Relation between Mood and the Host-Microbiome Co-Metabolite 3-Indoxylsulfate: Results from the Observational Prospective NutriNet-Santé Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Selection of the Study Sample
2.3. Data Collection
2.3.1. Depressive Symptoms
2.3.2. Analysis of 3‑Indoxylsulfate in Urine
2.3.3. Dietary Data
2.3.4. Other Descriptive Characteristics
2.4. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712. [Google Scholar] [CrossRef]
- Winter, G.; Hart, R.A.; Charlesworth, R.P.; Sharpley, C.F. Gut microbiome and depression: What we know and what we need to know. Rev. Neurosci. 2018, 29, 629–643. [Google Scholar] [CrossRef] [PubMed]
- Wikoff, W.R.; Anfora, A.T.; Liu, J.; Schultz, P.G.; Lesley, S.A.; Peters, E.C.; Siuzdak, G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA 2009, 106, 3698–3703. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, E.Y.; McBride, S.W.; Hsien, S.; Sharon, G.; Hyde, E.R.; McCue, T.; Codelli, J.A.; Chow, J.; Reisman, S.E.; Petrosino, J.F.; et al. Microbiota Modulate Behavioral and Physiological Abnormalities Associated with Neurodevelopmental Disorders. Cell 2013, 155, 1451–1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persico, A.M.; Napolioni, V. Urinary p-cresol in autism spectrum disorder. Neurotoxicol. Teratol. 2013, 36, 82–90. [Google Scholar] [CrossRef]
- Pinto-Sanchez, M.I.; Hall, G.B.; Ghajar, K.; Nardelli, A.; Bolino, C.; Lau, J.T.; Martin, F.-P.; Cominetti, O.; Welsh, C.; Rieder, A.; et al. Probiotic Bifidobacterium longum NCC3001 Reduces Depression Scores and Alters Brain Activity: A Pilot Study in Patients with Irritable Bowel Syndrome. Gastroenterology 2017, 153, 448–459.e8. [Google Scholar] [CrossRef]
- Jaglin, M.; Rhimi, M.; Philippe, C.; Pons, N.; Bruneau, A.; Goustard, B.; Daugé, V.; Maguin, E.; Naudon, L.; Rabot, S. Indole, a Signaling Molecule Produced by the Gut Microbiota, Negatively Impacts Emotional Behaviors in Rats. Front. Neurosci. 2018, 12, 216. [Google Scholar] [CrossRef] [PubMed]
- Mir, H.-D.; Milman, A.; Monnoye, M.; Douard, V.; Philippe, C.; Aubert, A.; Castanon, N.; Vancassel, S.; Guérineau, N.C.; Naudon, L.; et al. The gut microbiota metabolite indole increases emotional responses and adrenal medulla activity in chronically stressed male mice. Psychoneuroendocrinology 2020, 119, 104750. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, J. Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev. 2010, 34, 426–444. [Google Scholar] [CrossRef]
- Hercberg, S.; Castetbon, K.; Czernichow, S.; Malon, A.; Mejean, C.; Kesse, E.; Touvier, M.; Galan, P. The Nutrinet-Santé Study: A web-based prospective study on the relationship between nutrition and health and determinants of dietary patterns and nutritional status. BMC Public Health 2010, 10, 242. [Google Scholar] [CrossRef]
- Official Website of the Nutrinet-Santé Study. Available online: https://info.etude-nutrinet-sante.fr/en (accessed on 24 November 2020).
