Longevity of Plant Pathogens in Dry Agricultural Seeds during 30 Years of Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Storage Facilities
2.2. Seed Materials and Sample Preparation
2.3. Pathogen Analyses
2.4. Statistical Analyses
3. Results and Discussion
3.1. Reduced Seed Infection Percentages during Storage
3.2. Increased Seed Infection Percentage during Storage
3.3. No Change in Seed Infection Percentages during Storage
3.4. Survival of S. sclerotiorum Sclerotia
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). Genebank Standards for Plant Genetic Resources for Food and Agriculture, 2nd ed.; FAO: Rome, Italy, 2014; 182p, Available online: https://www.fao.org/3/i3704e/i3704e.pdf (accessed on 12 October 2021).
- Westengen, O.T.; Jeppson, S.; Guarino, L. Global Ex-Situ Crop Diversity Conservation and the Svalbard Global Seed Vault: Assessing the Current Status. PLoS ONE 2013, 8, e64146. [Google Scholar] [CrossRef] [Green Version]
- Asdal, Å. The role of the Svalbard Global Seed Vault in preserving crop genetic diversity. In Plant Genetic Resources: A Review of Current Research and Future Needs; Dulloo, M.E., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2021; ISBN 9781003180623. [Google Scholar] [CrossRef]
- Yndgaard, F. Genebank security storage in Permafrost. Plant Genet. Resour. Newsl. 1985, 62, 2–7. [Google Scholar]
- Brodal, G.; Tangerås, H.; Wold, A. Gene bank in permafrost. In Proceedings of the XXIII International Seed Testing Congress Symposium Abstracts, Buenos Aires, Argentina, 2–4 November 1992; International Seed Testing Association: Zürich, Switzerland, 1992. [Google Scholar]
- Neergaard, P. Seed Pathology; The MacMillan Press Ltd.: London, UK, 1977; 1187p. [Google Scholar]
- Agarwal, V.K.; Sinclair, J.B. Principles of Seed Pathology, 2nd ed.; CRC Lewis Publishers: Boca Raton, FL, USA; New York, NY, USA; London, UK; Tokyo, Japan, 1997; 539p. [Google Scholar]
- Diekman, M. Seed health testing and treatment of germplasm at the International Center for Agricultural Research in the Dry Areas (ICARDA). Seed Sci. Technol. 1988, 16, 405–417. [Google Scholar]
- Maude, R.B. Seedborne Diseases and Their Control. Principles & Practice; CAB International: Wallingford, UK, 1996; 280p. [Google Scholar]
- Solberg, S.Ø.; Brodal, G.; von Bothmer, R.; Meen, E.; Yndgaard, F.; Andreasen, C.; Asdal, Å. Seed Germination after 30 Years Storage in Permafrost. Plants 2020, 9, 579. [Google Scholar] [CrossRef]
- Limonard, T. A modified blotter test for seed health. Neth. J. Plant Pathol. 1966, 72, 319–321. [Google Scholar] [CrossRef]
- Jørgensen, J. The freezing blotter method in testing barley seed for inoculum of Pyrenophora graminea and P. teres. Repeatability of test results. Seed Sci. Technol. 1982, 10, 639–646. [Google Scholar]
- Kietreiber, M. Glume Blotch/Septoria Nodorum-Wheat/Triticum Aestivum. In ISTA Handbook on Seed Health Testing, 2nd ed.; Section 2 Working Sheet No. 19; International Seed Testing Association: Zurich, Switzerland, 1984; 5p. [Google Scholar]
