Brazilian Coffee Production and the Future Microbiome and Mycotoxin Profile Considering the Climate Change Scenario
Abstract
:1. Introduction
2. Vulnerability of Coffee Production to Climate Change
3. Potential Climate Change Mitigation Strategies
4. Mycotoxins in Coffee in Brazil
5. Ecophysiology of Toxigenic Fungi under Climate Change
6. Post-Harvest Microbial Ecology of Coffee Beans
7. Multi-Omics to Study the Coffee Microbiome in a Climate Change Scenario
8. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- PWC Agribusiness in Brazil: An Overview. Available online: https://www.pwc.com.br/pt/publicacoes/setores-atividade/assets/agribusiness/2013/pwc-agribusiness-brazil-overview-13.pdf (accessed on 12 December 2020).
- The Coffee Guide Trade Practices of Relevance to Exporters in Coffee-Producing Countries. Available online: http://www.thecoffeeguide.org/coffee-guide/world-coffee-trade/production---by-geographical-distribution-and-quality-group/ (accessed on 25 January 2021).
- MAPA. Ministério da Agricultura, P. e A. Café no Brasil. Available online: https://www.gov.br/agricultura/pt-br/assuntos/politica-agricola/cafe/cafeicultura-brasileira (accessed on 12 November 2020).
- DaMatta, F.M.; Ramalho, J.D.C. Impacts of drought and temperature stress on coffee physiology and production: A review. Brazilian J. Plant Physiol. 2006, 18, 55–81. [Google Scholar] [CrossRef]
- Teketay, D. History, botany and ecological requirements of coffee. Walia 1999, 20, 28–50. [Google Scholar]
- Koh, I.; Garrett, R.; Janetos, A.; Mueller, N.D. Climate risks to Brazilian coffee production. Environ. Res. Lett. 2020, 15. [Google Scholar] [CrossRef]
- Ramirez-Villegas, J.; Challinor, A. Assessing relevant climate data for agricultural applications. Agric. For. Meteorol. 2012, 161, 26–45. [Google Scholar] [CrossRef] [Green Version]
- Fischlin, A.; Midgley, G.F.; Price, J.T.; Leemans, R.; Gopal, B.; Turley, C.; Velichko, A.A. Ecosystems, their properties, goods and services. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel of Climate Change; Cambridge University Press: Cambridge, UK, 2007; pp. 211–272. [Google Scholar]
- FAO. The State of Food and Agriculture; FAO: Rome, Italy, 2009. [Google Scholar]
- Schneider, S.H.; Semenov, S.; Patwardhan, A.; Burton, I.; Magadza, C.H.; Oppenheimer, M.; Barrie Pittock, A.; Rahman, A.; Smith, J.B.; Suarez, A.; et al. Assessing key vulnerabilities and the risk from climate change. Clim. Chang. 2007, 19, 779–810. [Google Scholar]
- Desenvolvimento de Uma Economia Cafeeira Sustentável. Available online: http://www.ico.org/sustaindev_e.asp (accessed on 2 January 2021).
- Taniwaki, M.H.; Pitt, J.I.; Copetti, M.V.; Teixeira, A.A.; Iamanaka, B.T. Understanding mycotoxin contamination across the food chain in Brazil: Challenges and opportunities. Toxins (Basel) 2019, 11, 411. [Google Scholar] [CrossRef] [Green Version]
- Baca, M.; Läderach, P.; Haggar, J.; Schroth, G.; Ovalle, O. An integrated framework for assessing vulnerability to climate change and developing adaptation strategies for coffee growing families in mesoamerica. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Fain, S.J.; Quiñones, M.; Álvarez-Berríos, N.L.; Parés-Ramos, I.K.; Gould, W.A. Climate change and coffee: Assessing vulnerability by modeling future climate suitability in the Caribbean island of Puerto Rico. Clim. Chang. 2018, 146, 175–186. [Google Scholar] [CrossRef]
- Jaramillo, J.; Muchugu, E.; Vega, F.E.; Davis, A.; Borgemeister, C.; Chabi-Olaye, A. Some like it hot: The influence and implications of climate change on coffee berry borer (Hypothenemus hampei) and coffee production in East Africa. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [Green Version]
