European Population of Pectobacterium punjabense: Genomic Diversity, Tuber Maceration Capacity and a Detection Tool for This Rarely Occurring Potato Pathogen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Genetic and Genomic Diversity
2.2.1. Genomic Resource
2.2.2. Multi-Locus Sequence Analysis (MLSA)
2.2.3. Average Nucleotide Identity (ANI), In Silico DNA–DNA Hybridization (DDH) and Single Nucleotide Polymorphism (SNP) Analysis
2.2.4. BRIG Analysis
2.3. Core Protein Phylogeny
2.4. Carbon Source Utilization Profiles
2.5. Fatty Acid Methyl Esters (FAME) Composition
2.6. Tuber Maceration Assay
2.7. qPCR TaqMan Assay
3. Results
3.1. Identification and Diversity of P. punjabense Candidates
3.2. Physiological and Structural Characteristics
3.3. Occurrence of P. Punjabense in Collections
3.4. Aggressiveness
3.5. Development of a qPCR TaqMan Assay Specific for P. Punjabense
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, B.; Hibbing, M.E.; Kim, H.-S.; Reedy, R.M.; Yedidia, I.; Breuer, J.; Breuer, J.; Glasner, J.D.; Perna, N.T.; Kelman, A.; et al. Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology 2007, 97, 1150–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeolu, M.; Alnajar, S.; Naushad, S.; Gupta, R.S. Genome-based phylogeny and taxonomy of the “Enterobacteriales”: Proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 5575–5599. [Google Scholar]
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A.; et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 614–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barras, F.; van Gijsegem, F.; Chatterjee, A.K. Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annu. Rev. Phytopathol. 1994, 32, 201–234. [Google Scholar] [CrossRef]
- Toth, I.K.; Bell, K.S.; Holeva, M.C.; Birch, P.R. Soft rot erwiniae: From genes to genomes. Mol. Plant Pathol. 2003, 4, 17–30. [Google Scholar] [CrossRef]
- Pérombelon, M.C.M. Potato diseases caused by soft rot erwinias: An overview of pathogenesis. Plant Pathol. 2002, 51, 1–12. [Google Scholar] [CrossRef]
- Charkowski, A.O. The changing face of bacterial soft-rot diseases. Annu. Rev. Phytopathol. 2018, 56, 269–288. [Google Scholar] [CrossRef]
- Czajkowski, R.; Pérombelon, M.C.M.; van Veen, J.A.; van der Wolf, J.M. Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: A review. Plant Pathol. 2011, 60, 999–1013. [Google Scholar] [CrossRef]
- Pitman, A.R.; Wright, P.J.; Galbraith, M.D.; Harrow, S.A. Biochemical and genetic diversity of pectolytic Enterobacteria causing soft rot disease of potatoes in New Zealand. Australas. Plant Pathol. 2008, 37, 559–568. [Google Scholar] [CrossRef]
- Portier, P.; Pédron, J.; Taghouti, G.; Fischer-Le Saux, M.; Caullireau, E.; Bertrand, C.; Laurent, A.; Chawki, K.; Oulghazi, S.; Moumni, M.; et al. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. Int. J. Syst. Evol. Microbiol. 2019, 69, 3207–3216. [Google Scholar] [PubMed]
- Hugouvieux-Cotte-Pattat, N.; Brochier-Armanet, C.; Flandrois, J.P.; Reverchon, S. Dickeya poaceiphila sp. nov., a plant pathogenic bacterium isolated from sugar cane (Saccharum officinarum). Int. J. Syst. Evol. Microbiol. 2020, 70, 4508–4514. [Google Scholar] [CrossRef]
- Pasanen, M.; Waleron, M.; Schott, T.; Cleenwerck, I.; Misztak, A.; Waleron, K.; Pritchard, L.; Bakr, R.; Degefu, Y.; van der Wolf, J.; et al. Pectobacterium parvum sp. nov., having a Salmonella SPI-1-like Type III secretion system and low virulence. Int. J. Syst. Evol. Microbiol. 2020, 70, 2440–2448. [Google Scholar]
- Khayi, S.; Cigna, J.; Chong, T.M.; Quêtu-Laurent, A.; Chan, K.-G.; Hélias, V.; Faure, D. Transfer of the potato plant isolates of Pectobacterium wasabiae to Pectobacterium parmentieri sp. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 5379–5383. [Google Scholar] [CrossRef]