- Rohloff, I.; Marrou, J. Lettuce Mosaic Virus-Lettuce (Lactuca sativa). In ISTA Handbook on Seed Health Testing, 2nd ed.; Section 2 Working Sheet No. 9; International Seed Testing Association: Zurich, Switzerland, 1981; 4p. [Google Scholar]
- Clarke, M.F.; Adams, A.N. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 1977, 34, 475–483. [Google Scholar] [CrossRef] [PubMed]
- International Seed Testing Association. Leaf Blight/Alternaria Dauci-Carrot/Daucus Carota. In Handbook on Seed Health Testing; Series 3. Working Sheet S.3. No.4; ISTA: Zurich, Switzerland, 1966; 2p. [Google Scholar]
- International Seed Testing Association. Black Root Rot/Stemphylium radicinum (Syn. Alternaria radicina)-Carrot/Daucus Carota. In Handbook on Seed Health Testing; Series 3 Working Sheets S.3. No.5; ISTA: Zurich, Switzerland, 1966; 2p. [Google Scholar]
- Mangan, A. Damping Off, Blackleg/Phoma betae-Beet/Beta vulgaris. In ISTA Handbook on Seed Health Testing, 2nd ed.; Section 2 Working Sheet No. 49; International Seed Testing Association: Zurich, Switzerland, 1982; 4p. [Google Scholar]
- International Seed Testing Association. Dark Leaf Spot/Alternaria brassicicola–Cabbage etc. /Brassica spp. In Handbook on Seed Health Testing; Series 3 Working Sheet S.3. No. 28; ISTA: Zurich, Switzerland, 1966; 2p. [Google Scholar]
- Brodal, G. Occurrence, pathogenicity and transmission of seed-borne fungi on grasses in Norway. In Doctor Scientiarum Theses 1991: 4; Norwegian University of Life Sciences: Ås, Norway, 1991; 147p. [Google Scholar]
- Matthews, D. A survey of certified ryegrass seed for the presence of Drechslera species and Fusarium nivale (Fr.) Ces. N. Z. J. Agric. Res. 1971, 14, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.D. Seed-borne Drechslera phlei on Phleum species. Can. J. Plant Sci. 1970, 50, 746–747. [Google Scholar] [CrossRef] [Green Version]
- Hewett, P.D. Pathogen viability on seed in deep freeze storage. Seed Sci. Technol. 1987, 15, 73–77. [Google Scholar]
- Cunfer, B.M. Survival of Septoria nodorum in wheat seed. Trans. Br. Mycol. Soc. 1981, 77, 161–164. [Google Scholar] [CrossRef]
- Cunfer, B.M. Long term viability of Septoria nodorum in stored wheat seed. Cer. Res. Comm. 1991, 19, 347–348. [Google Scholar]
- Krüger, J.; Hoffmann, G.M. Longevity of Septoria nodorum and S. avenae f.sp. triticea on seeds of spring wheat as influenced by storage temperatures. J. Plant Dis. Protect. 1978, 85, 413–418. [Google Scholar]
- Machacek, J.E.; Wallace, H.A.H. Longevity of some common fungi in cereal seed. Can. J. Bot. 1952, 30, 164–169. [Google Scholar] [CrossRef]
- Maude, R.B.; Bambridge, J.M. Effects of seed treatments and storage on the incidence of Phoma betae and the viability of infected red beet seeds. Plant Path. 1985, 34, 435–437. [Google Scholar] [CrossRef]