- Rija, A.A.; Mwamende, K.A.; Hassan, S.N. The aftermath of environmental disturbance on the critically endangered Coffea kihansiensis in the Southern Udzungwa Mountains, Tanzania. Trop. Conserv. Sci. 2011, 4, 359–372. [Google Scholar] [CrossRef]
- Tavares, P.S.; Giarolla, A.; Chou, S.C.; Silva, A.J.P.; Lyra, A.A. Climate change impact on the potential yield of Arabica coffee in southeast Brazil. Reg. Environ. Chang. 2018, 18, 873–883. [Google Scholar] [CrossRef]
- Battilani, P.; Toscano, P.; Van Der Fels-Klerx, H.J.; Moretti, A.; Camardo Leggieri, M.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B 1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Battilani, P.; Camardo Leggieri, M. Predictive modelling of aflatoxin contamination to support maize chain management. World Mycotoxin J. 2015, 8, 161–170. [Google Scholar] [CrossRef]
- Atehnkeng, J.; Ojiambo, P.S.; Cotty, P.J.; Bandyopadhyay, R. Field efficacy of a mixture of atoxigenic Aspergillus flavus Link: FR vegetative compatibility groups in preventing aflatoxin contamination in maize (Zea mays L.). Biol. Control 2014, 72, 62–70. [Google Scholar] [CrossRef]
- Mehl, H.L.; Jaime, R.; Callicott, K.A.; Probst, C.; Garber, N.P.; Ortega-Beltran, A.; Grubisha, L.C.; Cotty, P.J. Aspergillus flavus diversity on crops and in the environment can be exploited to reduce aflatoxin exposure and improve health. Ann. N. Y. Acad. Sci. 2012, 1273, 7–17. [Google Scholar] [CrossRef]
- Camargo, M.B.P. The impact of climatic variability and climate change on arabic coffee crop in Brazil. Bragantia 2010, 69, 239–247. [Google Scholar] [CrossRef]
- Bongase, E.D. Impacts of climate change on global coffee production industry: Review. Afr. J. Agric. Res. 2017, 12, 1607–1611. [Google Scholar] [CrossRef] [Green Version]
- DaMatta, F.M.; Rahn, E.; Läderach, P.; Ghini, R.; Ramalho, J.C. Why could the coffee crop endure climate change and global warming to a greater extent than previously estimated? Clim. Chang. 2019, 152, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Läderach, P.; Ramirez–Villegas, J.; Navarro-Racines, C.; Zelaya, C.; Martinez–Valle, A.; Jarvis, A. Climate change adaptation of coffee production in space and time. Clim. Chang. 2017, 141, 47–62. [Google Scholar] [CrossRef] [Green Version]
- De Sousa, K.; van Zonneveld, M.; Holmgren, M.; Kindt, R.; Ordoñez, J.C. The future of coffee and cocoa agroforestry in a warmer Mesoamerica. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Batista, L.R.; Chalfoun, S.M.; Prado, G.; Schwan, R.F.; Wheals, A.E. Toxigenic fungi associated with processed (green) coffee beans (Coffea arabica L.). Int. J. Food Microbiol. 2003, 85, 293–300. [Google Scholar] [CrossRef]
- Silva, C.F.; Schwan, R.F.; Dias, S.; Wheals, A.E. Microbial diversity during maturation and natural processing of coffee cherries of Coffea arabica in Brazil. Int. J. Food Microbiol. 2000, 60, 251–260. [Google Scholar] [CrossRef]
- Vieira, T.; Cunha, S.; Casal, S. Mycotoxins in Coffee. In Coffee in Health and Disease Prevention; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 225–233. ISBN 9780124167162. [Google Scholar]
- FAO. Guidelines for the Prevention of Mould Formation in Coffee; FAO: Rome, Italy, 2006. [Google Scholar]
- Taniwaki, M.H.; Pitt, J.I.; Magan, N. Aspergillus species and mycotoxins: Occurrence and importance in major food commodities. Curr. Opin. Food Sci. 2018, 23, 38–43. [Google Scholar] [CrossRef] [Green Version]
- FAO. Discussion Paper on Ochratoxin a in Coffee Background; FAO: Rome, Italy, 2008. [Google Scholar]
- ANVISA Instrução Normativa n° 88, de 26 de Março de 2021. Estabelece os Limites Máximos Tolerados (LMT) de Contaminantes em Alimentos. Available online: https://www.in.gov.br/en/web/dou/-/instrucao-normativa-in-n-88-de-26-de-marco-de-2021-311655598 (accessed on 15 April 2021).