- Waleron, M.; Misztak, A.; Waleron, M.; Franczuk, M.; Wielgomas, B.; Waleron, K. Transfer of Pectobacterium carotovorum subsp. carotovorum strains isolated from potatoes grown at high altitudes to Pectobacterium peruviense sp. nov. Syst. Appl. Microbiol. 2018, 41, 85–93. [Google Scholar]
- Dees, M.W.; Lysoe, E.; Rossmann, S.; Perminow, J.; Brurberg, M.B. Pectobacterium polaris sp. nov., isolated from potato (Solanum tuberosum). Int. J. Syst. Evol. Microbiol. 2017, 67, 5222–5229. [Google Scholar] [CrossRef]
- Waleron, M.; Misztak, A.; Waleron, M.; Franczuk, M.; Jonca, J.; Wielgomas, B.; Mikiciński, A.; Popović, T.; Waleron, K. Pectobacterium zantedeschiae sp. nov. a new species of a soft rot pathogen isolated from Calla lily (Zantedeschia spp.). Syst. Appl. Microbiol. 2019, 42, 275–283. [Google Scholar] [CrossRef]
- Pédron, J.; Bertrand, C.; Taghouti, G.; Portier, P.; Barny, M.A. Pectobacterium aquaticum sp. nov., isolated from waterways. Int. J. Syst. Evol. Microbiol. 2019, 69, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Waleron, M.; Misztak, A.; Waleron, M.; Jonca, J.; Furmaniak, M.; Waleron, K. Pectobacterium polonicum sp. nov. isolated from vegetable fields. Int. J. Syst. Evol. Microbiol. 2019, 69, 1751–1759. [Google Scholar] [CrossRef] [PubMed]
- Oulghazi, S.; Pédron, J.; Cigna, J.; Lau, Y.Y.; Moumni, M.; Van Gijsegem, F.; Chan, K.G.; Faure, D. Dickeya undicola sp. nov., a novel species for pectinolytic isolates from surface waters in Europe and Asia. Int. J. Syst. Evol. Microbiol. 2019, 69, 2440–2444. [Google Scholar] [CrossRef]
- Hugouvieux-Cotte-Pattat, N.; Jacot-des-Combes, C.; Briolay, J. Dickeya lacustris sp. nov., a water-living pectinolytic bacterium isolated from lakes in France. Int. J. Syst. Evol. Microbiol. 2019, 69, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Perombelon, M.C.M.; Kelman, A. Ecology of the Soft Rot Erwinias. Annu. Rev. Phytopathol. 1980, 18, 361–387. [Google Scholar] [CrossRef]
- Pitman, A.R.; Harrow, S.A.; Visnovsky, S.B. Genetic characterization of Pectobacterium wasabiae causing soft rot disease of potato in New Zealand. Eur. J. Plant Pathol. 2010, 126, 423–435. [Google Scholar] [CrossRef]
- Gardan, L.; Gouy, C.; Christen, R.; Samson, R. Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int. J. Syst. Evol. Microbiol. 2003, 53, 381–391. [Google Scholar] [CrossRef]
- De Boer, S.H.; Li, X.; Ward, L. Pectobacterium spp. associated with bacterial stem rot syndrome of potato in Canada. Phytopathology 2012, 102, 937–947. [Google Scholar] [CrossRef] [Green Version]
- De Werra, P.; Bussereau, F.; Keiser, A. First report of potato blackleg caused by Pectobacterium carotovorum subsp. brasiliense in Switzerland. Plant Dis. 2015, 99, 551. [Google Scholar] [CrossRef]
- Waleron, M.; Waleron, K.; Lojkowska, E. Occurrence of Pectobacterium wasabiae in potato field samples. Eur. J. Plant Pathol. 2013, 137, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Zoledowska, S.; Motyka, A.; Zukowska, D.; Sledz, W.; Lojkowska, E. Population structure and biodiversity of Pectobacterium parmentieri isolated from potato fields in temperate climate. Plant Dis. 2018, 102, 154–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portier, P.; Pédron, J.; Taghouti, G.; Dutrieux, C.; Barny, M.-A. Updated Taxonomy of Pectobacterium Genus in the CIRM-CFBP Bacterial Collection: When Newly Described Species Reveal “Old” Endemic Population. Microorganisms 2020, 8, 1441. [Google Scholar] [CrossRef] [PubMed]
- Waleron, M.; Misztak, A.; Jońca, J.; Furmaniak, M.; Waleron, M.M.; Waleron, K. First report of ‘Candidatus Pectobacterium maceratum’ causing soft rot of potato in Poland. Plant Dis. 2019, 103, 1409. [Google Scholar] [CrossRef]
- Waleron, M.; Misztak, A.; Jońca, J.; Waleron, K. First Report of Pectobacterium polaris Causing Soft Rot of Potato in Poland. Plant Dis. 2019, 103, 144. [Google Scholar] [CrossRef]
