Whole Genome Sequence-Based Prediction of Resistance Determinants in High-Level Multidrug-Resistant Campylobacter jejuni Isolates in Lithuania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Isolates
2.2. Antimicrobial Susceptibility Testing
2.3. Whole Genome Sequencing
2.4. Data Availability
3. Results and Discussion
3.1. Phenotypic Antimicrobial Resistance Determination
3.2. Genomics
3.3. Whole Genome Sequence-Based Genotypic Predictions of Antibiotic-Resistance Genes
3.4. Point Mutation
3.5. Mobile Genetic Elements: Genomic Islands, Prophages and Plasmids
3.6. BLAST Identification and Diverse Genomic Locations of the C. jejuni
Author Contributions
Funding
Conflicts of Interest
References
- Oyarzabal, O.A.; Carrillo, C.D. Chapter 4—Isolation, identification, and typing of Campylobacter strains from food samples. In Campylobacter; Klein, G., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 61–83. [Google Scholar]
- European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). The European Union One Health 2018 Zoonoses Report. EFSA J. 2019, 17, e05926. [Google Scholar] [CrossRef] [Green Version]
- Sakran, W.; Hexner-Erlichman, Z.; Spiegel, R.; Batheesh, H.; Halevy, R.; Koren, A. Campylobacter gastroenteritis in children in north-eastern Israel comparison with other common pathogens. Sci. Rep. 2020, 10, 5823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abebe, E.; Gugsa, G.; Ahmed, M. Review on Major Food-Borne Zoonotic Bacterial Pathogens. J. Trop. Med. 2020, 2020, e4674235. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Van Duin, D.; Paterson, D. Multidrug Resistant Bacteria in the Community: Trends and Lessons Learned. Infect. Dis. Clin. N. Am. 2016, 30, 377–390. [Google Scholar] [CrossRef] [Green Version]
- Doyle, M.E. Multidrug-resistant pathogens in the food supply. Foodborne Pathog. Dis. 2015, 12, 261–279. [Google Scholar] [CrossRef]
- Bello-López, J.M.; Cabrero-Martínez, O.A.; Ibáñez-Cervantes, G.; Hernández-Cortez, C.; Pelcastre-Rodríguez, L.I.; Gonzalez-Avila, L.U.; Castro-Escarpulli, G. Horizontal Gene Transfer and Its Association with Antibiotic Resistance in the Genus Aeromonas spp. Microorganisms 2019, 7, 363. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Kim, D.-W.; Lee, D.-H.; Kim, Y.-S.; Bu, J.-H.; Cha, J.-H.; Thawng, C.N.; Hwang, E.-M.; Seong, H.J.; Sul, W.J.; et al. Mobile resistome of human gut and pathogen drives anthropogenic bloom of antibiotic resistance. Microbiome 2020, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Emamalipour, M.; Seidi, K.; Zununi Vahed, S.; Jahanban-Esfahlan, A.; Jaymand, M.; Majdi, H.; Amoozgar, Z.; Chitkushev, L.T.; Javaheri, T.; Jahanban-Esfahlan, R.; et al. Horizontal Gene Transfer: From Evolutionary Flexibility to Disease Progression. Front. Cell Dev. Biol. 2020, 8, 229. [Google Scholar] [CrossRef]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef] [Green Version]
- Waddell, S.; Barnstedt, O.; Treiber, C. Chapter Four—Neural Transposition in the Drosophila Brain: Is It All Bad News? In Advances in Genetics; Epigenetic Shaping of Sociosexual Interactions; Yamamoto, D., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 86, pp. 65–92. [Google Scholar]