- Paterson, R.R.M.; Lima, N. How will climate change affect mycotoxins in food? Food Res. Int. 2010, 43, 1902–1914. [Google Scholar] [CrossRef] [Green Version]
- Batista, L.R.; Chalfoun, S.M.; Silva, C.F.; Cirillo, M.; Varga, E.A.; Schwan, R.F. Ochratoxin A in coffee beans (Coffea arabica L.) processed by dry and wet methods. Food Control 2009, 20, 784–790. [Google Scholar] [CrossRef]
- Taniwaki, M.H.; Teixeira, A.A.; Teixeira, A.R.R.; Copetti, M.V.; Iamanaka, B.T. Ochratoxigenic fungi and ochratoxin A in defective coffee beans. Food Res. Int. 2014, 61, 161–166. [Google Scholar] [CrossRef]
- Sousa, T.M.A.; Batista, L.R.; Passamani, F.R.F.; Lira, N.A.; Cardoso, M.G.; Santiago, W.D.; Chalfoun, S.M. Evaluation of the effects of temperature on processed coffee beans in the presence of fungi and ochratoxin A. J. Food Saf. 2019, 39. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization: WHO Aflatoxins. Dep. Food Saf. Zoonoses 2018.
- Paterson, R.R.M.; Lima, N. Further mycotoxin effects from climate change. Food Res. Int. 2011, 44, 2555–2566. [Google Scholar] [CrossRef] [Green Version]
- Ferreira Silva, C.; Roberto Batista, L.; Freitas Schwan, R. Incidence and distribution of filamentous fungi during fermentation, drying and storage of coffee (Coffea arabica L.) beans. Braz. J. Microbiol. 2008, 39, 521–526. [Google Scholar] [CrossRef] [Green Version]
- Mshelia, L.P.; Selamat, J.; Samsudin, N.I.P.; Rafii, M.Y.; Abdul Mutalib, N.A.; Nordin, N.; Berthiller, F. Effect of temperature, water activity and carbon dioxide on fungal growth and mycotoxin production of acclimatised isolates of fusarium verticillioides and F. Graminearum. Toxins (Basel) 2020, 12, 478. [Google Scholar] [CrossRef]
- Marín, P.; Magan, N.; Vázquez, C.; González-Jaén, M.T. Differential effect of environmental conditions on the growth and regulation of the fumonisin biosynthetic gene FUM1 in the maize pathogens and fumonisin producers Fusarium verticillioides and Fusarium proliferatum. FEMS Microbiol. Ecol. 2010, 73, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Magan, N.; Medina, A.; Aldred, D. Possible climate-change effects on mycotoxin contamination of food crops pre- and postharvest. Plant Pathol. 2011, 60, 150–163. [Google Scholar] [CrossRef]
- Cairns-Fuller, V.; Aldred, D.; Magan, N. Water, temperature ans gas composition interactions affect growth and ochratoxin A production by isolates of penicillium verrucosum on wheat grain. J. Appl. Microbiol. 2005, 99, 1215–1221. [Google Scholar] [CrossRef]
- Pardo, E.; Marin, S.; Ramos, A.J.; Sanchis, V. Effect of Water Activity and Temperature on Mycelial Growth and Ochratoxin A Production by Isolates of Aspergillus ochraceus on Irradiated Green Coffee Beans. J. Food Prot. 2005, 68, 133–138. [Google Scholar] [CrossRef]
- Bellí, N.; Ramos, A.J.; Sanchis, V.; Marín, S. Incubation time and water activity effects on ochratoxin A production by Aspergillus section Nigri strains isolated from grapes. Lett. Appl. Microbiol. 2004, 38, 72–77. [Google Scholar] [CrossRef]
- Mitchell, D.; Parra, R.; Aldred, D.; Magan, N. Water and temperature relations of growth and ochratoxin A production by Aspergillus carbonarius strains from grapes in Euroe and Israel. J. Appl. Microbiol. 2004, 97, 439–445. [Google Scholar] [CrossRef]
- Medina, Á.; Rodriguez, A.; Sultan, Y.; Magan, N. Climate change factors and Aspergillus flavus: Effects on gene expression, growth and afaltoxin production. World Mycotoxin J. 2015, 8, 171–179. [Google Scholar] [CrossRef]