- Lebecka, R.; Flis, B.; Murawska, Z. Comparison of temperature effects on the in vitro growth and disease development in potato tubers inoculated with bacteria Pectobacterium atrosepticum, P. carotovorum subsp. carotovorum and Dickeya solani. J. Phytopathol. 2018, 166, 654–662. [Google Scholar] [CrossRef]
- Samson, R.; Legendre, J.B.; Christen, R.; Fischer-Le Saux, M.; Achouak, W.; Garden, L. Transfer of Pectobacterium chrysanthemi and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dick. Int. J. Syst. Evol. Microbiol. 2005, 55, 1415–1427. [Google Scholar] [CrossRef]
- Toth, I.K.; van der Wolf, J.M.; Saddler, G.; Lojkowska, E.; Hélias, V.; Pirhonen, M.; Tsror Lahkim, L.; Elphinstone, J.G. Dickeya species: An emerging problem for potato production in Europe. J. Plant Pathol. 2011, 60, 385–399. [Google Scholar] [CrossRef]
- Blin, P.; Robic, K.; Khayi, S.; Cigna, J.; Munier, E.; Dewaegeneire, P.; Laurent, A.; Jaszczyszyn, Y.; Hong, K.W.; Chan, K.G.; et al. Pattern and causes of the establishment of the invasive bacterial potato pathogen Dickeya solani and of the maintenance of the resident pathogen D. dianthicola. Mol. Ecol. 2020. [Google Scholar] [CrossRef]
- Darrasse, A.; Priou, S.; Kotoujansky, A.; Bertheau, Y. PCR and restriction fragment length polymorphism of a pel gene as a tool to identify Erwinia carotovora in relation to potato diseases. Appl. Environ. Microbiol. 1994, 60, 1437–1443. [Google Scholar] [CrossRef] [Green Version]
- Nassar, A.; Darrasse, A.; Lemattre, M.; Kotoujansky, A.; Dervin, C.; Vedel, R.; Bertheau, Y. Characterization of Erwinia chrysanthemi by pectinolytic isozyme polymorphism and restriction fragment length polymorphism analysis of PCR- amplified fragments of pel genes. Appl. Environ. Microbiol. 1996, 62, 2228–2235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czajkowski, R.; Pérombelon, M.C.M.; Jafra, S.; Lojkowska, E.; Potrykus, M.; van der Wolf, J.M.; Sledz, W. Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: A review. Ann. Appl. Biol. 2015, 166, 18–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Wolf, J.M.; Cahill, G.; Van Gijsegem, F.; Hélias, V.; Humphris, S.; Li, X.S.; Lojkowska, E.; Pritchard, L. Isolation, Detection and Characterization of Pectobacterium and Dickeya Species. In Plant Diseases Caused by Dickeya and Pectobacterium Species, 1st ed.; Van Gijsegem, F., van der Wolf, J.M., Toth, I.K., Eds.; Springer: Cham, Switzerland, 2021; pp. 149–173. [Google Scholar]
- Frechon, D.; Exbrayat, P.; Helias, V.; Hyman, L.J.; Jouan, B.; Llop, P.; Lopez, M.M.; Payet, N.; Perombelon, M.C.M.; Toth, I.K.; et al. Evaluation of a PCR kit for the detection of Erwinia carotovora subsp. atroseptica on potato tubers. Potato Res. 1998, 41, 163–173. [Google Scholar] [CrossRef]
- Pritchard, L.; Humphris, S.; Saddler, G.S.; Parkinson, N.M.; Bertrand, V.; Elphinstone, J.G.; Toth, I.K. Detection of phytopathogens of the genus Dickeya using a PCR primer prediction pipeline for draft bacterial genome sequences. Plant Pathol. 2012, 62, 587–596. [Google Scholar] [CrossRef]
- Kim, M.H.; Cho, M.S.; Kim, B.K.; Choi, H.J.; Hahn, J.H.; Kim, C.K.; Kang, M.J. Quantitative real-time polymerase chain reaction assay for detection of Pectobacterium wasabiae using YD repeat protein gene-based primers. Plant Dis. 2012, 96, 253–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Wolf, J.M.; de Haan, E.G.; Kastelein, P.; Krijger, M.; de Haas, B.H.; Velvis, H.; Mendes, O.; Kooman-Gersmann, M.; van der Zouwen, P.S. Virulence of Pectobacterium carotovorum subsp. brasiliense on potato compared with that of other Pectobacterium and Dickeya species under climatic conditions prevailing in the Netherlands. Plant Pathol. 2017, 66, 571–583. [Google Scholar]
