

Figure S1. Phylogenetic networks generated in SplitsTree. NeighborNet splits analysis based on selected GH68 sequences (a) from Fig. 1a and 16S sequences (b) from Fig. 1b. See Fig. 1 legend for species details. The scale bar indicates 0.00149 substitutions/site.

Figure S2. SDS-PAGE analysis of *HmcIsc* **fractions.** Lanes: (1) reference protein ladder, (2) induced crude extract, (3,4,5) 1st, 2nd (peak fraction) and 3rd fractions of 1 ml each, containing *Hmclsc*, collected from the IMAC via one-step non-gradient elution with 300 mM imidazole, respectively.

Figure S3. Surface analysis of GH68 sucrases. Surface analysis of the *Hmc*Isc inulosucrase model compared to the 3D structures of levansucrases from *B. subtilis* (1OYG), *E. amylovora* (4D47), *G. diazotrophicus* (1w18), a model for *H. smyrnensis* levansucrase (*Hs*Lsc) and the inulosucrase from *L. johnsonii* (2YFR). Positively (blue) and negatively charged regions (red) are indicated at pH 7.0.

Figure S4. Glycosylation model of *HmcIsc.* Model of the glycosylation on N322 of *HmcIsc* showing the top 5 conformations of the glycosylation chain as revealed through covalent docking analysis and interaction with neighboring amino acids.

Table S1. Development of primers for cloning. Primers designed to clone the HmcIsc gene in frame with the N-termina	ıl
and C-terminal His tag. Restriction site consensus sequences are bold and underlined.	

Primer	Sequence (5' to 3')		
C torminal (ullis Tag forward primar	GAT <u>CCATGG</u> GCATGAGCAAGGACAGTGCTGG		
C-terminal 6xriis-1 ag forward primer	NcoI		
C torreir el Cullie Te e recorre primer	GAT <u>CTCGAG</u> GCGGCGGTACGATCCG		
C-terminal 6xmis-rag reverse primer	XhoI		
N-terminal 6xHis-Tag forward primer	GAT <u>CATATG</u> AGCAAGGACAGTGCTGGG		
	NdeI		
N terminal (vHis Tag reverse primer	GAT <u>CTCGAG</u> CTAGCGGCGGTACGATC		
N-terminal oxfils-rag reverse primer	XhoI		
GH68 forward primer	ATGAGCAAGGACAGTGCTGG		
GH68 reverse primer	GCGGCGGTACGATCCG		

	Total protein (mg)	Volume (ml)	Total activity (mU)	Specific activity (U/g protein)	Purification (fold)
Crude cell extract	50.10	5.5	56.0±1.3	1.1**	1
IMAC (peak fraction*)	0.54	1.0	30.5±1.0	56.5±2.0	51.4
Uninduced cell extract (control)	23.59	5.5	2.3±0.3	0.1**	-

Table S2. Protein purification table for *HmcIsc.* Comparison of induced and uninduced cell extracts and the purified IMAC peak fraction.

*Peak fraction refers to the protein fraction on lane 4 on SDS-PAGE (Fig. S2).

**Standard error values for specific activities of crude cell extracts are below 0.02.

Table S3. Sodium ion interactions in the *HmcIsc* **model**. Interactions of sodium ions at 4 M concentration with amino acid side chains and backbones of *HmcIsc* protonated at pH 7.0. Each interaction represents one different Na⁺ atom interacting with the respective amino acids. The interactions were measured and calculated using MOE. The total energy of all the interactions is -399.62 Kcal/mol.

Interactions with amino acid side chains					
Interaction	Amino acid	Energy Kcal/mol	Distance A°		
	D53	-31.88	2.34		
1	E272	-13.15	2.33		
	Total	-45.03			
	D302	-18.11	2.22		
2	D291	-15.51	2.35		
Ζ	P333	-3.48	2.34		
	Total	-37.1			
	E186	-28.18	2.37		
3	N239	-1.53	2.45		
	Total	-29.71			
	D127	-27.11	2.32		
4	E59	-19.09	2.22		
	F126	-2.35	2.3		
	Total	-48.55			
	E425	-26.19	2.36		
5	T159	-2.3	2.45		
	Total	-28.49			
	D365	-16.66	2.32		
6	H292	-4.26	2.45		
	Total	-20.92			
	D48	-20.2	2.62		
7	P47	-1.84	2.43		
7	D44	-1.49	3.61		
	Total	-23.53			
	D4	-25.39	2.41		
8	Q23	-3.3	2.47		
	G18	-2.45	2.36		
	Total	-31.14			
	Interactions with a	mino acid backbones			
Interaction	Amino acid	Energy Kcal/mol	Distance A°		
g	D291	-3.42	2.42		
J	L298	-3.15	2.35		

	F294	-1.55	2.37
	Total	-8.12	
	R434	-29.95	2.39
10	V109	-3.02	2.43
10	V110	-0.87	2.7
	Total	-33.84	
	D360	-19.41	2.23
11	E374	-3.49	2.31
11	A361	-3.29	2.38
	Total	-26.19	
	E113	-18.73	2.21
10	F111	-2.78	2.31
12	E112	-1.24	2.35
	Total	-22.75	
	E211	-3.98	2.38
10	F204	-3.15	2.34
13	H213	-2.52	2.38
	Total	-9.65	
	D413	-32.05	2.31
14	L414	-2.55	2.37
	Total	-34.6	