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Abstract: Outbreaks of 2-methylisoborneol (2-MIB) contamination in drinking water sources cause
inconvenient odor issues in the water distribution system. In this study, microscopy-based isolation
with physiological and molecular phylogenetic characterization were performed to investigate and
characterize the 2-MIB odor producers that caused an odor problem in the freshwater system of
the North Han River in the autumn of 2018. A benthic cyanobacterium was isolated from 2-MIB
odor-issue freshwater samples and was found to be phylogenetically affiliated with Pseudanabaena
yagii (99.66% sequence similarity), which was recorded in South Korea for the first time. The 2-MIB
synthesis gene sequences from the odor-issue freshwater samples showed 100% similarity with
those in the P. yagii strains. Protein sequences of 2-MIB synthase observed in the genome of the
isolated strain showed structural and functional characteristics similar to those observed in other
Pseudanabaena species. The 2-MIB production rate increased slowly during mat formation on the
vessel wall; however, it rapidly increased after the temperature dropped. The 2-MIB gene was
continuously expressed regardless of the temperature changes. These results suggest that the 2-MIB
odor issue in the North Han River might be caused by the release of 2-MIB from the mat-forming
P. yagii species in a low-temperature freshwater environment.

Keywords: Pseudanabaena yagii; 2-MIB odor; 16S-23S rRNA ITS; mibC; North Han River; low temperature

1. Introduction

The presence of earthy-musty odor compounds (geosmin/2-methylisoborneol) in
freshwater is a significant problem worldwide, and it has a negative impact on water and
aquaculture production [1]. Together with geosmin, 2-methylisoborneol (2-MIB) is known
to cause mold odor in freshwater and water distribution systems [2–5]. Recently, 2-MIB
production has been observed in more than 40 species, including benthic and planktonic
cyanobacteria [6,7], actinomycetes [8], and fungi [9]. Among them, the cyanobacteria
genera are known to be the major 2-MIB producers [10] in freshwater systems. The 2-
MIB-producing species are largely non-heterocystous filamentous organisms, and the odor
problems from benthic cyanobacteria are fundamentally harder to resolve than those from
cyanobacteria of planktonic origin because of their distribution characteristics in the water
sample. In the United States, 2-MIB odor problems in water environments are more than
twice as likely to be caused by benthic organisms than planktonic organisms [11].

Regardless of whether these substances are toxic, 2-MIB can cause unpleasant odors
in tap water without advanced water treatment systems, such as activated carbon [12],
UV/H2O2 treatment systems [13], and biofiltration combined with ozone treatment [14].
However, it has been reported that people with a common sense of smell can detect 2-MIB
odor even at low concentrations of several ng/L [15]. Although there is no regulatory
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standard in South Korea, the recommended standard for 2-MIB odor regulation have been
set at 20 ng/L.

Recently, odor issues caused by 2-MIB and geosmin have been reported worldwide
because of toxic cyanobacterial blooms due to various environmental changes, such as
global climate change and eutrophication [16], and are mostly observed in freshwater
environments, such as lakes, reservoirs, and running waters [17]. Especially in South
Korea, these phenomena have been mainly observed in lake and reservoir systems. The
eutrophication of lakes is caused by the increased residence time of the water body in the
artificial lake formed by the dams in the middle of rivers [18]. Eutrophication in lakes leads
to abnormal growth of phytoplankton, which in turn causes serious problems in aquatic
ecosystems and water resource use [19,20]. Cyanobacteria-like microorganisms are known
to be the main producers of 2-MIB and geosmin in lakes and river systems [21], and the
relationships between 2-MIB and the occurrence of cyanobacteria have been studied exten-
sively in laboratory-scale experiments [22–24]. A previous study reported a relationship
between 2-MIB concentration and the number of Pseudanabaena limnetica [18]. Nevertheless,
research on odor issues in the Korean water system has been less focused on 2-MIB than
on geosmin because the 2-MIB odor has rarely been detected in tap water. In addition to
statistical significance, there is only a limited amount of molecular biological information
about 2-MIB-producing organisms distributed in South Korea [25,26]. However, the micro-
bial populations that are mainly involved in odor compound production are still unclear in
natural freshwater systems.