- Gillam, E.M.J.; Notley, L.M.; Cai, H.; De Voss, A.J.J.; Guengerich, F.P. Oxidation of Indole by Cytochrome P450 Enzymes. Biochemistry 2000, 39, 13817–13824. [Google Scholar] [CrossRef]
- Banoglu, E.; Jha, G.G.; King, R.S. Hepatic microsomal metabolism of indole to indoxyl, a precursor of indoxyl sulfate. Eur. J. Drug Metab. Pharmacokinet. 2001, 26, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Banoglu, E.; King, R.S. Sulfation of indoxyl by human and rat aryl (phenol) sulfotransferases to form indoxyl sulfate. Eur. J. Drug Metab. Pharmacokinet. 2002, 27, 135–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, L.J.; Parke, D.V.; Williams, R.T. The metabolism of [2-14C]indole in the rat. Biochem. J. 1966, 98, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, B.L.; Jérôme, N.; Saint-Albin, A.; Joly, F.; Rabot, S.; Meunier, N. Sexual responses of male rats to odours from female rats in oestrus are not affected by female germ-free status. Behav. Brain Res. 2019, 359, 686–693. [Google Scholar] [CrossRef] [PubMed]
- de Edelenyi, F.S.; Philippe, C.; Druesne-Pecollo, N.; Naudon, L.; Rabot, S.; Hercberg, S.; Latino-Martel, P.; Kesse-Guyot, E.; Galan, P. Depressive symptoms, fruit and vegetables consumption and urinary 3-indoxylsulfate concentration: A nested case–control study in the French Nutrinet-Sante cohort. Eur. J. Nutr. 2021, 60, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Führer, R.; Rouillon, F. The French version of the Center for Epidemiologic Studies-Depression Scale. Psychiatr. Psychol. 1989, 4, 163–166. [Google Scholar] [CrossRef]
- Morin, A.; Moullec, G.; Maïano, C.; Layet, L.; Just, J.-L.; Ninot, G. Psychometric properties of the Center for Epidemiologic Studies Depression Scale (CES-D) in French clinical and nonclinical adults. Revue d’Épidémiologie de Santé Publique 2011, 59, 327–340. [Google Scholar] [CrossRef]
- Bromet, E.; Andrade, L.H.; Hwang, I.; Sampson, N.A.; Alonso, J.; De Girolamo, G.; De Graaf, R.; Demyttenaere, K.; Hu, C.; Iwata, N.; et al. Cross-national epidemiology of DSM-IV major depressive episode. BMC Med. 2011, 9, 90. [Google Scholar] [CrossRef]
- Institut National de la Statistique et des Etudes Economiques. Available online: https://www.insee.fr/fr/information/2406153 (accessed on 24 November 2020).
- Deguchi, T.; Nakamura, M.; Tsutsumi, Y.; Suenaga, A.; Otagiri, M. Pharmacokinetics and tissue distribution of uraemic indoxyl sulphate in rats. Biopharm. Drug Dispos. 2003, 24, 345–355. [Google Scholar] [CrossRef]
- Le Moullec, N.; Deheeger, M.; Hercberg, S.; Preziosi, P.; Monteiro, P.; Valeix, P.; Rolland-Cachera, M.-F.; De Courcy Potier, G.; Christides, J.-P.; Cherouvrier, F.; et al. Validation du manuel photos utilisé pour l’enquête alimentaire SU.VI.MAX. Cah. Nutr. Diet. 1996, 31, 158–164. [Google Scholar]
- Arnault, N. Table de Composition des Aliments, Étude Nutrinet-Santé. Food Composition Table, Nutrinet-Santé Study; Éditions Inserm/Economica: Paris, France, 2005. [Google Scholar]
- Black, A. Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int. J. Obes. 2000, 24, 1119–1130. [Google Scholar] [CrossRef] [Green Version]
- Schofield, W.N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39 (Suppl. S1), 5–41. [Google Scholar] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirz-Justice, A. Seasonality in affective disorders. Gen. Comp. Endocrinol. 2018, 258, 244–249. [Google Scholar] [CrossRef]