- Medina, A.; Akbar, A.; Baazeem, A.; Rodriguez, A.; Magan, N. Climate change, food security and mycotoxins: Do we know enough? Fungal Biol. Rev. 2017, 31, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Perrone, G.; Ferrara, M.; Medina, A.; Pascale, M.; Magan, N. Toxigenic fungi and mycotoxins in a climate change scenario: Ecology, genomics, distribution, prediction and prevention of the risk. Microorganisms 2020, 8, 1496. [Google Scholar] [CrossRef]
- Arias, R.M.; Abarca, G.H. Fungal diversity in coffee plantation systems and in a tropical montane cloud forest in Veracruz, Mexico. Agrofor. Syst. 2014, 88, 921–933. [Google Scholar] [CrossRef]
- Casas-Junco, P.P.; Ragazzo-Sánchez, J.A.; Ascencio-Valle, F. de J.; Calderón-Santoyo, M. Determination of potentially mycotoxigenic fungi in coffee (Coffea arabica L.) from Nayarit. Food Sci. Biotechnol. 2018, 27, 891–898. [Google Scholar] [CrossRef]
- Masoud, W.; Cesar, L.B.; Jespersen, L.; Jakobsen, M. Yeast involved in fermentation of Coffea arabica in East Africa determined by genotyping and by direct denaturating gradient gel electrophoresis. Yeast 2004, 21, 549–556. [Google Scholar] [CrossRef]
- Oliveira, M.N.V.; Santos, T.M.A.; Vale, H.M.M.; Delvaux, J.C.; Cordero, A.P.; Ferreira, A.B.; Miguel, P.S.B.; Tótola, M.R.; Costa, M.D.; Moraes, C.A.; et al. Endophytic microbial diversity in coffee cherries of coffea arabica from southeastern Brazil. Can. J. Microbiol. 2013, 59, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Júnior, P.P.; da Silva, M.d.C.S.; Reis Veloso, T.G.; Stürmer, S.L.; Alves Fernandes, R.B.; De Sá Mendonça, E.; Megumi Kasuya, M.C. Agroecological coffee management increases arbuscular mycorrhizal fungi diversity. PLoS ONE 2019, 14. [Google Scholar] [CrossRef] [Green Version]
- Lundberg, D.S.; Yourstone, S.; Mieczkowski, P.; Jones, C.D.; Dangl, J.L. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 2013, 10, 999–1002. [Google Scholar] [CrossRef]
- Mao, D.-P.; Zhou, Q.; Chen, C.-Y.; Quan, Z.-X. Coverage evaluation of universal bacterial primers using the metagenomic datasets. BMC Microbiol. 2012, 12. [Google Scholar] [CrossRef] [Green Version]
- Lucaciu, R.; Pelikan, C.; Gerner, S.M.; Zioutis, C.; Köstlbacher, S.; Marx, H.; Herbold, C.W.; Schmidt, H.; Rattei, T. A Bioinformatics Guide to Plant Microbiome Analysis. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Quince, C.; Walker, A.W.; Simpson, J.T.; Loman, N.J.; Segata, N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 2017, 35, 833–844. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.J.; De Bruyn, F.; Pothakos, V.; Contreras, G.F.; Cai, Z.; Moccand, C.; Weckx, S.; De Vuyst, L. Influence of Various Processing Parameters on the Microbial Community Dynamics, Metabolomic Profiles, and Cup Quality During Wet Coffee Processing. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef]
- de Melo Pereira, G.V.; de Carvalho Neto, D.P.; Magalhães Júnior, A.I.; Vásquez, Z.S.; Medeiros, A.B.P.; Vandenberghe, L.P.S.; Soccol, C.R. Exploring the impacts of postharvest processing on the aroma formation of coffee beans–A review. Food Chem. 2019, 272, 441–452. [Google Scholar] [CrossRef]
- Caldwell, A.C.; Silva, L.C.F.; Da Silva, C.C.; Ouverney, C.C. Prokaryotic diversity in the rhizosphere of organic, intensive, and transitional coffee farms in Brazil. PLoS ONE 2015, 10. [Google Scholar] [CrossRef]
- Lamelas, A.; Desgarennes, D.; López-Lima, D.; Villain, L.; Alonso-Sánchez, A.; Artacho, A.; Latorre, A.; Moya, A.; Carrión, G. The Bacterial Microbiome of Meloidogyne-Based Disease Complex in Coffee and Tomato. Front. Plant Sci. 2020, 11. [Google Scholar] [CrossRef]