The aim of this study was to reveal the major cause of the earthy-musty odor outbreak
in Paldang Lake. Physiological and molecular biological techniques, including qPCR
and whole genome sequencing, were applied to investigate 2-MIB odor production in
freshwater systems during the autumn season of 2018. These techniques were applied to
(1) detect and analyze sequences of 2-MIB synthesis-related genes from North Han River
water samples with high 2-MIB odors; (2) identify the odor-producing species by isolating
those with the same 2-MIB gene sequences; (3) estimate the 2-MIB production and release
characteristics of the isolated odor-causing species; (4) elucidate the mechanism underlying
high concentrations of 2-MIB production at low water temperatures in the autumn season;
and (5) elucidate the genetic and biochemical background of 2-MIB biosynthesis in the
P. yagii isolated in this study using whole genome sequencing.

2. Materials and Methods
2.1. Sampling Sites and Isolation of 2-MIB Producing Cyanobacteria

To isolate the microorganisms that produce 2-MIB and to survey the 2-MIB synthesis
gene distribution, freshwater samples were collected from a drinking water treatment
plant upstream of the North Han River where the 2-MIB odor was reported to occur in
November, 2018 (Figure 1). The morphology of the vegetative cells in the water samples
was characterized using phase-contrast microscopy (Axioskop2, Carl Zeiss, Jena, Germany).
The average and standard deviation of the vegetative cell length and width were calculated
using cell images taken under 1000-fold magnification. The cyanobacterial cells in the
uni-cyanobacterial culture were separately collected using the micropipetting method [14]
and cultivated in BG-11 medium at 26 ◦C under a 16:8 h light/dark cycle.
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Figure 1. Sampling sites (black circle) in the water stream of the North Han River used in this study.

2.2. Monitoring 2-MIB Production in the Freshwater Samples

The reason for the odor issues in the North Han River were investigated by monitor-
ing the odor-causing compounds in the freshwater samples taken during all seasons in
2018. Freshwater samples were collected from the influent source water in the drinking
water treatment system near the river side (Figure 1). Then the odor-causing compounds,
including geosmin and 2-MIB, were monitored in the freshwater samples using a GC-
MS instrument.

The 2-MIB concentration in the culture medium was quantified using a GC/MS
instrument (Agilent 5975C, Agilent Technologies, Santa Clara, CA, USA), according to the
method published by the Korean Ministry of Environment regarding the measurement
of drinking water monitoring items (25 June 2019). A Stir-barsorptive extraction system
(SBSE system) (MPS2, Multi-Purpose Sampler, Gertel GmBH, Worms, Germany) was used
to pretreat the liquor samples. Briefly, 15 mL of each sample was transferred into a 20 mL
fresh SBSE vial and stirred at 1200 rpm for 120 min using a bar stirrer (length: 10 mm and
thickness: 3.2 mm) for 2-MIB extraction. The stirrer bar was then dehydrated and placed in
a thermal desorption system (TDS-2 system) at 280 ◦C for 3 min to detach the adsorbed
components. The desorbed 2-MIB was concentrated at−120 ◦C using liquid nitrogen in the
CIS PTV (Gerstel, Mülheim, Germany) of the GC injector and analyzed using the GC/MS
system under the conditions described in Table 1.

Table 1. Analytical conditions for detecting 2-MIB concentrations using GC/MS.

GC (7890A, Agilent) MS (5975C, Agilent)

Column: HP-5MS SIM Mode
30 mm (L) × 0.25 mm (ID) × 0.25 µm Selected ion

2-MIB (95,108,135)
Oven Temp.

Initial Temp. 40 ◦C, Hold 5 min
1st rate 20 to 65 ◦C/min (5 min)

2nd rate 8 to 215 ◦C/min
3rd rate 30 to 300 ◦C/min (3 min)

2.3. DNA Extraction, PCR Amplification, and Phylogenetic Analysis

Cyanobacterial total DNA was extracted from both the cultured isolates and the water
samples. The cyanobacterial biomass from the water samples was collected by filtering
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out 100 mL of the sampled water using a 0.22 µm pore size filter column which was then
washed three times with sterilized water. Total DNA was extracted using a water DNA
purification kit (Norgen, Thorold, ON, Canada).