- Chen, Y.-M.; Holmes, E.C.; Chen, X.; Tian, J.-H.; Lin, X.-D.; Qin, X.-C.; Gao, W.-H.; Liu, J.; Wu, Z.; Zhang, Y. Diverse and abundant resistome in terrestrial and aquatic vertebrates revealed by transcriptional analysis. Sci. Rep. 2020, 10, 18870. [Google Scholar] [CrossRef] [PubMed]
- Ramonaite, S.; Kudirkiene, E.; Tamuleviciene, E.; Leviniene, G.; Malakauskas, A.; Gölz, G.; Alter, T.; Malakauskas, M. Prevalence and genotypes of Campylobacter jejuni from urban environmental sources in comparison with clinical isolates from children. J. Med. Microbiol. 2014, 63 Pt 9, 1205–1213. [Google Scholar] [CrossRef]
- Ramonaite, S.; Tamuleviciene, E.; Alter, T.; Kasnauskyte, N.; Malakauskas, M. MLST genotypes of Campylobacter jejuni isolated from broiler products, dairy cattle and human campylobacteriosis cases in Lithuania. BMC Infect. Dis. 2017, 17, 430. [Google Scholar] [CrossRef] [PubMed]
- Patel and Clinical and Laboratory Standards Institute—2017—Performance Standards for Antimicrobial Susceptibility Testing. Available online: https://clsi.org/media/1469/m100s27_sample.pdf (accessed on 1 October 2020).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014, 42, D206–D214. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bliss, C.M.; Bennett, J.S.; Bratcher, H.B.; Brehony, C.; Colles, F.M.; Wimalarathna, H.; Harrison, O.B.; Sheppard, S.K.; Cody, A.J.; et al. Ribosomal multilocus sequence typing: Universal characterization of bacteria from domain to strain. Microbiology 2012, 158 Pt 4, 1005–1015. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef] [Green Version]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.-L.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Higgins, D.G. Multiple Sequence Alignment Using ClustalW and ClustalX. Curr. Protoc. Bioinform. 2003, 1, 2.3.1–2.3.22. [Google Scholar] [CrossRef] [PubMed]
- Grissa, I.; Vergnaud, G.; Pourcel, C. CRISPRcompar: A website to compare clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 2008, 36, W145–W148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosentino, S.; Voldby Larsen, M.; Møller Aarestrup, F.; Lund, O. PathogenFinder—Distinguishing friend from foe using bacterial whole genome sequence data. PLoS ONE 2013, 8, e77302. [Google Scholar] [CrossRef] [Green Version]
- Petkau, A.; Stuart-Edwards, M.; Stothard, P.; Van Domselaar, G. Interactive microbial genome visualization with GView. Bioinformatics 2010, 26, 3125–3126. [Google Scholar] [CrossRef]
- Bertelli, C.; Laird, M.R.; Williams, K.P.; Simon Fraser University Research Computing Group; Lau, B.Y.; Hoad, G.; Winsor, G.L.; Brinkman, F.S.L. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017, 45, W30–W35. [Google Scholar] [CrossRef]
- Anbudurai, P.R.; Mor, T.S.; Ohad, I.; Shestakov, S.V.; Pakrasi, H.B. The ctpA gene encodes the C-terminal processing protease for the D1 protein of the photosystem II reaction center complex. Proc. Natl. Acad. Sci. USA 1994, 91, 8082–8086. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, N.; Yamamoto, Y.; Mori, H.; Satoh, K. Carboxyl-terminal processing protease for the D1 precursor protein: Cloning and sequencing of the spinach cDNA. Plant Mol. Biol. 1996, 30, 39–50. [Google Scholar] [CrossRef]