- de Wit, L.; Luppino, F.; van Straten, A.; Penninx, B.; Zitman, F.; Cuijpers, P. Depression and obesity: A meta-analysis of community-based studies. Psychiatry Res. 2010, 178, 230–235. [Google Scholar] [CrossRef]
- Luppino, F.S.; De Wit, L.M.; Bouvy, P.F.; Stijnen, T.; Cuijpers, P.; Penninx, B.W.J.H.; Zitman, F.G. Overweight, Obesity, and Depression: A systematic review and meta-analysis of longitudinal studies. Arch. Gen. Psychiatry 2010, 67, 220–229. [Google Scholar] [CrossRef]
- Bulloch, A.G.; Williams, J.V.; Lavorato, D.H.; Patten, S.B. The relationship between major depression and marital disruption is bidirectional. Depress. Anxiety 2009, 26, 1172–1177. [Google Scholar] [CrossRef] [PubMed]
- Naseribafrouei, A.; Hestad, K.; Avershina, E.; Sekelja, M.; Linløkken, A.; Wilson, R.; Rudi, K. Correlation between the human fecal microbiota and depression. Neurogastroenterol. Motil. 2014, 26, 1155–1162. [Google Scholar] [CrossRef]
- Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z.; Shi, J.; et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 2015, 48, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.R.; Borre, Y.; Brien, C.O.; Patterson, E.; El Aidy, S.; Deane, J.; Kennedy, P.J.; Beers, S.; Scott, K.; Moloney, G.; et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 2016, 82, 109–118. [Google Scholar] [CrossRef]
- Zheng, P.; Zeng, B.; Zhou, C.; Liu, M.; Fang, Z.; Xu, X.; Zeng, L.; Chen, J.; Fan, S.; Du, X.; et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry 2016, 21, 786–796. [Google Scholar] [CrossRef]
- Valles-Colomer, M.; Falony, G.; Darzi, Y.; Tigchelaar, E.F.; Wang, J.; Tito, R.Y.; Schiweck, C.; Kurilshikov, A.; Joossens, M.; Wijmenga, C.; et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 2019, 4, 623–632. [Google Scholar] [CrossRef]
- Mason, B.L.; Li, Q.; Minhajuddin, A.; Czysz, A.H.; Coughlin, L.A.; Hussain, S.K.; Koh, A.Y.; Trivedi, M.H. Reduced anti-inflammatory gut microbiota are associated with depression and anhedonia. J. Affect. Disord. 2020, 266, 394–401. [Google Scholar] [CrossRef]
- Song, Y.; Könönen, E.; Rautio, M.; Liu, C.; Bryk, A.; Eerola, E.; Finegold, S.M. Alistipes onderdonkii sp. nov. and Alistipes shahii sp. nov., of human origin. Int. J. Syst. Evol. Microbiol. 2006, 56, 1985–1990. [Google Scholar] [CrossRef] [PubMed]
- Parker, B.J.; Wearsch, P.A.; Veloo, A.C.M.; Rodriguez-Palacios, A. The Genus Alistipes: Gut Bacteria with Emerging Implications to Inflammation, Cancer, and Mental Health. Front. Immunol. 2020, 11, 906. [Google Scholar] [CrossRef]
- Bendtsen, K.M.B.; Krych, L.; Sørensen, D.B.; Pang, W.; Nielsen, D.S.; Josefsen, K.; Hansen, L.H.; Sørensen, S.J.; Hansen, A.K. Gut Microbiota Composition Is Correlated to Grid Floor Induced Stress and Behavior in the BALB/c Mouse. PLoS ONE 2012, 7, e46231. [Google Scholar] [CrossRef] [Green Version]
- Patel, K.P.; Luo, F.J.-G.; Plummer, N.S.; Hostetter, T.H.; Meyer, T.W. The Production of p-Cresol Sulfate and Indoxyl Sulfate in Vegetarians Versus Omnivores. Clin. J. Am. Soc. Nephrol. 2012, 7, 982–988. [Google Scholar] [CrossRef]
- Fujisawa, T.; Shinohara, K.; Kishimoto, Y.; Terada, A. Effect of miso soup containing Natto on the composition and metabolic activity of the human faecal flora. Microb. Ecol. Health Dis. 2006, 18, 79–84. [Google Scholar] [CrossRef]