- Duarte, V.; de Boer, S.H.; Ward, L.J.; de Oliveira, A.M. Characterization of atypical Erwinia carotovora strains causing blackleg of potato in Brazil. J. Appl. Microbiol. 2004, 96, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Van der Wolf, J.M.; de Haas, B.H.; van Hoof, R.; de Haan, E.G.; van den Bovenkamp, G.W. Development and evaluation of Taqman assays for the differentiation of Dickeya (sub)species. Eur. J. Plant Pathol. 2014, 138, 695–709. [Google Scholar] [CrossRef]
- Sarfraz, S.; Riaz, K.; Oulghazi, S.; Cigna, J.; Sahi, S.T.; Khan, S.H.; Faure, D. Pectobacterium punjabense sp. nov., isolated from blackleg symptoms of potato plants in Pakistan. Int. J. Syst. Evol. Microbiol. 2018, 68, 3551–3556. [Google Scholar] [CrossRef] [PubMed]
- Cigna, J.; Dewaegeneire, P.; Beury, A.; Gobert, V.; Faure, D. A gapA PCR-sequencing assay for Identifying the Dickeya and Pectobacterium potato pathogens. Plant Dis. 2017, 101, 1278–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chawki, K.; Quêtu-Laurent, A.A.; Taghouti, G.; Caullireau, E.; Fischer-Le Saux, M.; Le Hingrat, Y.; Andrivon, D.; Portier, P.; Helias, V. The Pectobacterium complex: Diversity and phylogeny. Phytopathology 2018, 108, S1.307. [Google Scholar]
- Waleron, M.; Waleron, K.; Podhajska, A.J.; Lojkowska, E. Genotyping of bacteria belonging to the former Erwinia genus by PCR-RFLP analysis of a recA gene fragment. Microbiology 2002, 148, 583–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waleron, M.; Waleron, K.; Geider, K.; Lojkowska, E. Application of RFLP analysis of recA, gyrA and rpoS gene fragments for rapid differentiation of Erwinia amylovora from Erwinia strains isolated in Korea and Japan. Eur. J. Plant Pathol. 2008, 121, 161–172. [Google Scholar] [CrossRef]
- Hélias, V.; Hamon, P.; Huchet, E.; van der Wolf, J.M.; Andrivon, D. Two new effective semiselective crystal violet pectate media for isolation of Pectobacterium and Dickeya. Plant Pathol. 2012, 61, 339–345. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Yoon, S.H.; Ha, S.M.; Lim, J.M.; Kwon, S.J.; Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017, 110, 1281–1286. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef] [Green Version]
- Alikhan, N.F.; Petty, N.K.; Ben Zakour, N.L.; Beatson, S.A. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genom. 2011, 12, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segata, N.; Börnigen, D.; Morgan, X.C.; Huttenhower, C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat. Commun. 2013, 4, 2304. [Google Scholar] [CrossRef] [PubMed]
- Sasser, M. Bacterial Identification by Gas Chromatographic Analysis of Fatty Acid Methyl Esters (GC-FAME); Technical Note #101; MIDI Inc.: Newark, DE, USA, 1990. [Google Scholar]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.; Oh, H.S.; Park, S.C.; Chun, J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 2014, 64, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Auch, A.F.; von Jan, M.; Klenk, H.P.; Göker, M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genom. Sci. 2010, 2, 117–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoledowska, S.; Motyka-Pomagruk, A.; Sledz, W.; Mengoni, A.; Lojkowska, E. High genomic variability in the plant pathogenic bacterium Pectobacterium parmentieri deciphered from de novo assembled complete genomes. BMC Genom. 2018, 19, 751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achtman, M.; Wagner, M. Microbial diversity and the genetic nature of microbial species. Nat. Rev. Microbiol. 2008, 6, 431–440. [Google Scholar] [CrossRef]
- Khayi, S.; Blin, P.; Pédron, J.; Chong, T.M.; Chan, K.G.; Moumni, M.; Hélias, V.; Van Gijsegem, F.; Faure, D. Population genomics reveals additive and replacing horizontal gene transfers in the emerging pathogen Dickeya solani. BMC Genom. 2015, 16, 788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barny, M.A.; (Institute of Ecology and Environmental Sciences, Sorbonne University, IEES, Paris, France). Personal communication, 2020.