For the phylogenetic analyses, PCR amplification was carried out using primer sets
targeting the mibC gene and 16S rRNA with the 16S-23S rRNA gene ITS region (Table 2 and
Figure S1). For the mibC gene, 1194 bp of the mic gene region was targeted in the 5133 bp
part of the 2-MIB synthesis gene operon to generate the PCR primer set (Figure S1). The PCR
amplicons were cloned using a TOPcloner PCR cloning kit (Enzynomics, Daejeon, South
Korea) and sequenced at Macrogen (Macrogen, Seoul, South Korea). Phylogenetic trees
were inferred using the maximum likelihood algorithm to assess the phylogenetic affiliation
of the sequences (both 2-MIB and 16S rRNA with the 16S-23S rRNA gene ITS region)
retrieved in this study. Phylogenetically similar sequences to the retrieved sequences (i.e.,
reference sequences) were collected from the GenBank database using NCBI BLAST [27,28]
to construct a tree. The retrieved sequences and closest relative reference sequences
were aligned using ClustalW [29], and the aligned sequences were used to construct a
phylogenetic tree using MEGA X software [30] according to the manufacturer’s instructions.
The relative evolutionary distances among sequences were calculated according to the
Tamura 3-parameter model [31] and the Hasegawa-Kishino-Yano model [32] for each mibC
and 16S rRNA with 16S-23S rRNA ITS genes, respectively. Tree topology was evaluated
statistically using 1000 bootstrap resamplings.

Table 2. PCR primer sets used in this study.

Name Target Sequence (5′ to 3′)
Product

Size
(bp)

Annealing
Temp.
(◦C)

Reference

MIBS02F Monoterpene cyclase
mibC

ACCTGTTACGCCACCTTCT
307 63 [26]MIBS02R CCGCAATCTGTAGCACCATG

16S27F 16S rRNA +
16S-23S r/RNA ITS

AGAGTTTGATCCTGGCTCAG
2080 57 [33]23S30R CTTCGCCTCTGTGTGCCTAGGT

2.4. Evaluation of 2-MIB Production during Cultivation of Isolates

Two experimental procedures were performed to investigate the 2-MIB production
characteristics of the mat formed by the isolate under laboratory conditions. The first
set investigated the properties of 2-MIB released from the cells of the formed mat. In
this experiment, the isolate was inoculated in 25 mL of BG-11 medium using a 50 mL
culture vessel. After the cyanobacterial mat had formed on the bottom wall of the culture
vessel and 2-MIB production had begun, the culture medium was discarded, and the mat
was washed three times with distilled water. Then, 25 mL of fresh BG-11 medium was
added and incubated. These processes were repeated twice and the 2-MIB concentrations
were measured during the process. The second procedure was used to investigate the
characteristics of 2-MIB concentration change when the culture temperature decreased
from 26 to 12 ◦C as the temperature changed from summer to autumn. The isolate was
cultivated in 1.0 L of BG-11 medium in culture vessels (1.5 L), and the 2-MIB concentrations
were monitored.

2.5. Whole Genome Sequencing

The whole genome extracted from the isolate was sequenced in a previous study by
Jeong et al. [34]. The information was used to elucidate the genetic and biochemical back-
grounds of 2-MIB production in the isolate. Briefly, the genomic DNA was extracted from
the culture medium using a DNeasy PowerSoil kit (Qiagen, USA), and sequenced using
the PacBio II platform and Illumina HiSeq 2500 (Macrogen, Korea). The draft sequence was
assembled using FALCON-integrate v2.1.4 [35] and the genome was annotated using the
NCBI Prokaryotic Genome Annotation Pipeline (PGAP) v.4.8 [36,37]. The gene sequences
of the putative 2-MIB biosynthesis operon were compared with those in the NCBI database.
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3. Results and Discussion
3.1. Characteristics of the Study Site

Paldang Lake, located in the mainstream of the North Han River, is one of the largest
water sources in the metropolitan area of Seoul, South Korea, and is also one of the three
main sources of inflow water (Figure 1). Odor issues caused by cyanobacteria sometimes
occur in the largest drinking water sources. Previously, a large number of Dolichospermum
circinalis (Rabenhorst ex Bornet & Flahault), a cyanobacterium that was recently re-classified
and known to produce geosmin [38], occurred in the water system of Paldang Lake in
the North Han River from November to December 2011 [39]. As a result, residents living
in metropolitan areas suffered from an unpleasant odor in tap water. A strain of the
D. circinalis species was isolated from the water samples with odor and considered as the
causative organism at that time [40]. Moreover, from 2014 to 2017, the geosmin synthesis
genes from two planktonic (D. crassa, D. planctonica) and one benthic (Oscillatoria princeps)
cyanobacteria were identified in the source freshwater system. Finally, in November 2018,
a high 2-MIB concentration was observed in the source water of the North Han River for
the first time; however, only a limited distribution of cyanobacteria was reported.