- Abel, E.L. Behavioral effects of isatin on open field activity and immobility in the forced swim test in rats. Physiol. Behav. 1995, 57, 611–613. [Google Scholar] [CrossRef]
- Bhattacharya, S.K.; Mitra, S.K.; Acharya, S.B. Anxiogenic activity of isatin, a putative biological factor, in rodents. J. Psychopharmacol. 1991, 5, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Carpenedo, R.; Mannaioni, G.; Moroni, F. Oxindole, a sedative tryptophan metabolite, accumulates in blood and brain of rats with acute hepatic failure. J. Neurochem. 2002, 70, 1998–2003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlini, E.J.; Raftogianis, R.B.; Wood, T.C.; Jin, F.; Zheng, W.; Rebbeck, T.R.; Weinshilboum, R.M. Sulfation pharmacogenetics: SULT1A1 and SULT1A2 allele frequencies in Caucasian, Chinese and African-American subjects. Pharmacogenetics 2001, 11, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Dhakal, I.B.; Beggs, M.; Edavana, V.K.; Williams, S.; Zhang, X.; Mercer, K.; Ning, B.; Lang, N.P.; Kadlubar, F.F.; et al. Functional Genetic Variants in the 3′-Untranslated Region of Sulfotransferase Isoform 1A1 (SULT1A1) and Their Effect on Enzymatic Activity. Toxicol. Sci. 2010, 118, 391–403. [Google Scholar] [CrossRef] [Green Version]
- Rothhammer, V.; Mascanfroni, I.D.; Bunse, L.; Takenaka, M.C.; Kenison, J.E.; Mayo, L.; Chao, C.-C.; Patel, B.; Yan, R.; Blain, M.; et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 2016, 22, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Rothhammer, V.; Borucki, D.M.; Tjon, E.C.; Takenaka, M.C.; Chao, C.-C.; Ardura-Fabregat, A.; De Lima, K.A.; Gutiérrez-Vázquez, C.; Hewson, P.; Staszewski, O.; et al. Microglial control of astrocytes in response to microbial metabolites. Nat. Cell Biol. 2018, 557, 724–728. [Google Scholar] [CrossRef]
- Altmaier, E.; Emeny, R.T.; Krumsiek, J.; Lacruz, M.E.; Lukaschek, K.; Häfner, S.; Kastenmüller, G.; Römisch-Margl, W.; Prehn, C.; Mohney, R.P.; et al. Metabolomic profiles in individuals with negative affectivity and social inhibition: A population-based study of Type D personality. Psychoneuroendocrinology 2013, 38, 1299–1309. [Google Scholar] [CrossRef]
- Chen, J.-J.; Zhou, C.-J.; Zheng, P.; Cheng, K.; Wang, H.-Y.; Li, J.; Zeng, L.; Xie, P. Differential urinary metabolites related with the severity of major depressive disorder. Behav. Brain Res. 2017, 332, 280–287. [Google Scholar] [CrossRef]
Controls | Cases | p-Value 1 | ||
---|---|---|---|---|
N | 174 | 87 | ||
Age (years) | 55.8 | 55.7 | 0.76 | |
(mean (SD)) | (5.9) | (5.8) | ||
Age classes (%) | 45–50 | 23.0 | 23.0 | 1 * |
51–55 | 23.0 | 23.0 | ||
56–60 | 25.3 | 25.3 | ||
61–65 | 28.7 | 28.7 | ||
Educational level (%) | Primary or no diploma | 1.1 | 6.9 | 0.08 |
Secondary | 45.4 | 43.7 | ||
Post-secondary | 53.5 | 49.4 | ||
Marital status (%) | Living alone | 18.4 | 35.6 | 0.004 |
Cohabiting | 81.6 | 64.4 | ||
Employment status and socio-professional category (%) | Without activity | 20.7 | 20.7 | 1 * |
including: | ||||
• managerial staff | 3.5 | 3.5 | ||
• intermediate professions | 4.6 | 4.6 | ||
• farmers, employees, manual workers | 12.6 | 12.6 | ||
In activity | 62.1 | 62.1 | ||
including: | ||||
• managerial staff | 13.8 | 13.8 | ||
• intermediate professions | 19.6 | 19.6 | ||
• farmers, employees, manual workers | 28.7 | 28.7 | ||
Retired | 17.2 | 17.2 | ||