- Vreeburg, R.; (Netherlands General Inspection Service, NAK, Emmeloord, The Netherlands). Personal communication, 2020.
- Hibbing, M.E.; Fuqua, C.; Parsek, M.R.; Peterson, S.B. Bacterial competition: Surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 2010, 8, 15–25. [Google Scholar]
Strain | Year of Isolation | Origin | Isolation Source | GenBank Accession Number |
---|---|---|---|---|
P. punjabense P9A19a 1 | 2015 | France | Potato blackleg symptom | JADARA000000000 |
P. punjabense RNS08.28 1 | 2008 | France | Potato blackleg symptom | JADARB000000000 |
P. punjabense IPO3715 1 | 2013 | The Netherlands | Potato blackleg symptom | JADDMS000000000 |
P. punjabense IFB5596 1 | 1996 | Poland | Potato blackleg symptom | LXFY00000000 |
P. punjabense SS95T | 2017 | Pakistan | Potato blackleg symptom | PYSO00000000.1 |
P. polonicum DPMP315T | 2016 | Poland | Groundwater | RJTN00000000.1 |
P. wasabiae CFBP3304T | 1985 | Japan | Horseradish | CP015750.1 |
P. parmentieri RNS08.42.1aT | 2008 | France | Potato blackleg symptom | CP015749.1 |
P. betavasculorum NCPPB2795T | 1972 | USA | Sugar beet soft rot | JQHM00000000.1 |
P. zantedeschiae 9MT | 2005 | Poland | Calla lily tuber | NWTM00000000.1 |
P. peruviense IFB5232T | 1970s | Peru | Potato plants | LXFV00000000.1 |
P. atrosepticum CFBP1526T | 1957 | United Kingdom | Potato blackleg symptom | ALIV00000000.1 |
Strain | Code | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P. punjabense SS95 | (1) | 100.0 | 88.7 | 89.4 | 88.6 | 54.6 | 44.1 | 43.3 | 38.3 | 38.5 | 38.6 | 37.3 | 37.3 | DDH | |
P. punjabense P9A19a | (2) | 100.0 | 88.7 | 89.4 | 88.7 | 54.6 | 44.2 | 43.3 | 38.3 | 38.5 | 38.6 | 37.3 | 37.3 | ||
P. punjabense RNS08.28a | (3) | 98.7 | 98.7 | 91.0 | 89.5 | 55.1 | 44.4 | 43.6 | 38.2 | 38.4 | 38.7 | 37.3 | 37.4 | ||
P. punjabense IPO3715 | (4) | 98.8 | 98.7 | 98.9 | 90.0 | 55.1 | 44.4 | 43.7 | 38.4 | 38.6 | 38.8 | 37.3 | 37.5 | ||
P. punjabense IFB5596 | (5) | 98.7 | 98.6 | 98.8 | 98.8 | 54.9 | 44.3 | 43.3 | 38.4 | 38.5 | 38.7 | 37.6 | 37.5 | ||
P. polonicum DPMP315 | (6) | 93.9 | 93.8 | 93.9 | 93.9 | 93.9 | 43.1 | 42.8 | 38.2 | 38.3 | 38.2 | 37.2 | 37.5 | ||
P. parmentieri RNS08.42.1a | (7) | 91.3 | 91.4 | 91.5 | 91.4 | 91.4 | 91.0 | 54.9 | 39.5 | 39.6 | 39.6 | 37.6 | 37.8 | ||
P. wasabiae CFBP3304 | (8) | 91.1 | 91.0 | 91.3 | 91.2 | 91.2 | 91.0 | 93.9 | 40.0 | 40.3 | 39.9 | 37.9 | 38.5 | ||
P. atrosepticum CFBP1526 | (9) | 89.4 | 89.3 | 89.4 | 89.5 | 89.3 | 89.3 | 89.8 | 90.0 | 96.0 | 54.0 | 43.8 | 47.0 | ||
P. atrosepticum CFBP6276 | (10) | 89.4 | 89.4 | 89.4 | 89.5 | 89.4 | 89.3 | 89.9 | 90.1 | 99.5 | 54.2 | 44.0 | 47.1 | ||
P. peruviense IFB5232 | (11) | 89.6 | 89.6 | 89.5 | 89.6 | 89.6 | 89.4 | 89.8 | 90.0 | 93.7 | 93.7 | 44.2 | 47.3 | ||
P. zantedeschiae 9M | (12) | 89.1 | 89.0 | 89.0 | 89.0 | 89.2 | 89.1 | 89.2 | 89.4 | 91.3 | 91.2 | 91.4 | 44.4 | ||
P. betavasculorum CFBP2122 | (13) | 89.0 | 89.0 | 89.1 | 89.1 | 89.0 | 89.0 | 89.1 | 89.4 | 91.9 | 91.9 | 92.1 | 91.4 | ||
ANI |
Collection | Isolation Period | Total Number of SRP Strains in Collection 1 | P. punjabense Strains Identified 2 | Frequency of P. punjabense Strains (%) |
---|---|---|---|---|
RNS | 2015–2019 | 1663 | 4 | 0.24 |
IPO | 1963–2020 | 1012 | 1 | 0.10 |
IFB | 1996–2014 | 2031 | 1 | 0.05 |
Species | Strain | Isolation Source | Geographical Origin, Year of Isolation | Detection in Taqman Assay (Ct Value) | |
---|---|---|---|---|---|
Pectobacterium atrosepticum | |||||
P. atrosepticum | CFBP1526T | Solanum tuberosum | UK, 1957 | - | |
P. atrosepticum | CFBP6276 | Solanum tuberosum | France, 1999 | - | |
P. atrosepticum | CFBP1453 | Solanum lycopersicum | France, 1973 | - | |
P. atrosepticum | CFBP1527 | Solanum tuberosum | USA, 1973 | - | |
P. atrosepticum | CFBP5394 | Solanum tuberosum | Algeria, 1999 | - | |
P. atrosepticum | CFBP3139 | Soil | UK, 1962 | - | |
P. atrosepticum | CFBP7375 | Solanum tuberosum | Syria, 2004 | - | |
Pectobacterium parmentieri | |||||
P. parmentieri | RNS08-42-1AT | Solanum tuberosum | France, 2008 | - | |
P. parmentieri | CFBP1338 | Solanum tuberosum | UK, 1970s | - | |
P. parmentieri | CFBP1342 | Solanum tuberosum | UK, 1970s | - | |
P. parmentieri | CFBP5382 | Solanum tuberosum | Netherlands, 1997 | - | |
P. parmentieri | SS90 | Solanum tuberosum | Pakistan, 2017 | - | |
P. parmentieri | SCC3193 | Solanum tuberosum | Finland, 1980s | - | |
Pectobacterium wasabiae | |||||
P. wasabiae | CFBP 3304T | Eutrema wasabi | Japan, 1985 | - | |
Pectobacterium punjabense | |||||
P. punjabense | SS95T | Solanum tuberosum | Pakistan, 2017 | 17.58 | |
P. punjabense | IPO3715 | Solanum tuberosum | Netherlands, 2013 | 17.78 | |
P. punjabense | RNS08-28 | Solanum tuberosum | France, 2008 | 20.29 | |
P. punjabense | RNS16-153 | Solanum tuberosum | France, 2016 | 19.19 | |
P. punjabense | RNS18-61 | Solanum tuberosum | France, 2018 | 19.53 | |
P. punjabense | RNS18-78 | Solanum tuberosum | France, 2018 | 19.94 | |
P. punjabense | P9A19a | Solanum tuberosum | France, 2015 | 17.63 | |
P. punjabense | IFB5596 | Solanum tuberosum | Poland, 1996 | 18.61 | |
Pectobacterium cacticida | |||||
P. cacticida | CFBP3628T | Carnegiea gigantea | USA, 1944 | - | |
P. cacticida | CFBP3217 | Carnegiea gigantea | USA, 1959 | - | |
P. cacticida | CFBP3219 | Carnegiea gigantea | USA, 1966 | - | |
Pectobacterium peruviense | |||||
P. peruviense | IFB5232T | Solanum tuberosum | Peru, 1970s | - | |
Pectobacterium brasiliense | |||||