3.2. Odor Identification and Quantification in Freshwater Samples

The monitoring results revealed that the odor-producing compounds were detected
from June to December, 2018 in the freshwater samples of the North Han River. The
concentrations of the compounds were below the detection limit from January to May
in 2018. Interestingly, 2-MIB was the major compound detected during the summer and
winter seasons, indicating that the odor issue in the river might be due to increased
2-MIB production.

In the freshwater samples collected from the North Han River in 2018 (Figure 2), the
2-MIB concentration showed gradually increased patterns from June, with the highest
concentration (up to 204 ng/L) detected in the samples collected from November, when
the temperatures were low (ranging from 10.3 to 13.7 ◦C). These results suggest that the
earthy-musty odor issue in the North Han River could mainly be caused by microbes
that produce 2-MIB compounds during the summer season, which are then increasingly
released during low temperature conditions.
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3.3. Distribution of 2-MIB Synthesis Gene in Odor Emitting Samples

After PCR amplification, positive mibC gene amplicons were observed in the template
DNA extracted from the freshwater sample (data not shown). The amplicons were purified
and used to construct the gene clone library so that the results could be analyzed in detail.
Phylogenetic analyses of sequenced mibC genes showed that all of the observed 2-MIB
gene sequences showed 100% similarity with the reference gene retrieved from the single
microorganisms (Figure 3). These results indicate that the 2-MIB odor in the North Han
River freshwater samples in 2018 might be derived from a single producer microorgan-
ism. In addition, the NCBI BLAST search results revealed that the mibC gene sequences
identified in this study showed 100% similarity with those observed in P. yagii (HQ630887)
isolated from Lake Biwa, Japan (Figure 3). However, the phylogenetic analyses of the mibC
gene sequences revealed that the mibC genes observed in this study clustered together, but
showed separated deep branches compared to those retrieved from other Pseudanabaena
species (Figure 3). This suggested that candidate 2-MIB producing Pseudanabaena species
might be the only 2-MIB odor producer in the North Han River freshwater samples taken
in this study.
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gamma distribution was used to model evolutionary rate differences among sites. M1~M10 are mibC
gene sequences obtained by cloning from the North Han River samples.

3.4. Isolation and Characterization of 2-MIB Pseudanabaena Species

The 2-MIB producing Pseudanabaena species from the 2-MIB odor-issue freshwater
samples were isolated by separating out the benthic cyanobacteria that were considered to
be morphologically affiliated with Pseudanabaena-like species from the rest of the sample
(Figure 4). Interestingly, under laboratory culture conditions, the isolated Pseudanabaena-
like species could grow as solitary trichomes; however, most of the members of this species
grow as mat forms. The color of the isolated trichomes was blue-green; the shape of the
vegetative cells was straight or slightly curved; and the cross-wall had constrictions. In
contrast, the cells did not show a sheath shape. The length and width of the trichomes
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were 4.8 ± 1.4 µm and 1.5 ± 0.1 µm, respectively, and the width was almost constant. An
aerotope was also observed on both sides of the vegetative cells.
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Figure 4. Phase contrast optical micrograph of Pseudanabaena yagii GIHE-NHR1 from the North Han
River showing (a) its natural state, and (b) the mat form.

Generally, Pseudanabaena cells are non-motile, but sometimes show trembling move-
ment in microscopy observations. According to a previous report by Jeong et al. [33], the
nifH genes for nitrogen fixation are included in the genome. However, a heterocyst for
nitrogen fixation was not observed at the end of the trichome isolated in this study. This
morphological feature was consistent with P. yagii that was isolated from Lake Biwa in
Japan and is known to produce 2-MIB according to the molecular sequencing results [41].
Furthermore, previous studies reported that although 2-MIB could also be produced by
non-Pseudanabaena species [42–44], Pseudanabaena-like species are known to be one of the
major cyanobacteria that can produce 2-MIB from their non-heterocystous filamentous
structures [11,45]. These results suggest that molecular phylogenetic analyses should be
used to clearly identify the taxonomic class of the isolated species before further analyses.