including: | ||||
• managerial staff | 2.3 | 2.3 | ||
• intermediate professions | 8.0 | 8.0 | ||
• farmers, employees, manual workers | 6.9 | 6.9 | ||
Alcohol consumption (g/d) | 2.86 | 1.71 | 0.71 | |
(medians [interquartile range]) | [0.71–8.00] | [0–7.43] | ||
Smoking status (%) | Never smoked | 55.2 | 49.4 | 0.41 |
Former smoker | 39.1 | 47.1 | ||
Current smoker | 5.7 | 3.5 | ||
Physical activity level (%) | High | 37.9 | 28.7 | 0.14 |
Moderate | 33.9 | 28.7 | ||
Low | 13.8 | 19.6 | ||
Unknown | 14.4 | 23.0 | ||
Season of inclusion (%) | Fall (Sept.–Nov.) | 13.2 | 11.5 | 0.49 |
Winter (Dec.–Feb.) | 5.2 | 1.2 | ||
Spring (Mar.–May) | 29.3 | 31 | ||
Summer (Jun.–Aug.) | 52.3 | 56.3 | ||
BMI (kg/m2) | 23.76 | 25.58 | 0.006 | |
(mean (SD)) | (3.85) | (6.33) | ||
Corpulence class (%) | <25 | 67.8 | 59.8 | 0.003 |
25–30 | 25.9 | 18.4 | ||
≥30 | 6.3 | 21.8 |
Model | Tertiles of log10 [3-Indoxylsulfate/Creatinine] | p for Trend 7 | ||
---|---|---|---|---|
T1 1 | T2 | T3 | ||
Model 1 2 | 1 | 1.70 [0.88–3.28] | 2.38 [1.24–4.58] | 0.0088 |
Model 2 3 | 1 | 1.73 [0.90–3.35] | 2.47 [1.28–4.80] | 0.0073 |
Model 3 4 | 1 | 1.80 [0.90–3.58] | 2.65 [1.31–5.35] | 0.0066 |
Model 4 5 | 1 | 1.70 [0.82–3.52] | 2.52 [1.21–5.26] | 0.0139 |
Model 5 6 | 1 | 1.56 [0.72–3.38] | 2.46 [1.11–5.45] | 0.0264 |
Model | Tertiles of Fruit and Vegetable Intake | p for Trend | ||
---|---|---|---|---|
T1 | T2 | T3 | ||
Model 1 1 | 2.34 [2.29–2.39] | 2.37 [2.32–2.41] | 2.24 [2.20–2.29] | 0.0038 |
Model 2 2 | 2.34 [2.30–2.39] | 2.37 [2.32–2.41] | 2.24 [2.19–2.28] | 0.0021 |
Model 3 3 | 2.35 [2.29–2.41] | 2.38 [2.31–2.45] | 2.25 [2.18–2.31] | 0.0023 |
Model 4 4 | 2.34 [2.25–2.42] | 2.35 [2.26–2.44] | 2.22 [2.14–2.31] | 0.0012 |
Model 5 5 | 2.33 [2.25–2.42] | 2.35 [2.26–2.44] | 2.22 [2.14–2.31] | 0.0011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Philippe, C.; Szabo de Edelenyi, F.; Naudon, L.; Druesne-Pecollo, N.; Hercberg, S.; Kesse-Guyot, E.; Latino-Martel, P.; Galan, P.; Rabot, S. Relation between Mood and the Host-Microbiome Co-Metabolite 3-Indoxylsulfate: Results from the Observational Prospective NutriNet-Santé Study. Microorganisms 2021, 9, 716. https://doi.org/10.3390/microorganisms9040716
Philippe C, Szabo de Edelenyi F, Naudon L, Druesne-Pecollo N, Hercberg S, Kesse-Guyot E, Latino-Martel P, Galan P, Rabot S. Relation between Mood and the Host-Microbiome Co-Metabolite 3-Indoxylsulfate: Results from the Observational Prospective NutriNet-Santé Study. Microorganisms. 2021; 9(4):716. https://doi.org/10.3390/microorganisms9040716
Chicago/Turabian StylePhilippe, Catherine, Fabien Szabo de Edelenyi, Laurent Naudon, Nathalie Druesne-Pecollo, Serge Hercberg, Emmanuelle Kesse-Guyot, Paule Latino-Martel, Pilar Galan, and Sylvie Rabot. 2021. "Relation between Mood and the Host-Microbiome Co-Metabolite 3-Indoxylsulfate: Results from the Observational Prospective NutriNet-Santé Study" Microorganisms 9, no. 4: 716. https://doi.org/10.3390/microorganisms9040716
APA StylePhilippe, C., Szabo de Edelenyi, F., Naudon, L., Druesne-Pecollo, N., Hercberg, S., Kesse-Guyot, E., Latino-Martel, P., Galan, P., & Rabot, S. (2021). Relation between Mood and the Host-Microbiome Co-Metabolite 3-Indoxylsulfate: Results from the Observational Prospective NutriNet-Santé Study. Microorganisms, 9(4), 716. https://doi.org/10.3390/microorganisms9040716