Avian Influenza Virus Status and Maternal Antibodies in Nestling White Ibis (Eudocimus albus)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kushlan, J.A. Population Energetics of the American white ibis. Auk 1997, 94, 114–122. [Google Scholar]
- Cocoves, T.C.; Cook, M.; Kline, J.L.; Oberhofer, L.; Dorn, N.J. Irruptive White Ibis breeding is associated with use of freshwater crayfish in the coastal Everglades. Condor 2021, 123, 1–12. [Google Scholar] [CrossRef]
- Frederick, P.C.; Bildstein, K.L.; Fleury, B.; Ogden, J. Conservation of Large, Nomadic Populations of White Ibises (Eudocimus albus) in the United States. Conserv. Biol. 1996, 10, 203–216. [Google Scholar] [CrossRef]
- Hernandez, S.M.; Welch, C.N.; Peters, V.E.; Lipp, E.; Curry, S.; Yabsley, M.J.; Sanchez, S.; Presotto, A.; Gerner-Smidt, P.; Hise, K.B.; et al. Urbanized White Ibises (Eudocimus albus) as Carriers of Salmonella enterica of Significance to Public Health and Wildlife. PLoS ONE 2016, 11, e0164402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ditchkoff, S.S.; Saalfeld, S.T.; Gibson, C.J. Animal behavior in urban ecosystems: Modifications due to human-induced stress. Urban Ecosyst. 2006, 9, 5–12. [Google Scholar] [CrossRef]
- Bradley, C.A.; Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 2007, 22, 95–102. [Google Scholar] [CrossRef]
- Kleist, N.J.; Guralnick, R.P.; Cruz, A.; Lowry, C.A.; Francis, C.D. Chronic anthropogenic noise disrupts glucocorticoid signaling and has multiple effects on fitness in an avian community. Proc. Natl. Acad. Sci. USA 2018, 115, E648–E657. [Google Scholar] [CrossRef] [Green Version]
- Webster, R.G.; Bean, W.J.; Gorman, O.T.; Chambers, T.M.; Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 1992, 56, 152–179. [Google Scholar] [CrossRef]
- Humphreys, J.M.; Ramey, A.M.; Douglas, D.C.; Mullinax, J.M.; Soos, C.; Link, P.; Walther, P.; Prosser, D.J. Waterfowl occurrence and residence time as indicators of H5 and H7 avian influenza in North American Poultry. Sci. Rep. 2020, 10, 1–16. [Google Scholar]
- Tyson-Pello, S.J.; Olsen, G.H. Emerging Diseases of Avian Wildlife. Vet. Clin. N. Am. Exot. Anim. Pract. 2020, 23, 383–395. [Google Scholar] [CrossRef]
- Clark, L.; Hall, J. Avian influenza in wild birds: Status as reservoirs, and risks to humans and agriculture. Ornithol. Monogr. 2006, 60, 3–29. [Google Scholar] [CrossRef] [Green Version]
- Roche, B.; Lebarbenchon, C.; Gauthier-Clerc, M.; Chang, C.; Thomas, F.; Renaud, F.; van der Werf, S.; Guegan, J. Water-borne transmission drives avian influenza dynamics in wild birds: The case of the 2005–2006 epidemics in the Camargue area. Infect. Genet. Evol. 2009, 9, 800–805. [Google Scholar] [CrossRef] [PubMed]
- Stallknecht, D.E.; Brown, J.D. Wild bird infections and the ecology of avian influenza viruses. In Animal Influenza, 2nd ed.; Swayne, D.E., Ed.; Wiley: Hoboken, NJ, USA, 2016; pp. 153–176. [Google Scholar]
- Bahnson, C.S.; Hernandez, S.M.; Poulson, R.L.; Cooper, R.E.; Curry, S.E.; Ellison, T.J.; Adams, H.C.; Welch, C.N.; Stallknecht, D.E. Experimental infections and serology indicate that American White Ibis (Eudocimus albus) are competent reservoirs for Type A Influenza Virus. J. Wildl. Dis. 2020, 56, 530–537. [Google Scholar] [CrossRef]
