; Rogers, T.R.; Crowley, B. Identification of emergent bla CMY-2 -carrying Proteus mirabilis lineages by whole-genome sequencing. New Microbes New Infect. 2016, 9, 58–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Xu, J.; He, F. Genomic characterisation of a Proteus mirabilis clinical isolate from China carrying blaNDM-5 on an IncX3 plasmid. J. Glob. Antimicrob. Resist. 2019, 19, 317–319. [Google Scholar] [CrossRef]
- Bitar, I.; Mattioni Marchetti, V.; Mercato, A.; Nucleo, E.; Anesi, A.; Bracco, S.; Rognoni, V.; Hrabak, J.; Migliavacca, R. Complete Genome and Plasmids Sequences of a Clinical Proteus mirabilis Isolate Producing Plasmid Mediated NDM-1 from Italy. Microorganisms 2020, 8, 339. [Google Scholar] [CrossRef] [Green Version]
- Kanzari, L.; Ferjani, S.; Saidani, M.; Hamzaoui, Z.; Jendoubi, A.; Harbaoui, S.; Ferjani, A.; Rehaiem, A.; Boutiba Ben Boubaker, I.; Slim, A. First report of extensively-drug-resistant Proteus mirabilis isolate carrying plasmid-mediated blaNDM-1 in a Tunisian intensive care unit. Int. J. Antimicrob. Agents 2018, 52, 906–909. [Google Scholar] [CrossRef]
- Firmo, E.F.; Beltrao, E.M.B.; Silva, F.; Alves, L.C.; Brayner, F.A.; Veras, D.L.; Lopes, A.C.S. Association of blaNDM-1 with blaKPC-2 and aminoglycoside-modifying enzyme genes among Klebsiella pneumoniae, Proteus mirabilis and Serratia marcescens clinical isolates in Brazil. J. Glob. Antimicrob. Resist. 2020, 21, 255–261. [Google Scholar] [CrossRef]
- Valentin, T.; Feierl, G.; Masoud-Landgraf, L.; Kohek, P.; Luxner, J.; Zarfel, G. Proteus mirabilis harboring carbapenemase NDM-5 and ESBL VEB-6 detected in Austria. Diagn. Microbiol. Infect. Dis. 2018, 91, 284–286. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Thamizhmani, R.; Bhattacharya, H.; Sayi, D.S.; Muruganandam, N.; Roy, S.; Sugunan, A.P. Emergence of New Delhi metallo-beta-lactamase 1 (NDM-1) producing and multidrug resistant uropathogens causing urinary tract infections in Andaman Islands, India. Microb. Drug Resist. 2013, 19, 457–462. [Google Scholar] [CrossRef]
- Williamson, D.A.; Sidjabat, H.E.; Freeman, J.T.; Roberts, S.A.; Silvey, A.; Woodhouse, R.; Mowat, E.; Dyet, K.; Paterson, D.L.; Blackmore, T.; et al. Identification and molecular characterisation of New Delhi metallo-beta-lactamase-1 (NDM-1)- and NDM-6-producing Enterobacteriaceae from New Zealand hospitals. Int. J. Antimicrob. Agents 2012, 39, 529–533. [Google Scholar] [CrossRef]
- Fursova, N.K.; Astashkin, E.I.; Knyazeva, A.I.; Kartsev, N.N.; Leonova, E.S.; Ershova, O.N.; Alexandrova, I.A.; Kurdyumova, N.V.; Sazikina, S.Y.; Volozhantsev, N.V.; et al. The spread of bla OXA-48 and bla OXA-244 carbapenemase genes among Klebsiella pneumoniae, Proteus mirabilis and Enterobacter spp. isolated in Moscow, Russia. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, E.J.; Ho, S.X.; Cao, D.Y.; Lau, Q.C.; Koh, T.H.; Hsu, L.Y. Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae in Retail Chicken Meat in Singapore. Ann. Acad. Med. Singap. 2016, 45, 557–559. [Google Scholar] [PubMed]