P. brasiliense | RNS13-47-1A | Solanum tuberosum | France, 2013 | - | |
P. brasiliense | CFBP5837 | Water | Spain, 1990s | - | |
Pectobacterium carotovorum | |||||
P. carotovorum | ICMP 5702T | Solanum tuberosum | Denmark, 1952 | - | |
P. carotovorum | CFBP5374 | Solanum tuberosum | Canada, 1994 | - | |
Pectobacterium aroidearum | |||||
P. aroidearum | CFBP8168T | Zantedeschia aethiopica | South Africa, 1959 | - | |
Pectobacterium odoriferum | |||||
P. odoriferum | NCPPB 3839T | Cichorium intybus | France, 1978 | - | |
P. odoriferum | CFBP5668 | Cichorium intybus | France, 1983 | - | |
Pectobacterium zantedeschiae | |||||
P. zantedeschiae | 9MT | Zantedeschia aethiopica | Poland, 2005 | - | |
Pectobacterium betavasculorum | |||||
P. betavasculorum | CFBP2122T | Beta vulgaris | USA, 1972 | - | |
Pectobacterium polonicum | |||||
P. polonicum | DPMP315T | Groundwater | Poland, 2016 | - | |
Pectobacterium fontis | |||||
P. fontis | M022T | Waterfall | Malaysia, 2013 | - | |
Pectobacterium versatile | |||||
P. versatile | SS96 | Solanum tuberosum | Pakistan, 2017 | - | |
P. versatile | S4.16.03.3F | Solanum tuberosum | Morocco, 2016 | - | |
P. versatile | S4.16.03.3I | Solanum tuberosum | Morocco, 2016 | - | |
P. versatile | RNS98-1 | Solanum tuberosum | France, 1998 | - | |
Pectobacterium polaris | |||||
P. polaris | S4.16.03.2B | Solanum tuberosum | Morocco, 2016 | - | |
P. polaris | SS28 | Solanum tuberosum | Pakistan, 2017 | - | |
Dickeya dianthicola | |||||
D. dianthicola | NCPPB 453T | Dianthus caryophyllus | UK, 1956 | - | |
D. dianthicola | CFBP2015 | Solanum tuberosum | France, 1975 | - | |
D. dianthicola | CFBP1888 | Solanum tuberosum | France, 1978 | - | |
D. dianthicola | MIE32 | Solanum tuberosum | Israel, ? | - | |
D. dianthicola | MIE33 | Pelargonium capitatum | Switzerland, 1988 | - | |
D. dianthicola | MIE34 | Solanum tuberosum | Switzerland, 2013 | - | |
Dickeya dadantii | |||||
D. dadantii | CFBP3695 | Zea mays | Cuba, 1987 | - | |
D. dadantii | 3937 | Saintpaulia ionantha | France, 1977 | - | |
D. dadantii | CFBP2051 | Dieffenbachia sp. | USA, 1957 | - | |
Dickeya solani | |||||
D. solani | IPO 2222T | Solanum tuberosum | Netherlands, 2007 | - | |
D. solani | RNS05-1-2A | Solanum tuberosum | France, 2005 | - | |
D. solani | Am3a | Solanum tuberosum | France, 2015 | - | |
D. solani | MK16 | River water | UK, ? | - | |
D. solani | RNS07-7-3B | Solanum tuberosum | France, 2007 | - | |
D. solani | CC3239 | Solanum tuberosum | UK, ? | - | |
Dickeya paradisiaca | |||||
D. paradisiaca | CFBP4178T | Musa paradisiaca | Colombia, 1970 | - | |
Dickeya zeae | |||||
D. zeae | CFBP3707 | Water | Israel, 1986 | - | |
Dickeya chrysanthemi | |||||