Previously, morphological characteristics, and 16S rRNA gene, 16S-23S rRNA ITS
sequences, and secondary structure analyses have been used to taxonomically classify
Pseudanabaena species [46]. Based on these identification methods, 45 Pseudanabaena species
were taxonomically identified and reported in the AlgaeBase database. To date, eight
Pseudanabaena species have been reported to be present in the freshwater environment of
South Korea, including P. amphigranulata, P. catenata, P. galeata, P. limnetica, P. lonchoides,
P. minima, P. mucicola, and P. westiana. However, only Pseudanabaena sp., P. cinerea, P. foetida,
P. galeata, P. limnetica, and P. yagii are known to produce the 2-MIB odor in freshwater
environments [11,41,47–49].

Molecular phylogenetic analyses using the 16S rRNA gene and 16S-23S rRNA ITS
sequences were performed to identify the taxonomic affiliation of isolated Pseudanabaena-
like species (Figure 5). The phylogenetic analysis compared the 16S rRNA and 16S-23S
rRNA ITS sequences of the isolated species with their closest relatives. The sequence
retrieved from the isolate in this study was taxonomically affiliated to the Pseudanabaena
genus and showed a deep branch with the closest relative, P. yagii (Figure 5). Based on the
results of the phylogenetic analysis, the isolated species was named Pseudanabaena yagii
GIHE-NHR1.
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Figure 5. Maximum likelihood tree based on 16S rRNA + 16S-23S rRNA ITS sequences. The
evolutionary history was inferred by using the Maximum Likelihood method and the General Time
Reversible (GTR) model. The percentage of trees in which the associated taxa clustered together is
shown next to the branches. Initial tree(s) for the heuristic search were automatically obtained by
applying the Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using
the Maximum Composite Likelihood (MCL) approach. Then topology was selected and the superior
log likelihood value. A discrete gamma distribution was used to model evolutionary rate differences
among sites. Closed circle indicated the 16S rRNA + 16S-23S rRNA ITS sequences retrieved from the
isolated species of this study.

According to the morphological and molecular genetic characteristics, the isolated
P. yagii that caused the 2-MIB odor in the North Han River has not been reported in
the water environments of South Korea. Byun et al. [18] reported a significant statistical
relationship between P. limnetica cell number and 2-MIB concentration in the North Han
River. However, P. limnetica, which is a planktonic species, is morphologically distinct from
the P. yagii GIHE-NHR1 isolated in this study, which showed benthic growth behavior.
Furthermore, in their study, 2-MIB synthesis genes were not identified, and the ability
to generate 2-MIB has not been directly characterized by cultivation-based studies. In
contrast, Jeong et al. [33] reported that the isolate P. yagii GIHE-NHR1 included a 2-MIB
biosynthesis gene cascade in its genome, suggesting that the P. yagii species might have
been the major 2-MIB odor producer in the North Han River in 2018.

3.5. Characterization of P. yagii GIHE-NHR1 2-MIB Biosynthesis Genes

The MIB synthase sequence has been used to design primers to detect potential 2-MIB
producing microorganisms [25,26] (Figure S1). A BLAST search of MIB synthase showed
that the highest homology (99.74%) was found in P. yagii NIVA-CYA 111 (HQ630887)
isolated in Japan. Among the MIB synthesis genes, two categories of enzymes: (1) geranyl
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diphosphate 2-methyltransferase (GPPMT) and (2) MIB synthase in an MIB operon, were
reported to be mainly involved in the biosynthesis of 2-MIB in cyanobacteria [6]. According
to a genome study of P. yagii GIHE-NHR1 by Jeong et al. [34], the draft genome sequence
contains two major 2-MIB biosynthesis genes, which are located between two homologous
cyclic nucleotide binding protein (cnbA and B) genes (Figure S1). Furthermore, the BLAST
search results revealed that the 2-MIB synthesis genes observed in this study showed
95.79% sequence similarity with those observed in the Pseudanabaena sp. dph15 (Accession
number: HQ830028) isolated from China. Wang et al. [50] reported that although it has not
been completely confirmed yet, the cnb gene might be involved in the regulation of 2-MIB
biosynthesis in cyanobacterial species, suggesting that the odor issue in the North Han
River 2018 might be caused by the production of 2-MIB producing Pseudanabaena species.