- Siembieda, J.L.; Johnson, C.K.; Cardona, C.; Anchell, N.; Dao, N.; Reisen, W.; Boyce, W. Influenza A Viruses in Wild Birds of the Pacific Flyway, 2005–2008. Vector-Borne Zoonotic Dis. 2010, 10, 793–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearce-Duvet, J.M.; Gauthier-Clerc, M.; Jourdain, E.; Boulinier, T. Maternal Antibody Transfer in Yellow-legged Gulls. Emerg. Infect. Dis. 2009, 15, 1147–1149. [Google Scholar] [CrossRef]
- Hammouda, A.; Pearce-Duvet, J.; Chokri, M.I.; Arnal, A.; Gauthier-Clerc, M.; Boulinier, T.; Selmi, S. Prevalence of in-fluenza A antibodies in yellow-legged gull (Larus michahellis) eggs and adults in southern Tunisia. Vector-Borne Zoonotic Dis. 2011, 11, 1583–1590. [Google Scholar] [CrossRef]
- Van Dijk, J.G.B.; Mateman, A.C.; Klaassen, M. Transfer of Maternal Antibodies against Avian Influenza Virus in Mallards (Anas platyrhynchos). PLoS ONE 2014, 9, e112595. [Google Scholar] [CrossRef] [Green Version]
- Stallknecht, D.E.; Brown, J.D. Ecology of Avian Influenza in Wild Birds. Avian Influenza 2008, 1, 43–58. [Google Scholar]
- Zhang, Y.; Aevermann, B.D.; Anderson, T.K.; Burke, D.F.; Dauphin, G.; Gu, Z.; He, S.; Kumar, S.; Larsen, C.N.; Lee, A.J.; et al. Influenza Research Database: An integrated bioinformatics resource for influenza virus research. Nucleic Acids Res. 2017, 45, D466–D474. [Google Scholar] [CrossRef] [Green Version]
- Stallknecht, D.E.; Shane, S.M.; Zwank, P.J.; Senne, D.A.; Kearney, M.T. Avian Influenza Viruses from Migratory and Resident Ducks of Coastal Louisiana. Avian Dis. 1990, 34, 398. [Google Scholar] [CrossRef]
- Killian, M.L. Hemagglutination Assay for the Avian Influenza Virus. In Avian Influenza Virus; Spackman, E., Ed.; Springer: New York, NY, USA, 2008; Volume 436, pp. 47–52. [Google Scholar]
- Das, A.; Spackman, E.; Pantin-Jackwood, M.J.; Suarez, D.L. Removal of real-time reverse transcription polymerase chain reaction (RT-PCR) inhibitors associated with cloacal swab samples and tissues for improved diagnosis of Avian influenza virus by RT-PCR. J. Vet. Diagn. Investig. 2009, 21, 771–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spackman, E.; Senne, D.A.; Myers, T.J.; Bulaga, L.L.; Garber, L.P.; Perdue, M.L.; Lohman, K.; Daum, L.T.; Suarez, D.L. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J. Clin. Microbiol. 2002, 40, 3256–3260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spackman, E.; Killian, M.L. Detection of influenza A antibodies in avian samples by ELISA. In Animal Influenza Virus. Methods in Molecular Biology; Spackman, E., Ed.; Humana: Totowa, NJ, USA, 2020; Volume 2123, pp. 177–193. [Google Scholar]
- Lin, H.T.; Hsu, C.H.; Tsai, H.J.; Lin, C.H.; Lo, P.Y.; Wang, S.L.; Wang, L.-C. Influenza A plasma and serum virus antibody detection comparison in dogs using blocking enzyme-linked immunosorbent assay. Vet. World 2015, 8, 580–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, J.D.; Stallknecht, D.E.; Berghaus, R.D.; Luttrell, M.P.; Velek, K.; Kistler, W.; Costa, T.; Yabsley, M.J.; Swayne, D. Evaluation of a Commercial Blocking Enzyme-Linked Immunosorbent Assay To Detect Avian Influenza Virus Antibodies in Multiple Experimentally Infected Avian Species. Clin. Vaccine Immunol. 2009, 16, 824–829. [Google Scholar] [CrossRef] [Green Version]