D. chrysanthemi | CFBP3704 | Cynara scolymus L. | Reunion island, 1986 | - | |
D. chrysanthemi | CFBP6689 | Cichorium endivia | France, 2002 | - | |
Dickeya undicola | |||||
D. undicola | 2B12T | Lake water | Malaysia, 2014 | - | |
D. undicola | FVG1 | Fresh water | France, 2017 | - | |
D. undicola | FVG10 | Fresh water | France, 2016 | - | |
Dickeya fangzhongdai | |||||
D. fangzhongdai | CFBP8607T | Pyrus pyrifolia | China, 2009 | - | |
D. fangzhongdai | B16 | Phalaenopsis sp. | Slovenia, 2010 | - |
DNA Concentration | Repetition | Ct Value | Ct Mean | Standard Deviation |
---|---|---|---|---|
2 ng | 1 | 17.54 | 17.55 | 0.07 |
2 | 17.48 | |||
3 | 17.62 | |||
200 pg | 1 | 20.97 | 21.02 | 0.04 |
2 | 21.05 | |||
3 | 21.03 | |||
20 pg | 1 | 24.57 | 24.54 | 0.03 |
2 | 24.53 | |||
3 | 24.51 | |||
2 pg | 1 | 27.87 | 27.82 | 0.05 |
2 | 27.78 | |||
3 | 27.82 | |||
200 fg | 1 | 31.21 | 31.47 | 0.23 |
2 | 31.56 | |||
3 | 31.64 | |||
20 fg | 1 | 33.96 | 34.52 | 0.98 |
2 | 35.65 | |||
3 | 33.96 | |||
10 fg | 1 | 36.75 | 35.24 | 1.32 |
2 | 34.64 | |||
3 | 34.33 | |||
5 fg | 1 | - | ND | ND |
2 | - | |||
3 | - | |||
2.5 fg | 1 | - | ND | ND |
2 | 37.16 | |||
3 | - | |||
Control | 1 | - | ND | ND |
2 | - | |||
3 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cigna, J.; Laurent, A.; Waleron, M.; Waleron, K.; Dewaegeneire, P.; van der Wolf, J.; Andrivon, D.; Faure, D.; Hélias, V. European Population of Pectobacterium punjabense: Genomic Diversity, Tuber Maceration Capacity and a Detection Tool for This Rarely Occurring Potato Pathogen. Microorganisms 2021, 9, 781. https://doi.org/10.3390/microorganisms9040781
Cigna J, Laurent A, Waleron M, Waleron K, Dewaegeneire P, van der Wolf J, Andrivon D, Faure D, Hélias V. European Population of Pectobacterium punjabense: Genomic Diversity, Tuber Maceration Capacity and a Detection Tool for This Rarely Occurring Potato Pathogen. Microorganisms. 2021; 9(4):781. https://doi.org/10.3390/microorganisms9040781
Chicago/Turabian StyleCigna, Jérémy, Angélique Laurent, Malgorzata Waleron, Krzysztof Waleron, Pauline Dewaegeneire, Jan van der Wolf, Didier Andrivon, Denis Faure, and Valérie Hélias. 2021. "European Population of Pectobacterium punjabense: Genomic Diversity, Tuber Maceration Capacity and a Detection Tool for This Rarely Occurring Potato Pathogen" Microorganisms 9, no. 4: 781. https://doi.org/10.3390/microorganisms9040781
APA StyleCigna, J., Laurent, A., Waleron, M., Waleron, K., Dewaegeneire, P., van der Wolf, J., Andrivon, D., Faure, D., & Hélias, V. (2021). European Population of Pectobacterium punjabense: Genomic Diversity, Tuber Maceration Capacity and a Detection Tool for This Rarely Occurring Potato Pathogen. Microorganisms, 9(4), 781. https://doi.org/10.3390/microorganisms9040781