- Ahn, J.Y.; Ann, H.W.; Jeon, Y.; Ahn, M.Y.; Oh, D.H.; Kim, Y.C.; Kim, E.J.; Song, J.E.; Jung, I.Y.; Kim, M.H.; et al. The impact of production of extended-spectrum beta-lactamases on the 28-day mortality rate of patients with Proteus mirabilis bacteremia in Korea. BMC Infect. Dis. 2017, 17, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebre-Sealsssie, S. Antimicrobial resistance patterns of clinical bacterial isolates in southwestern Ethiopia. Ethiop Med. J. 2007, 45, 363–370. [Google Scholar] [PubMed]
- Chukwu, B.F.; Okafor, H.U.; Ikefuna, A.N. Asymptomatic bacteriuria in children with sickle cell anemia at The University of Nigeria teaching hospital, Enugu, South East, Nigeria. Ital. J. Pediatrics 2011, 37, 45. [Google Scholar] [CrossRef] [Green Version]
- He, D.; Zhu, Y.; Li, R.; Pan, Y.; Liu, J.; Yuan, L.; Hu, G. Emergence of a hybrid plasmid derived from IncN1-F33:A-:B- and mcr-1-bearing plasmids mediated by IS26. J. Antimicrob. Chemother. 2019, 74, 3184–3189. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [Green Version]
- Shelenkov, A.; Mikhaylova, Y.; Yanushevich, Y.; Samoilov, A.; Petrova, L.; Fomina, V.; Gusarov, V.; Zamyatin, M.; Shagin, D.; Akimkin, V. Molecular Typing, Characterization of Antimicrobial Resistance, Virulence Profiling and Analysis of Whole-Genome Sequence of Clinical Klebsiella pneumoniae Isolates. Antibiotic 2020, 9, 261. [Google Scholar] [CrossRef]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and refined dataset for big data analysis--10 years on. Nucleic Acids Res. 2016, 44, D694–D697. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Zankari, E.; Garcia-Fernandez, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Moller Aarestrup, F.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Tang, H. ISEScan: Automated identification of insertion sequence elements in prokaryotic genomes. Bioinformatics 2017, 33, 3340–3347. [Google Scholar] [CrossRef]
- Hua, X.; Zhang, L.; Moran, R.A.; Xu, Q.; Sun, L.; van Schaik, W.; Yu, Y. Cointegration as a mechanism for the evolution of a KPC-producing multidrug resistance plasmid in Proteus mirabilis. Emerg. Microbes Infect. 2020, 9, 1206–1218. [Google Scholar] [CrossRef]
- Bielli, A.; Piazza, A.; Cento, V.; Comandatore, F.; Lepera, V.; Gatti, M.; Brioschi, P.; Vismara, C.; Bandi, C.; Perno, C.F. In vivo acquisition and risk of inter-species spread of bla KPC-3-plasmid from Klebsiella pneumoniae to Serratia marcescens in the lower respiratory tract. J. Med. Microbiol. 2020, 69, 82–86. [Google Scholar] [CrossRef]
- Pathirana, H.; De Silva, B.C.J.; Wimalasena, S.; Hossain, S.; Heo, G.J. Comparison of virulence genes in Proteus species isolated from human and pet turtle. Iran. J. Vet. Res. 2018, 19, 48–52. [Google Scholar]
- Schaffer, J.N.; Norsworthy, A.N.; Sun, T.T.; Pearson, M.M. Proteus mirabilis fimbriae- and urease-dependent clusters assemble in an extracellular niche to initiate bladder stone formation. Proc. Natl. Acad. Sci. USA 2016, 113, 4494–4499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgenstein, R.M.; Szostek, B.; Rather, P.N. Regulation of gene expression during swarmer cell differentiation in Proteus mirabilis. FEMS Microbiol. Rev. 2010, 34, 753–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, S.P.; Elias, W.P.; Cianciarullo, A.M.; Menezes, M.A.; Nara, J.M.; Piazza, R.M.; Silva, M.R.; Moreira, C.G.; Pelayo, J.S. Aggregative adherence of uropathogenic Proteus mirabilis to cultured epithelial cells. FEMS Immunol. Med. Microbiol. 2007, 51, 319–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, K.E.; Moghaddame-Jafari, S.; Lockatell, C.V.; Johnson, D.; Belas, R. ZapA, the IgA-degrading metalloprotease of Proteus mirabilis, is a virulence factor expressed specifically in swarmer cells. Mol. Microbiol. 1999, 32, 825–836. [Google Scholar] [CrossRef]