- Veloso, T.G.R.; da Silva, M.d.C.S.; Cardoso, W.S.; Guarçoni, R.C.; Kasuya, M.C.M.; Pereira, L.L. Effects of environmental factors on microbiota of fruits and soil of Coffea arabica in Brazil. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Fulthorpe, R.; Martin, A.R.; Isaac, M.E. Root endophytes of coffee (Coffea arabica): Variation across climatic gradients and relationships with functional traits. Phytobiomes J. 2020, 4, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Duong, B.; Marraccini, P.; Maeght, J.L.; Vaast, P.; Lebrun, M.; Duponnois, R. Coffee Microbiota and Its Potential Use in Sustainable Crop Management. A Review. Front. Sustain. Food Syst. 2020, 4. [Google Scholar] [CrossRef]
- Medina, A.; Gilbert, M.K.; Mack, B.M.; OBrian, G.R.; Rodríguez, A.; Bhatnagar, D.; Payne, G.; Magan, N. Interactions between water activity and temperature on the Aspergillus flavus transcriptome and aflatoxin B1 production. Int. J. Food Microbiol. 2017, 256, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Cabrera-rodríguez, A.; Trejo-calzada, R.; Peña, C.G.; Arreola-ávila, J.G.; Nava-reyna, E.; Vaca-paniagua, F.; Díaz-velásquez, C. RESEARCH ARTICLE A metagenomic approach in the evaluation of the soil microbiome in coffee plantations under organic and conventional production in tropical agroecosystems. Emir. J. Food Agric. 2020, 32, 263–270. [Google Scholar] [CrossRef]
- De Bruyn, F.; Zhang, S.J.; Pothakos, V.; Torres, J.; Lambot, C.; Moroni, A.V.; Callanan, M.; Sybesma, W.; Weckx, S.; De Vuyst, L. Exploring the impacts of postharvest processing on the microbiota and metabolite profiles during green coffee bean production. Appl. Environ. Microbiol. 2017, 83. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, L.; Butcher, J.; Stintzi, A.; Figeys, D. Advancing functional and translational microbiome research using meta-omics approaches. Microbiome 2019, 7. [Google Scholar] [CrossRef]
- Pothakos, V.; De Vuyst, L.; Zhang, S.J.; De Bruyn, F.; Verce, M.; Torres, J.; Callanan, M.; Moccand, C.; Weckx, S. Temporal shotgun metagenomics of an Ecuadorian coffee fermentation process highlights the predominance of lactic acid bacteria. Curr. Res. Biotechnol. 2020, 2, 1–15. [Google Scholar] [CrossRef]
- de Carvalho Neto, D.P.; de Melo Pereira, G.V.; de Carvalho, J.C.; Soccol, V.T.; Soccol, C.R. High-throughput rRNA gene sequencing reveals high and complex bacterial diversity associated with brazilian coffee bean fermentation. Food Technol. Biotechnol. 2018, 56, 90–95. [Google Scholar] [CrossRef]
- Da Silva Vale, A.; De Melo Pereira, G.V.; De Carvalho Neto, D.P.; Sorto, R.D.; Goés-Neto, A.; Kato, R.; Soccol, C.R. Facility-specific ‘house’ microbiome ensures the maintenance of functional microbial communities into coffee beans fermentation: Implications for source tracking. Environ. Microbiol. Rep. 2021. [Google Scholar] [CrossRef]
- Broissin-Vargas, L.M.; Snell-Castro, R.; Godon, J.J.; González-Ríos, O.; Suárez-Quiroz, M.L. Impact of storage conditions on fungal community composition of green coffee beans Coffea arabica L. stored in jute sacks during 1 year. J. Appl. Microbiol. 2018, 124, 547–558. [Google Scholar] [CrossRef]