To better understand the genetic characteristics of the 2-MIB synthesis genes, the
amino acid sequences were compared with those observed in other cyanobacterial genomes
(Table 3). Generally, it has been reported that 2-MIB biosynthesis proteins include two
highly conserved magnesium binding motifs that are vital elements of all terpene cyclases
but with a number of differences [51]. Wang et al. [50] reported that 2-MIB synthase from
other microorganisms, which are typical Mg2+-binding motifs, showed the DDxxxE (or D)
and NDxxSxxxE sequences. The protein sequences of the last two amino acids in motif1
were divided into three groups (TE, SE, and SD) (Table 3). Interestingly, two motifs of MIB
synthase observed in the P. yagii GIHE-NHR1 isolate showed the sequence DDYYADDTE
and NDLLSVAKD. Among the six Pseudanabaena species, the 2-MIB synthase protein
sequences in motif 1 showed similar sequence orders, except for strains dqh15 and P.
limnetica str. Castaic Lake and P. galeata NRERC-312, whereas those observed in other
cyanobacterial species showed variable regions at the end of motif 1. In addition, in the
case of the genus Planktothricoides, the last E (glutamic acid) was replaced by a D (aspartic
acid), although the other protein sequences for this motif were consistent with the typical
sequences for MIB synthase.

Table 3. Comparison of protein sequence motifs for 2-MIB biosynthesis in 2-MIB producing microbes.

Cyanobacterial Strain Motif 1 Motif 2

Pseudanabaena yagii GIHE-NHR1 -DDYYADDTE- -NDLLSVAKD-
Pseudanabaena yagii NIVA-CYA 111 -DDYYADDTE- -NDLLSVAKD-

Pseudanabaena galeata NIES-512 -DDYYADDTE- -NDLLSVAKD-
Pseudanabaena sp. dqh15 -DGYYADDTE- -NDLLSVAKD-

Pseudanabaena limnetica str. Castaic Lake -DDYYADDSE- -NDLLSVAKD-
Pseudanabaena galeata NRERC-312 -DDYYADDSE- -NDLLSVAKD-

Planktothricoides raciborskii CHAB3331 -DDYYADDSD- -NDLLSVNKD-
Planktothricoides raciborskii BWN4 -DDYYADDSD- -NDLLSVNKD-

Microcoleus pseudautumnalis Ak1609 -DDYYADDSE- -NDLLSVNKD-
Oscillatoria limosa LBD -DDYYADDSE- -NDLLSVNKD-

Leptolyngbya sp. A2 -DDYYADDSE- -NDLLSVAKD-
Oscillatoria sp. 327/2 -DDYYADDSE- -NDLLSVAKD-
Planktothrix sp. 328 -DDYYADDSE- -NDLLSVAKD-

Oscillatoria prolifera OpA -DDYYADDSE- -NDLLSVAKD-

Compared to motif 1, the protein sequences in motif 2 were divided into two types
across the cyanobacterial species. In this motif, variations in the protein sequences were
only observed at the third position from the end. In the case of the Planktothricoides,
Microcoleus, and Oscillatoria genera, the A (alanine) sequence at the last third position was
replaced by N (asparagine). Zhou and Peters [52] suggested that although it has not been
confirmed in the case of cyanobacterial species, these variations could affect the catalytic
activity of diterpene cyclase in plants. The results from this study suggest that the 2-MIB
synthesis genes included in most of the cyanobacterial species might have similar structural
and functional characteristics, and the odor issue in the North Han River might be caused
by the 2-MIB producing cyanobacterial species.
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3.6. Characteristics of 2-MIB Production in P. yagii GIHE-NHR1

The 2-MIB production characteristics of the P. yagii strain GIHE-NHR1 isolate were
assessed by monitoring the 2-MIB production patterns in response to temperature changes
using a GC-MS system (Figure 6). The expression patterns of the mibC genes in these
biomass samples were quantified (Figure S2). The mats were grown by inoculating the
medium with P. yagii isolate and incubating them for 88 days. The 2-MIB concentrations
were then measured.
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Figure 6. Changes of 2-MIB concentration (a) in the fresh culture media from the cyanobacterial mat
wash and (b) in the mat formed cyanobacterial cultures under the temperature variation conditions.