- Cestari, S.E.; Ludovico, M.S.; Martins, F.H.; da Rocha, S.P.; Elias, W.P.; Pelayo, J.S. Molecular detection of HpmA and HlyA hemolysin of uropathogenic Proteus mirabilis. Curr. Microbiol. 2013, 67, 703–707. [Google Scholar] [CrossRef]
- Hussein, E.I.; Al-Batayneh, K.; Masadeh, M.M.; Dahadhah, F.W.; Al Zoubi, M.S.; Aljabali, A.A.; Alzoubi, K.H. Assessment of Pathogenic Potential, Virulent Genes Profile, and Antibiotic Susceptibility of Proteus mirabilis from Urinary Tract Infection. Int. J. Microbiol. 2020, 2020, 1231807. [Google Scholar] [CrossRef] [Green Version]
- Couvin, D.; Bernheim, A.; Toffano-Nioche, C.; Touchon, M.; Michalik, J.; Neron, B.; Rocha, E.P.C.; Vergnaud, G.; Gautheret, D.; Pourcel, C. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018, 46, W246–W251. [Google Scholar] [CrossRef] [Green Version]
- Biswas, A.; Gagnon, J.N.; Brouns, S.J.; Fineran, P.C.; Brown, C.M. CRISPRTarget: Bioinformatic prediction and analysis of crRNA targets. RNA Biol. 2013, 10, 817–827. [Google Scholar] [CrossRef] [Green Version]
- Morozova, V.; Kozlova, Y.; Shedko, E.; Babkin, I.; Kurilshikov, A.; Bokovaya, O.; Bardashova, A.; Yunusova, A.; Tikunov, A.; Tupikin, A.; et al. Isolation and characterization of a group of new Proteus bacteriophages. Arch. Virol. 2018, 163, 2189–2197. [Google Scholar] [CrossRef]
- Giammanco, G.M.; Grimont, P.A.D.; Grimont, F.; Lefevre, M.; Giammanco, G.; Pignato, S. Phylogenetic analysis of the genera Proteus, Morganella and Providencia by comparison of rpoB gene sequences of type and clinical strains suggests the reclassification of Proteus myxofaciens in a new genus, Cosenzaea gen. nov., as Cosenzaea myxofaciens comb. nov. Int. J. Syst. Evol. Microbiol. 2011, 61, 1638–1644. [Google Scholar] [CrossRef] [Green Version]
- Abreu, A.G.; Marques, S.G.; Monteiro-Neto, V.; Carvalho, R.M.; Goncalves, A.G. Nosocomial infection and characterization of extended-spectrum beta-lactamases-producing Enterobacteriaceae in Northeast Brazil. Rev. Soc. Bras. Med. Trop. 2011, 44, 441–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armbruster, C.E.; Mobley, H.L.T.; Pearson, M.M. Pathogenesis of Proteus mirabilis Infection. EcoSal Plus 2018, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leulmi, Z.; Kandouli, C.; Mihoubi, I.; Benlabed, K.; Lezzar, A.; Rolain, J.M. First report of blaOXA-24 carbapenemase gene, armA methyltransferase and aac(6’)-Ib-cr among multidrug-resistant clinical isolates of Proteus mirabilis in Algeria. J. Glob. Antimicrob. Resist. 2019, 16, 125–129. [Google Scholar] [CrossRef]