- Su, C.-C.; Yin, L.; Kumar, N.; Dai, L.; Radhakrishnan, A.; Bolla, J.R.; Lei, H.-T.; Chou, T.-H.; Delmar, J.A.; Rajashankar, K.R.; et al. Structures and transport dynamics of a Campylobacter jejuni multidrug efflux pump. Nat. Commun. 2017, 8, 171. [Google Scholar] [CrossRef]
- Hacker, J.; Carniel, E. Ecological fitness, genomic islands and bacterial pathogenicity. EMBO Rep. 2001, 2, 5–81. [Google Scholar] [CrossRef]
- Uelze, L.; Grützke, J.; Borowiak, M.; Hammerl, J.A.; Juraschek, K.; Deneke, C.; Tausch, S.H.; Malorny, B. Typing methods based on whole genome sequencing data. One Health Outlook 2020, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Dobrindt, U.; Hacker, J. Mobile genetic elements and pathogenicity islands encoding bacterial toxins. In The Comprehensive Sourcebook of Bacterial Protein Toxins; Elsevier Ltd.: Amsterdam, The Netherlands, 2006; pp. 44–63. [Google Scholar]
- Oliveira, P.H.; Touchon, M.; Cury, J.; Rocha, E.P.C. The chromosomal organization of horizontal gene transfer in bacteria. Nat. Commun. 2017, 8, 841. [Google Scholar] [CrossRef] [PubMed]
- Parales, R.E.; Ditty, J.L. Chemotaxis. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1529–1543. [Google Scholar] [CrossRef]
- Sheppard, S.K.; Guttman, D.S.; Fitzgerald, J.R. Population genomics of bacterial host adaptation. Nat. Rev. Genet. 2018, 19, 549–565. [Google Scholar] [CrossRef] [PubMed]
Antimicrobial Agent | |||||
---|---|---|---|---|---|
Isolate | TET | CIP | GEN | AXO | ERY |
MIC, µg/mL | |||||
CCm26 | 128 | 128 | 2 | 128 | 4 |
CCm31 | >256 | 64 | 0.5 | 128 | 0.5 |
CCm32 | 128 | 256 | 8 | 64 | 8 |
CCm33 | >256 | 128 | 4 | 128 | 0.25 |
CCm35 | 128 | 128 | 0.5 | 128 | 0.5 |
CCm36 | 256 | 128 | 0.25 | 256 | 0.5 |
CCm37 | 64 | 64 | 0.25 | 64 | 0.5 |
Breakpoint | ≥2 | ≥1 | ≥4 | ≥8 | ≥8 |
Isolate | Source | Clonal Complex | Sequence Type | Antimicrobial Resistance Profile |
---|---|---|---|---|
CCm26 | Wild bird | CC179 | ST-6424 | TET + CIP + AXO |
CCm31 | Wild bird | CC179 | ST-4447 | TET + CIP + AXO |
CCm32 | Wild bird | CC179 | ST-4447 | TET + CIP + AXO + GEN + ERY * |
CCm33 | Wild bird | CC179 | ST-4447 | TET + CIP + AXO + GEN * |
CCm35 | Cattle | CC21 | ST-21 | TET + CIP + AXO |
CCm36 | Cattle | CC21 | ST-21 | TET + CIP + AXO |
CCm37 | Cattle | CC21 | ST-21 | TET + CIP + AXO |
CCm26 | CCm31 | CCm32 | CCm33 | CCm35 | CCm36 | CCm37 | |
---|---|---|---|---|---|---|---|
Metrics of sequence data | |||||||
Coverage (x) | 160 | 120 | 180 | 400 | 220 | 180 | 160 |
Genomic data report | |||||||
Size (bp) | 1682833 | 1685191 | 1685033 | 1721979 | 1701391 | 1705164 | 1705114 |
No. of contigs | 31 | 59 | 25 | 29 | 23 | 24 | 21 |
GC (%) | 30.3 | 30.4 | 30.4 | 30.3 | 30.3 | 30.3 | 30.3 |
N50 | 122854 | 62137 | 158860 | 184236 | 116706 | 122859 | 135281 |
L50 | 4 | 9 | 4 | 4 | 6 | 6 | 5 |
L75 | 9 | 17 | 8 | 7 | 10 | 9 | 8 |
Genes | 1768 | 1772 | 1770 | 1814 | 1781 | 1781 | 1779 |
CDs | 1725 | 1729 | 1727 | 1771 | 1737 | 1738 | 1736 |
Subsystems | |||||||
rRNAs | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
tRNAs | 40 | 40 | 40 | 40 | 41 | 40 | 40 |
C. jejuni | Virulence Markers | Resistance Markers | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Heavy Metal Resistance | AMPs Sensing System | Invasion | Multidrug Efflux Pupms | Tetracycline | β-Lactams | ||||||||