- Garcia, M.; Palermo, D.; Martin, I. Evaluation of seed-borne fungi in rye (Secale cereale) germplasm after thirty years of storage in the national Spanish gene bank relation with seed viability. In Proceedings of the 31st International Seed Testing Association Congress, Seed Symposium Abstracts, Tallinn, Estonia, 15–17 June 2016; International Seed Testing Association: Zürich, Switzerland, 2016; pp. 83–84. [Google Scholar]
- Nishikawa, J.; Kobayaschi, T.; Natsuaki, K.T. Seed-borne fungi on genebank-stored cruciferous seeds from Japan. Seed Sci. Technol. 2014, 42, 47–59. [Google Scholar] [CrossRef]
- Maude, R.B.; Humpherson-Jones, F.M. Studies on the seed-borne phases of dark leaf spot Alternaria brassicicola and grey leaf spot Alternaria brassicae of brassicas. Ann. Appl. Biol. 1980, 95, 311–319. [Google Scholar] [CrossRef]
- Shands, R.G. Longevity of Gibberella saubinetii and other related fungi in barley kernels and its relation to the emetic effect. Phytopathology 1937, 27, 749–762. [Google Scholar]
- Hewett, P.D. A survey of seed-borne fungi of wheat. II. The incidence of common species of Fusarium. Trans. Br. Mycol. Soc. 1967, 50, 175–182. [Google Scholar] [CrossRef]
- Homdork, S.; Fehrmann, H.; Beck, R. Influence of different storage conditions on the mycotoxin production and quality of Fusarium-infected wheat grain. J. Phytopathol. 2000, 148, 7–15. [Google Scholar] [CrossRef]
- Menzies, J.G.; Nielsen, J.; Thomas, P.L. Long-Term Storage of Ustilago tritici. Plant Dis. 1997, 81, 1328–1330. [Google Scholar] [CrossRef]
- Tapke, V.F. Prolonging viability of spores and mycelium of the barley loose smut, Ustilago nuda. Phytopathology 1948, 38, 25. [Google Scholar]
- Russel, R.C. The influence of aging of seed on the development of loose smut in barley. Can. J. Bot. 1961, 39, 1714–1746. [Google Scholar] [CrossRef]
- Ellerbrock, L.A.; Lorbeer, J.W. Etiology and control of onion flower blight. Phytopathology 1977, 67, 155–159. [Google Scholar] [CrossRef]
- Maude, R.B.; Presly, A.H. Neck rot (Botrytis allii) of bulb onions. I. Seed-borne infection and its relationship to the disease in the onion crop. Ann. Appl. Biol. 1977, 86, 163–180. [Google Scholar] [CrossRef]
- Mordue, J.E.M.; Holliday, P. Sclerotinia sclerotiorum (Sclerotial stage). In CMI Descriptions of Pathogenic Fungi and Bacteria, No 513; Commonwealth Mycological Institute: Surrey, UK, 1976; 2p. [Google Scholar]
Host Crop Species, Cultivar (Country of Origin) | Pathogen Species 1 | Analysis Methods 3,4 |
---|---|---|
Wheat 1 (Triticum aestivum) ‘Runar’ (Norway) | Septoria nodorum Fusarium spp. | FBM [11,12,13] |
Wheat 2 (Triticum aestivum) ‘Line 79 CBW A 72′ (Canada) | Ustilago nuda f.sp. tritici | SM |
Barley (Hordeum vulgare) ‘Bamse’ (Norway) | Drechslera spp. Fusarium spp. | FBM [11,12] |
Meadow fescue (Festuca pratensis) ‘Salten’ (Norway) | Drechslera dictyoides | FBM [11,12] |
Timothy (Phleum pratense) ‘Forus’ (Norway) | Drechslera phlei | FBM [11,12] |
Lettuce (Lactuca sativa) ‘Attractie’ (The Netherlands) | Lettuce mosaic virus (LMV) | SM [14] + ELISA [15] |