- Qin, S.; Qi, H.; Zhang, Q.; Zhao, D.; Liu, Z.Z.; Tian, H.; Xu, L.; Xu, H.; Zhou, M.; Feng, X.; et al. Emergence of Extensively Drug-Resistant Proteus mirabilis Harboring a Conjugative NDM-1 Plasmid and a Novel Salmonella Genomic Island 1 Variant, SGI1-Z. Antimicrob. Agents Chemother. 2015, 59, 6601–6604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnin, R.A.; Girlich, D.; Jousset, A.B.; Gauthier, L.; Cuzon, G.; Bogaerts, P.; Haenni, M.; Madec, J.Y.; Couve-Deacon, E.; Barraud, O.; et al. A single Proteus mirabilis lineage from human and animal sources: A hidden reservoir of OXA-23 or OXA-58 carbapenemases in Enterobacterales. Sci. Rep. 2020, 10, 9160. [Google Scholar] [CrossRef] [PubMed]
- Stock, I. Natural antibiotic susceptibility of Proteus spp., with special reference to P. mirabilis and P. penneri strains. J. Chemother. 2003, 15, 12–26. [Google Scholar] [CrossRef]
- Girlich, D.; Bonnin, R.A.; Dortet, L.; Naas, T. Genetics of Acquired Antibiotic Resistance Genes in Proteus spp. Front. Microbiol. 2020, 11, 256. [Google Scholar] [CrossRef] [Green Version]
- Lei, C.W.; Kong, L.H.; Ma, S.Z.; Liu, B.H.; Chen, Y.P.; Zhang, A.Y.; Wang, H.N. A novel type 1/2 hybrid IncC plasmid carrying fifteen antimicrobial resistance genes recovered from Proteus mirabilis in China. Plasmid 2017, 93, 1–5. [Google Scholar] [CrossRef]
- Desmet, S.; Nepal, S.; van Dijl, J.M.; Van Ranst, M.; Chlebowicz, M.A.; Rossen, J.W.; Van Houdt, J.K.J.; Maes, P.; Lagrou, K.; Bathoorn, E. Antibiotic Resistance Plasmids Cointegrated into a Megaplasmid Harboring the blaOXA-427 Carbapenemase Gene. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Chavda, K.D.; Chen, L.; Jacobs, M.R.; Rojtman, A.D.; Bonomo, R.A.; Kreiswirth, B.N. Complete sequence of a bla(KPC)-harboring cointegrate plasmid isolated from Escherichia coli. Antimicrob. Agents Chemother. 2015, 59, 2956–2959. [Google Scholar] [CrossRef] [Green Version]
- Albornoz, E.; Lucero, C.; Romero, G.; Rapoport, M.; Guerriero, L.; Andres, P.; Group, W.H.-A.; Galas, M.; Corso, A.; Petroni, A. Analysis of plasmid-mediated quinolone resistance genes in clinical isolates of the tribe Proteeae from Argentina: First report of qnrD in the Americas. J. Glob. Antimicrob. Resist. 2014, 2, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Sun, J.; Liao, X.P.; Hu, Q.J.; Liu, B.T.; Fang, L.X.; Deng, H.; Ma, J.; Xiao, X.; Zhu, H.Q.; et al. Prevalence and plasmid characterization of the qnrD determinant in Enterobacteriaceae isolated from animals, retail meat products, and humans. Microb. Drug Resist. 2013, 19, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.K.; Pinyon, J.L.; Anantham, S.; Hall, R.M. Distribution of the blaTEM gene and blaTEM-containing transposons in commensal Escherichia coli. J. Antimicrob. Chemother. 2011, 66, 745–751. [Google Scholar] [CrossRef]
- Yang, W.; Ji, X. Analysis of the microbial species, antimicrobial sensitivity and drug resistance in 2652 patients of nursing hospital. Heliyon 2020, 6, e03965. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, N.L.; Septer, A.N.; Fields, A.T.; Wenren, L.M.; Gibbs, K.A. The Complete Genome Sequence of Proteus mirabilis Strain BB2000 Reveals Differences from the P. mirabilis Reference Strain. Genome Announc. 2013, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knirel, Y.A.; Perepelov, A.V.; Kondakova, A.N.; Senchenkova, S.N.; Sidorczyk, Z.; Rozalski, A.; Kaca, W. Structure and serology of O-antigens as the basis for classification of Proteus strains. Innate. Immun. 2011, 17, 70–96. [Google Scholar] [CrossRef] [PubMed]
- Shelenkov, A.; Korotkov, A.; Korotkov, E. MMsat--a database of potential micro- and minisatellites. Gene 2008, 409, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Shelenkov, A.; Korotkov, E. Search of regular sequences in promoters from eukaryotic genomes. Comput Biol. Chem. 2009, 33, 196–204. [Google Scholar] [CrossRef]
- Yeh, H.Y.; Awad, A. Genotyping of Campylobacter jejuni Isolates from Poultry by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR). Curr. Microbiol. 2020, 77, 1647–1652. [Google Scholar] [CrossRef]
- Arbatsky, N.P.; Shneider, M.M.; Dmitrenok, A.S.; Popova, A.V.; Shagin, D.A.; Shelenkov, A.A.; Mikhailova, Y.V.; Edelstein, M.V.; Knirel, Y.A. Structure and gene cluster of the K125 capsular polysaccharide from Acinetobacter baumannii MAR13-1452. Int. J. Biol. Macromol 2018, 117, 1195–1199. [Google Scholar] [CrossRef]
- Yu, X.; Torzewska, A.; Zhang, X.; Yin, Z.; Drzewiecka, D.; Cao, H.; Liu, B.; Knirel, Y.A.; Rozalski, A.; Wang, L. Genetic diversity of the O antigens of Proteus species and the development of a suspension array for molecular serotyping. PLoS ONE 2017, 12, e0183267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antibiotic | Result * | MIC | Resistance Genes |
---|---|---|---|
amikacin | R | ≥64 | armA, rmtB |
amoxicillin/clavulanate | R | ≥32 | blaCTX-M-15, blaOXA-1, blaTEM-1B |
ampicillin | R | ≥32 | blaCTX-M-15, blaOXA-1, blaTEM-1B |
aztreonam | R | 4 | blaCTX-M-15 |
cefazoline | R | ≥64 | blaCTX-M-15 |
cefepime | R | 16 | blaCTX-M-15, blaOXA-1 |
cefoperazone/sulbactam | S | ≤8 | - |
cefotaxime | R | ≥64 | blaCTX-M-15 |
ceftazidime | R | 4 | blaCTX-M-15 |
ciprofloxacin | R | ≥4 | aac(6′)-Ib-cr, qepA1 |
colistin | R | ≥16 | intrinsic |
fosfomycin | S | ≤16 | - |
gentamicin | R | ≥16 | aac(3)-IIa, aac(3)-IId, armA, rmtB |
meropenem | S | ≤0.25 | - |
netilmicin | R | ≥32 | aac(3)-IId, aph(3′)-Ia |
nitrofurantoin | R | 256 | intrinsic |
trimethoprim/sulfamethoxazole | R | ≥320 | dfrA1, dfrA12, dfrA17, sul1, sul2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shelenkov, A.; Petrova, L.; Fomina, V.; Zamyatin, M.; Mikhaylova, Y.; Akimkin, V. Multidrug-Resistant Proteus mirabilis Strain with Cointegrate Plasmid. Microorganisms 2020, 8, 1775. https://doi.org/10.3390/microorganisms8111775
Shelenkov A, Petrova L, Fomina V, Zamyatin M, Mikhaylova Y, Akimkin V. Multidrug-Resistant Proteus mirabilis Strain with Cointegrate Plasmid. Microorganisms. 2020; 8(11):1775. https://doi.org/10.3390/microorganisms8111775
Chicago/Turabian StyleShelenkov, Andrey, Lyudmila Petrova, Valeria Fomina, Mikhail Zamyatin, Yulia Mikhaylova, and Vasiliy Akimkin. 2020. "Multidrug-Resistant Proteus mirabilis Strain with Cointegrate Plasmid" Microorganisms 8, no. 11: 1775. https://doi.org/10.3390/microorganisms8111775
APA StyleShelenkov, A., Petrova, L., Fomina, V., Zamyatin, M., Mikhaylova, Y., & Akimkin, V. (2020). Multidrug-Resistant Proteus mirabilis Strain with Cointegrate Plasmid. Microorganisms, 8(11), 1775. https://doi.org/10.3390/microorganisms8111775