- Shriner, S.A.; VanDalen, K.K.; Root, J.J.; Sullivan, H.J. Evaluation and optimization of a commercial blocking ELISA for detecting antibodies to influenza A virus for research and surveillance of mallards. J. Virol. Methods 2016, 228, 130–134. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 180–185. [Google Scholar] [CrossRef]
- Johnson, J.A.; Decicco, L.H.; Ruthrauff, D.R.; Krauss, S.; Hall, J. Avian Influenza Virus Antibodies in Pacific Coast Red Knots (Calidris canutus roselaari). J. Wildl. Dis. 2014, 50, 671–675. [Google Scholar] [CrossRef]
- Stallknecht, D.E. Ecology and epidemiology of avian influenza viruses in wild bird populations: Waterfowl, shorebirds, pelicans, cormorants, etc. Avian Dis. 2003, 47, 61–69. [Google Scholar]
- Krauss, S.; Walker, D.; Pryor, S.P.; Niles, L.; Chenghong, L.I.; Hinshaw, V.S.; Webster, R.G. Influenza A viruses of migrating wild aquatic birds in North America. Vector Borne Zoonotic Dis. 2004, 4, 177–189. [Google Scholar] [CrossRef]
- Latorre-Margalef, N.; Tolf, C.; Grosbois, V.; Avril, A.; Bengtsson, D.; Wille, M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M.; Olsen, B.; Waldenström, J. Long-term variation in influenza A virus prevalence and subtype diversity in migratory mallards in northern Europe. Proc. Royal Soc. B. 2014, 281, 20140098. [Google Scholar] [CrossRef] [Green Version]
- Swayne, D.E. The global nature of avian influenza. In Animal Influenza; Swayne, D.E., Ed.; Wiley: Hoboken, NJ, USA, 2016; pp. 177–201. [Google Scholar]
Collection Year | Habitat Type | Number of Birds (n Samples) | Number of Samples AIV Positive by Virus Isolation/Positive by rRT-PCR (Ct a value) |
---|---|---|---|
2020 | Urban | 36 (94) | 0/1 (43.98) |
2021 | Urban | 42 (114) | 0/0 (n/a b) |
2021 | Natural | 38 (61) | 0/1 (33.98) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christie, K.F.; Poulson, R.L.; Seixas, J.S.; Hernandez, S.M. Avian Influenza Virus Status and Maternal Antibodies in Nestling White Ibis (Eudocimus albus). Microorganisms 2021, 9, 2468. https://doi.org/10.3390/microorganisms9122468
Christie KF, Poulson RL, Seixas JS, Hernandez SM. Avian Influenza Virus Status and Maternal Antibodies in Nestling White Ibis (Eudocimus albus). Microorganisms. 2021; 9(12):2468. https://doi.org/10.3390/microorganisms9122468
Chicago/Turabian StyleChristie, Katherine F., Rebecca L. Poulson, Julia Silva Seixas, and Sonia M. Hernandez. 2021. "Avian Influenza Virus Status and Maternal Antibodies in Nestling White Ibis (Eudocimus albus)" Microorganisms 9, no. 12: 2468. https://doi.org/10.3390/microorganisms9122468
APA StyleChristie, K. F., Poulson, R. L., Seixas, J. S., & Hernandez, S. M. (2021). Avian Influenza Virus Status and Maternal Antibodies in Nestling White Ibis (Eudocimus albus). Microorganisms, 9(12), 2468. https://doi.org/10.3390/microorganisms9122468