czc | ctpA | CAMP | T4S | flgE, trg, bdlA | cmeABC | pmrA | tetO | tetM | blaOXA-448 | blaOXA-61 | blaOXA-451 | blaOXA-133 | |
CCm26 | − | − | − | − | +++ | + | + | + | − | + | − | − | − |
CCm31 | + | − | − | − | +++ | − | − | − | − | + | − | − | − |
CCm32 | + | − | − | − | +++ | − | − | − | − | + | − | − | − |
CCm33 | − | − | − | +/− | +++ | − | − | − | − | + | − | − | − |
CCm35 | − | + | + | − | +++ | − | − | + | − | − | + | − | + |
CCm36 | − | + | + | +/− | +++ | + | − | + | + | − | + | − | + |
CCm37 | − | + | + | +/− | +++ | + | + | + | + | − | + | + | + |
L22 | cmeR | gyrA | rpsL | 23S rRNA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mutation | Nucleotide Change | Amino Acid Change | Mutation | Nucleotide Change | Amino Acid Change | Mutation | Nucleotide Change | Amino Acid Change | Mutation | Nucleotide Change | Amino Acid Change | Mutation | Nucleotide Change |
I165V 1 | ATT→GTT | Ile→Val | G144D 1,2,3,4,5 | GGT→GAT | Gly→Asp | R285K 1,2,3,4 | AGG→AAG | Arg→Lys | A119T 3,4 | GCT→ACT | Ala→Thr | 287G > A 5,6,7 | G→A |
S109A 1 | TCT→GCT | Ser→Ala | S207G 1,2,3,4 | AGC→GGC | Ser→Gly | A312T 1,2,3,4 | GCT→ACT | Ala→Thr | 296C > G 5,6,7 | C→G | |||
T119A 1 | ACT→GCT | Thr→Ala | D121N 6,7 | GAC→AAC | Asp→Asn | A664V 1,2,3,4 | GCC→GTC | Ala→Val | 298G > A 5,6,7 | G→A | |||
T120P 1 | ACA→CCA | Thr→Pro | E159K 6,7 | GAA→AAA | Glu→Lys | T665S 1,2,3,4 | ACT→AGT | Thr→Ser | 327G > A 5,6,7 | G→A | |||
V137A 1 | GTG→GCG | Val→Ala | T804A 1,2,3,4 | ACA→GCA | Thr→Ala | 364G > C 5,6,7 | G→C | ||||||
K123→del 1 | AAA→del | Lys→del | T86I 1,2,3,4,5,6,7 | ACA→ATA | Trr→Ile | 554A > C 5,6,7 | A→C | ||||||
571T > G 5,6,7 | T→G | ||||||||||||
1027A > G 5,6,7 | A→G | ||||||||||||
1485C > T 4 | C→T | ||||||||||||
1735T > C 4 | T→C | ||||||||||||
1739T > C 4 | T→C | ||||||||||||
1752T > C 4 | T→C | ||||||||||||
1759A > G 4 | A→G | ||||||||||||
1761G > A 4 | G→A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aksomaitiene, J.; Novoslavskij, A.; Kudirkiene, E.; Gabinaitiene, A.; Malakauskas, M. Whole Genome Sequence-Based Prediction of Resistance Determinants in High-Level Multidrug-Resistant Campylobacter jejuni Isolates in Lithuania. Microorganisms 2021, 9, 66. https://doi.org/10.3390/microorganisms9010066
Aksomaitiene J, Novoslavskij A, Kudirkiene E, Gabinaitiene A, Malakauskas M. Whole Genome Sequence-Based Prediction of Resistance Determinants in High-Level Multidrug-Resistant Campylobacter jejuni Isolates in Lithuania. Microorganisms. 2021; 9(1):66. https://doi.org/10.3390/microorganisms9010066
Chicago/Turabian StyleAksomaitiene, Jurgita, Aleksandr Novoslavskij, Egle Kudirkiene, Ausra Gabinaitiene, and Mindaugas Malakauskas. 2021. "Whole Genome Sequence-Based Prediction of Resistance Determinants in High-Level Multidrug-Resistant Campylobacter jejuni Isolates in Lithuania" Microorganisms 9, no. 1: 66. https://doi.org/10.3390/microorganisms9010066
APA StyleAksomaitiene, J., Novoslavskij, A., Kudirkiene, E., Gabinaitiene, A., & Malakauskas, M. (2021). Whole Genome Sequence-Based Prediction of Resistance Determinants in High-Level Multidrug-Resistant Campylobacter jejuni Isolates in Lithuania. Microorganisms, 9(1), 66. https://doi.org/10.3390/microorganisms9010066