The 2-MIB concentration reached approximately 3000 ng/L during the mat-forming
growth periods, (Figure 6a). At that time, the medium was discarded, the mat was
sufficiently washed to remove the remaining 2-MIB, and fresh medium was added. The
2-MIB concentration recovered to 3000 ng/L after 17 days of incubation, and reached
3600 ng/L and after 27 days of incubation. In the second round of incubation, the recovery
rate was somewhat slow at the beginning; however, it reached 3400 ng/L a month later,
which was similar to the first round (Figure 6a).

To investigate why high concentrations of 2-MIB occurred in the freshwater system
during the autumn season when the temperature was low, the incubation temperature
was changed from 12 to 26 ◦C during the incubation period and the 2-MIB concentration
in the media was measured. The 2-MIB concentration varied from 120 ng/L (55 days) to
3100 ng/L (134 days). On the 154th day, the culture temperature decreased from 26 to
12 ◦C. The color of the mat changed from green to yellowish after lowering the culture
temperature and this color change may indicate that the cyanobacteria are aging or dying.
After 6 days of incubation at the lower temperature, the 2-MIB concentration increased to
approximately 24,000 ng/L and to almost 30,000 ng/L on the 9th day (Figure 6b).

Gao et al. [53] reported that the growth of Pseudanabaena sp. was closely related to
the temperature, pH, chemical oxygen demand, and NH3-N concentration of the water
environment. The optimum temperature for the growth of Pseudanabaena species ranged
from 20 to 30 ◦C, which was observed in the freshwater environment during spring and
summer. In addition, Wert et al. [54] reported that the accumulated, cell-bound 2-MIB
could be released from disintegrated cells by a combination of grazing and environmental
stresses, such as desiccation and oxidation. These results suggest that 2-MIB producing
Pseudanabaena species might be sensitive to water temperature.

Interestingly, a high mibC gene expression level was observed under all experimental
conditions. In particular, regardless of the temperature decrease, mibC gene expression
changed in a limited manner even when the incubation temperature decreased at low
temperatures (Figure S2). Kakimoto et al. [48], who studied 2-MIB production and the
expression of relative genes in response to temperature changes in P. galeata, reported
that the expression of both the 2-MIB synthesis gene and the intracellular concentration
of 2-MIB increased at 30 ◦C compared to 20 ◦C. These results suggest that the rapidly
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increasing pattern for 2-MIB concentration during low-temperature incubation might be
due to the release of cell-bound 2-MIB into the water from broken and dead cells.

Taken together, these results suggest that in the North Han River during November,
2018, as the water temperature decreased, benthic cyanobacteria in the mat died and the
cells disintegrated, which released all the cell-bound 2-MIB at once. For these reasons, the
concentration of 2-MIB in water might increase rapidly and cause odor problems, including
in the tap water distribution system.

4. Conclusions

In this study, P. yagii, which is known to be a 2-MIB odor-causing cyanobacteria, was
first isolated from the freshwater of the North Han River, South Korea, by polyphasic
analysis. The results produced after measuring the odor-causing compounds in freshwater
samples revealed that the muddy odor issue in the North Han River might be mainly
caused by microbes that produce 2-MIB compounds during the summer season and release
them under low temperature conditions. Only one type of 2-MIB synthesis gene (mibC)
was detected in the river water samples and was 100% identical to that of P. yagii isolated
from Biwa Lake in Japan. Candidate 2-MIB producing benthic cyanobacteria were isolated
from the 2-MIB odor-issue freshwater samples using a microscopic method. Phylogenetic
analysis of the 16S rRNA + 16S-23S rRNA ITS region of the isolated species revealed more
than 99% homology with P. yagii and showed a deep branch in the phylogenetic tree.
The results for 2-MIB production after cultivation of the P. yagii GIHE-NER1 isolate also
revealed that the 2-MIB concentration increased when the Pseudanabaena species began mat
growth, and showed a rapidly increasing pattern during incubation at a low temperature,
which suggested that the isolated, 2-MIB producing P. yagii GIHE-NER1 might form a mat
at the bottom of the river during the summer season and then release a certain amount
of 2-MIB into the water. Furthermore, when the water temperature decreased, the dead
cells from the mat rapidly released large amounts of cell-bound 2-MIB into the water. In
summary, the physiological and molecular genetic characteristics of 2-MIB production by
P. yagii GIHE-NER1 were investigated for the first time in this study.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms9122486/s1, Figure S1: 2-MIB synthesis operon and target region for PCR
detection, Figure S2: Quantification of 2-MIB producing gene expression during temperature variation
conditions using qPCR.
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