- de Oliveira Junqueira, A.C.; de Melo Pereira, G.V.; Coral Medina, J.D.; Alvear, M.C.R.; Rosero, R.; de Carvalho Neto, D.P.; Enríquez, H.G.; Soccol, C.R. First description of bacterial and fungal communities in Colombian coffee beans fermentation analysed using Illumina-based amplicon sequencing. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Elhalis, H.; Cox, J.; Zhao, J. Ecological diversity, evolution and metabolism of microbial communities in the wet fermentation of Australian coffee beans. Int. J. Food Microbiol. 2020, 321. [Google Scholar] [CrossRef]
- Elhalis, H.; Cox, J.; Frank, D.; Zhao, J. The crucial role of yeasts in the wet fermentation of coffee beans and quality. Int. J. Food Microbiol. 2020, 333. [Google Scholar] [CrossRef]
- Zhang, S.J.; De Bruyn, F.; Pothakos, V.; Torres, J.; Falconi, C.; Moccand, C.; Weckx, S.; De Vuyst, L.; Björkroth, J. Following Coffee Production from Cherries to Cup: Microbiological and Metabolomic Analysis of Wet Processing of Coffea arabica. Appl. Environ. Microbiol. 2019, 85. [Google Scholar] [CrossRef] [Green Version]
- Venancio, L.P.; Filgueiras, R.; Mantovani, E.C.; do Amaral, C.H.; da Cunha, F.F.; dos Santos Silva, F.C.; Althoff, D.; dos Santos, R.A.; Cavatte, P.C. Impact of drought associated with high temperatures on Coffea canephora plantations: A case study in Espírito Santo State, Brazil. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Kath, J.; Byrareddy, V.M.; Craparo, A.; Nguyen-Huy, T.; Mushtaq, S.; Cao, L.; Bossolasco, L. Not so robust: Robusta coffee production is highly sensitive to temperature. Glob. Chang. Biol. 2020, 26, 3677–3688. [Google Scholar] [CrossRef]
- Ghini, R.; Torre-Neto, A.; Dentzien, A.F.M.; Guerreiro-Filho, O.; Iost, R.; Patrício, F.R.A.; Prado, J.S.M.; Thomaziello, R.A.; Bettiol, W.; DaMatta, F.M. Coffee growth, pest and yield responses to free-air CO2 enrichment. Clim. Chang. 2015, 132, 307–320. [Google Scholar] [CrossRef]
- Adhikari, M.; Isaac, E.L.; Paterson, R.R.M.; Maslin, M.A. A review of potential impacts of climate change on coffee cultivation and mycotoxigenic fungi. Microorganisms 2020, 8, 1625. [Google Scholar] [CrossRef]
- Dubberstein, D.; Rodrigues, W.P.; Semedo, J.N.; Rodrigues, A.P.; Pais, I.P.; Leitão, A.E.; Partelli, F.L.; Campostrini, E.; Reboredo, F.; Scotti-Campos, P.; et al. Mitigation of the Negative Impact of Warming on the Coffee Crop: The Role of Increased Air [CO2] and Management Strategies. In Climate Resilient Agriculture—Strategies and Perspectives; InTech: Vienna, Austria, 2018. [Google Scholar]
- Ramalho, J.C.; Pais, I.P.; Leitão, A.E.; Guerra, M.; Reboredo, F.H.; Máguas, C.M.; Carvalho, M.L.; Scotti-Campos, P.; Ribeiro-Barros, A.I.; Lidon, F.J.C.; et al. Can elevated air [CO2] conditions mitigate the predicted warming impact on the quality of coffee bean? Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Eshelli, M.; Qader, M.M.; Jambi, E.J.; Hursthouse, A.S.; Rateb, M.E. Current status and future opportunities of omics tools in mycotoxin research. Toxins (Basel) 2018, 10, 433. [Google Scholar] [CrossRef] [Green Version]
- López-Mondéjar, R.; Kostovčík, M.; Lladó, S.; Carro, L.; García-Fraile, P. Exploring the plant microbiome through multi-omics approaches. In Probiotics in Agroecosystem; Springer: Singapore, 2017; pp. 233–268. ISBN 9789811040597. [Google Scholar]
- Aditiawati, P.; Astuti, D.I.; Kriswantoro, J.A.; Khanza, S.M.; Kamarisima; Irifune, T.; Amalia, F.; Fukusaki, E.; Putri, S.P. GC/MS-based metabolic profiling for the evaluation of solid state fermentation to improve quality of Arabica coffee beans. Metabolomics 2020, 16. [Google Scholar] [CrossRef]
- Florez, J.C.; Mofatto, L.S.; do Livramento Freitas-Lopes, R.; Ferreira, S.S.; Zambolim, E.M.; