Keystone Species and Modularity in Microbial Hydrocarbon Degradation Uncovered by Network Analysis and Association Rule Mining
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site and Data for Analysis
2.2. Co-Occurrence Analysis
2.3. Association Rule Mining
2.4. Network Analysis
3. Results
3.1. Co-Occurring Microbial Species Form Location and Function Specific Communities
3.2. Association Rule Networks Are Similar Across Spatial Sample Resolution but Differ in the Dominating Rule Type
3.3. Association Rule Network Hub Nodes Are of a Specific Type with a Characteristic Neighborhood
4. Discussion
4.1. Limitations of Analyzed Data
4.2. Co-Occurrence Analysis and Association Rule Mining Address Different Types of Microbial Interactions
4.3. Interpreting Association Rules
4.4. Sampled Spatial Resolution Matters
4.5. Inferred Degradation Cascade Architecture
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef] [Green Version]
- Johnke, J.; Cohen, Y.; de Leeuw, M.; Kushmaro, A.; Jurkevitch, E.; Chatzinotas, A. Multiple micro-predators controlling bacterial communities in the environment. Curr. Opin. Biotechnol. 2014, 27C, 185–190. [Google Scholar] [CrossRef]
- Joseph, I.O.F.; Wall, T.E.; Tanner, J.R.; Tawaha, K.; Alali, F.Q.; Li, C.; Oberlies, N.H. Proliferation of antibiotic-producing bacteria and concomitant antibiotic production as the basis for the antibiotic activity of Jordan’s red soils. Appl. Environ. Microbiol. 2009, 75, 2735–2741. [Google Scholar] [CrossRef] [Green Version]
- Hibbing, M.E.; Fuqua, C.; Parsek, M.R.; Peterson, S.B. Bacterial competition: Surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 2010, 8, 15–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heuer, H.; Smalla, K. Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiol. Rev. 2012, 36, 1083–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranjard, L.; Richaume, A. Quantitative and qualitative microscale distribution of bacteria in soil. Res. Microbiol. 2001, 152, 707–716. [Google Scholar] [CrossRef]
- Young, I.M.; Crawford, J.W. Interactions and self-organization in the soil-microbe complex. Science 2004, 304, 1634–1637. [Google Scholar] [CrossRef]
- Meckenstock, R.U.; Elsner, M.; Griebler, C.; Lueders, T.; Stumpp, C.; Aamand, J.; Agathos, S.N.; Albrechtsen, H.J.; Bastiaens, L.; Bjerg, P.L.; et al. Biodegradation: Updating the concepts of control for microbial cleanup in contaminated aquifers. Environ. Sci. Technol. 2015, 49, 7073–7081. [Google Scholar] [CrossRef] [Green Version]
- Maymó-Gatell, X.; Chien, Y.; Gossett, J.M.; Zinder, S.H. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 1997, 276, 1568–1571. [Google Scholar] [CrossRef]
- Bardgett, R.; Usher, M.; Hopkins, D. (Eds.) Biological Diversity and Function in Soils; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Pace, N.R. A molecular view of microbial diversity and the biosphere. Science 1997, 276, 734–740. [Google Scholar] [CrossRef]
- Mikkonen, A.; Santalahti, M.; Lappi, K.; Pulkkinen, A.-M.; Montonen, L.; Suominen, L. Bacterial and archaeal communities in long-term contaminated surface and subsurface soil evaluated through co-extracted RNA and DNA. FEMS Microbiol. Ecol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Volant, A.; Bruneel, O.; Desoeuvre, A.; Héry, M.; Casiot, C.; Bru, N.; Delpoux, S.; Fahy, A.; Javerliat, F.; Bouchez, O.; et al. Diversity and spatiotemporal dynamics of bacterial communities: Physicochemical and other drivers along an acid mine drainage. FEMS Microbiol. Ecol. 2014, 90, 247–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faust, K.; Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 2012, 10, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Armitage, D.W.; Jones, S.E. How sample heterogeneity can obscure the signal of microbial interactions. ISME J. 2019, 13, 2639–2646. [Google Scholar] [CrossRef]
- Tischer, K.; Kleinsteuber, S.; Schleinitz, K.M.; Fetzer, I.; Spott, O.; Stange, F.; Lohse, U.; Franz, J.; Neumann, F.; Gerling, S.; et al. Microbial communities along biogeochemical gradients in a hydrocarbon-contaminated aquifer. Environ. Microbiol. 2013, 15, 2603–2615. [Google Scholar] [CrossRef]
- Günnigmann née Gerling, S. Spatial Distribution of Microbial Communities in a Hydrocarbon Contaminated Aquifer. Bachelor Thesis, University of Koblenz, Landau, Germany, 2011. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Raup, D.M.; Crick, R.E. Measurement of faunal similarity in paleontology. J. Paleontol. 1979, 53, 1213–1227. [Google Scholar]
- Agrawal, R.; Imieliński, T.; Swami, A. Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data; Buneman, P., Jajodia, S., Eds.; ACM Press: New York, NY, USA, 1993; pp. 207–216. [Google Scholar]
- Assenov, Y.; Ramírez, F.; Schelhorn, S.E.S.E.; Lengauer, T.; Albrecht, M. Computing topological parameters of biological networks. Bioinformatics 2008, 24, 282–284. [Google Scholar] [CrossRef] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Newman, M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [Google Scholar] [CrossRef] [Green Version]
- Sherry, A.; Gray, N.D.; Ditchfield, A.K.; Aitken, C.M.; Jones, D.M.; Röling, W.F.M.; Hallmann, C.; Larter, S.R.; Bowler, B.F.J.; Head, I.M. Anaerobic biodegradation of crude oil under sulphate-reducing conditions leads to only modest enrichment of recognized sulphate-reducing taxa. Int. Biodeterior. Biodegrad. 2013, 81, 105–113. [Google Scholar] [CrossRef]
- Xiong, W.; Mathies, C.; Bradshaw, K.; Carlson, T.; Tang, K.; Wang, Y. Benzene removal by a novel modification of enhanced anaerobic biostimulation. Water Res. 2012, 46, 4721–4731. [Google Scholar] [CrossRef] [PubMed]
- Penner, T.J.; Foght, J.M.; Budwill, K. Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures. Int. J. Coal Geol. 2010, 82, 81–93. [Google Scholar] [CrossRef]
- Dong, J.; Horvath, S. Understanding network concepts in modules. BMC Syst. Biol. 2007, 1, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovell, D.; Pawlowsky-Glahn, V.; Egozcue, J.J.; Marguerat, S.; Bähler, J. Proportionality: A valid alternative to correlation for relative data. PLoS Comput. Biol. 2015, 11, e1004075. [Google Scholar] [CrossRef] [Green Version]
- Gloor, G.B.; Macklaim, J.M.; Pawlowsky-Glahn, V.; Egozcue, J.J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 2017, 8, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Klitgord, N.; Segrè, D. Environments that induce synthetic microbial ecosystems. PLoS Comput. Biol. 2010, 6, e1001002. [Google Scholar] [CrossRef] [Green Version]
- Mendes-Soares, H.; Mundy, M.; Mendes Soares, L.; Chia, N. MMinte: An application for predicting metabolic interactions among the microbial species in a community. BMC Bioinform. 2016, 17, 343. [Google Scholar] [CrossRef] [Green Version]
- Embree, M.; Nagarajan, H.; Movahedi, N.; Chitsaz, H.; Zengler, K. Single-cell genome and metatranscriptome sequencing reveal metabolic interactions of an alkane-degrading methanogenic community. ISME J. 2014, 8, 757–767. [Google Scholar] [CrossRef]
- Tan, B.; Nesbø, C.; Foght, J. Re-analysis of omics data indicates Smithella may degrade alkanes by addition to fumarate under methanogenic conditions. ISME J. 2014, 8, 2353–2356. [Google Scholar] [CrossRef] [Green Version]
- Probandt, D.; Eickhorst, T.; Ellrott, A.; Amann, R.; Knittel, K. Microbial life on a sand grain: From bulk sediment to single grains. ISME J. 2017, 12, 623–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaffron, S.; Rehrauer, H.; Pernthaler, J.; von Mering, C. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 2010, 20, 947–959. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.; Borenstein, E. Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proc. Natl. Acad. Sci. USA 2013, 110, 12804–12809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, D.R.; Goldschmidt, F.; Lilja, E.E.; Ackermann, M. Metabolic specialization and the assembly of microbial communities. ISME J. 2012, 6, 1985–1991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, D.; Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 2014, 5, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Friedlander, T.; Mayo, A.E.; Tlusty, T.; Alon, U. Evolution of bow-tie architectures in biology. PLoS Comput. Biol. 2015, 11, e1004055. [Google Scholar] [CrossRef] [Green Version]
- Corominas-Murtra, B.; Goñi, J.; Solé, R.V.; Rodríguez-Caso, C. On the origins of hierarchy in complex networks. Proc. Natl. Acad. Sci. USA 2013, 110. [Google Scholar] [CrossRef] [Green Version]
Bulk | Single Particle | |||
---|---|---|---|---|
Samples | 72 | 104 | ||
Restriction Enzyme | RsaI | HaeIII | RsaI | HaeIII |
Fragments Total | 274 | 351 | 627 | 612 |
(Bacteria/Archaea) | (201/73) | (230/121) | (329/298) | (326/286) |
Potential Pairs | 37,401 | 61,425 | 196,251 | 186,966 |
Correlated Pairs1 | 250 (0.7%) | 1906 (3.1%) | 26,984 (13.7%) | 24,150 (12.9%) |
On Randomized Data2 | 0.02 (0.0%) | 0.07 (0.0%) | 1811.2 (0.9%) | 1674.3 (0.9%) |
FDR (estimated) | < 1 × 10−4 | < 1 × 10−4 | 0.07 | 0.07 |
Positive Correlations3 | 212 (84.8%) | 1781 (93.4%) | 25,739 (95.4%) | 23,476 (97.2%) |
Negative Correlations3 | 38 (15.2%) | 125 (6.6%) | 311 (1.2%) | 265 (1.1%) |
Bacterial Pairs | 91 (36.4%) | 427 (22.4%) | 25,577 (94.8%) | 22,910 (94.9%) |
(Pos./Neg. Correlations) | (73/18) | (372/55) | (24,577/69) | (22,450/56) |
Archaeal Pairs | 106 (42.4%) | 1326 (69.6%) | 723 (2.7%) | 460 (1.9%) |
(Pos./Neg. Correlations) | (102/4) | (1323/3) | (695/28) | (447/13) |
Mixed Pairs | 53 (21.2%) | 153 (8.0%) | 684 (2.5%) | 780 (3.2%) |
(Pos./Neg. Correlations) | (37/16) | (86/67) | (467/214) | (579/196) |
Bulk | Single Particle | |||
---|---|---|---|---|
Restriction Enzyme | RsaI | HaeIII | RsaI | HaeIII |
Network Coverage1 | 43% | 75% | 98% | 95% |
Number of Nodes/Edges | 118/250 | 264/1906 | 615/26,984 | 579/24,150 |
Density | 0.036 | 0.055 | 0.14 | 0.14 |
Avg. Number of Neighbors | 4.24 | 14.44 | 87.75 | 83.42 |
Characteristic Path Length | 4.27 | 3.29 | 2.65 | 2.85 |
on random network2 | 3.41 | 2.37 | 1.86 | 1.86 |
Clustering Coefficient | 0.36 | 0.37 | 0.48 | 0.47 |
on random network2 | 0.03 | 0.06 | 0.14 | 0.14 |
Centralization | 0.094 | 0.19 | 0.30 | 0.30 |
Heterogeneity | 0.90 | 1.15 | 1.11 | 1.13 |
Modularity3 | 0.77 | 0.39 | 0.044 | 0.044 |
Number of Modules3 | 17 | 9 | (6) | (11) |
with more than 3 fragments | 5 | 4 | (4) | (7) |
Bulk | Single Particle | |||
---|---|---|---|---|
Restriction Enzyme | RsaI | HaeIII | RsaI | HaeIII |
Network Coverage1 | 92% | 95% | 92% | 100% |
Number of Nodes/Edges | 253/1199 | 335/2214 | 576/2834 | 612/4560 |
Density2 | 0.032 | 0.027 | 0.017 | 0.022 |
Avg. Number of Neighbors | 8.12 | 9.06 | 9.52 | 13.66 |
Characteristic Path Length | 1.15 | 1.35 | 1.03 | 1.08 |
Clustering Coefficient | 0.0 | 0.0 | 0.0 | 0.0 |
Centralization2 | 0.34 | 0.28 | 0.22 | 0.49 |
Heterogeneity2 | 1.22 | 1.18 | 1.68 | 1.75 |
Bulk | Single Particle | |||
---|---|---|---|---|
Restriction Enzyme | RsaI | HaeIII | RsaI | HaeIII |
Association rules | 1199 | 2214 | 2834 | 4560 |
also sign. correlated | 49 (4.1%) | 379 (17.1%) | 112 (4.0%) | 186 (4.1%) |
Bacterium→Bacterium | 468 (39%) | 768 (34.7%) | 11 (0.4%) | 371 (8.1%) |
Bacterium→Archaeum | 126 (10.5%) | 107 (4.8%) | 0 (0%) | 0 (0%) |
Archaeum→Archaeum | 145 (12.1%) | 698 (31.5%) | 49 (1.7%) | 123 (2.7%) |
Archaeum→Bacterium | 460 (38.4%) | 641 (29%) | 2774 (97.9%) | 4066 (89.2%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Centler, F.; Günnigmann, S.; Fetzer, I.; Wendeberg, A. Keystone Species and Modularity in Microbial Hydrocarbon Degradation Uncovered by Network Analysis and Association Rule Mining. Microorganisms 2020, 8, 190. https://doi.org/10.3390/microorganisms8020190
Centler F, Günnigmann S, Fetzer I, Wendeberg A. Keystone Species and Modularity in Microbial Hydrocarbon Degradation Uncovered by Network Analysis and Association Rule Mining. Microorganisms. 2020; 8(2):190. https://doi.org/10.3390/microorganisms8020190
Chicago/Turabian StyleCentler, Florian, Sarah Günnigmann, Ingo Fetzer, and Annelie Wendeberg. 2020. "Keystone Species and Modularity in Microbial Hydrocarbon Degradation Uncovered by Network Analysis and Association Rule Mining" Microorganisms 8, no. 2: 190. https://doi.org/10.3390/microorganisms8020190
APA StyleCentler, F., Günnigmann, S., Fetzer, I., & Wendeberg, A. (2020). Keystone Species and Modularity in Microbial Hydrocarbon Degradation Uncovered by Network Analysis and Association Rule Mining. Microorganisms, 8(2), 190. https://doi.org/10.3390/microorganisms8020190