Onion (Allium cepa) ‘Laskala’ (Norway) | Botrytis allii Fusarium spp. | FBM [11,12] |
Carrot (Daucus carota) ‘Forto Nantes’ (the Netherlands) | Alternaria radicina Alternaria dauci | FBM [11,12,16,17] |
Beet (Beta vulgaris) ‘Hilma’ (United Kingdom) | Phoma betae | WA [18] |
Cabbage (Brassica oleracea ssp. capitata f. alba) ‘Trønder Lunde’ (Norway) | Alternaria brassicicola | FBM [11,12,19] |
(Norway) | Sclerotinia sclerotiorum2 | PDA |
Crop Species | Pathogen | Storage Years | Regression Equation | R2 | p-Value 1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2.5 | 5 | 7.5 | 10 | 12.5 | 15 | 17.5 | 20 | 25 | 30 | |||||
Wheat 1 | Septoria nodorum | 15 | 16 | 13 | 4 | 11 | 9 | 5 | 3 | 13 | 7 | 1 | y = 13.7 − 0.4x | 45.8 | 0.02 |
Fusarium spp. | 5 | 10 | 12 | 1 | 6 | 9 | 8 | 2 | 4 | 6 | 7 | y = 7.3 − 0.1x | 4.0 | 0.56 | |
Wheat 2 | Ustilago nuda f.sp. tritici | 5.2 | 5.7 | 7.7 | 7.2 | 9.0 | 7.7 | 8.4 | 7.0 | 5.2 | 4.9 | 4.7 | y = 7.3 − 0.0x | 11.8 | 0.30 |
Barley | Drechslera spp. | 38 | 36 | 64 | 45 | 50 | 41 | 36 | 50 | 54 | 30 | 47 | y = 45.5 − 0.1x | 0.4 | 0.86 |
Fusarium spp. | 8 | 13 | 8 | 2 | 22 | 8 | 7 | 5 | 10 | 18 | 8 | y = 9.1 + 0.1x | 1.0 | 0.77 | |
Meadow fescue | Drechslera dictyoides | 63 | 62 | 61 | 47 | 51 | 57 | 47 | 52 | 47 | 37 | 34 | y = 62.9 − 0.9x | 81.1 | 0.00 |
Timothy | Drechslera phlei | 70 | 77 | 69 | 71 | 76 | 73 | 66 | 65 | 65 | 63 | 65 | y = 73.9 − 0.4x | 51.8 | 0.01 |
Lettuce | Lettuce mosaic virus (LMV) | 1.8 | 3.8 | 4.0 | 3.0 | 2.4 | 2.9 | 2.2 | 2.4 | 1.9 | 1.7 | 2.0 | y = 3.2 − 0.0x | 33.2 | 0.06 |
Onion | Botrytis allii | 4 | 4 | 3 | 5 | 10 | 13 | 21 | 7 | 10 | 2 | 1 | y = 7.5 − 0.0x | 0.1 | 0.95 |
Fusarium spp. | 1 | 1 | 1 | 1 | 1 | 4 | 1 | 0 | 1 | 1 | 4 | y = 0.8 + 0.0x | 13.1 | 0.27 | |
Carrot | Alternaria radicina | 4 | 2 | 12 | 8 | 2 | 8 | 5 | 5 | 12 | 4 | 6 | y = 5.7 + 0.0x | 0.9 | 0.78 |
Alternaria dauci | 6 | 9 | 9 | 12 | 10 | 12 | 12 | 15 | 12 | 6 | 9 | y = 9.7 + 0.0x | 1.7 | 0.70 | |
Beet | Phoma betae | 43 | 36 | 45 | 36 | 38 | 49 | 41 | 53 | 55 | 44 | 56 | y = 38.3 + 0.5 | 45.0 | 0.02 |
Cabbage | Alternaria brassicicola | 90 | 88 | 92 | 98 | 95 | 98 | 97 | 99 | 93 | 82 | 84 | y = 95.1 − 0.2x | 11.4 | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brodal, G.; Asdal, Å. Longevity of Plant Pathogens in Dry Agricultural Seeds during 30 Years of Storage. Microorganisms 2021, 9, 2175. https://doi.org/10.3390/microorganisms9102175
Brodal G, Asdal Å. Longevity of Plant Pathogens in Dry Agricultural Seeds during 30 Years of Storage. Microorganisms. 2021; 9(10):2175. https://doi.org/10.3390/microorganisms9102175
Chicago/Turabian StyleBrodal, Guro, and Åsmund Asdal. 2021. "Longevity of Plant Pathogens in Dry Agricultural Seeds during 30 Years of Storage" Microorganisms 9, no. 10: 2175. https://doi.org/10.3390/microorganisms9102175
APA StyleBrodal, G., & Asdal, Å. (2021). Longevity of Plant Pathogens in Dry Agricultural Seeds during 30 Years of Storage. Microorganisms, 9(10), 2175. https://doi.org/10.3390/microorganisms9102175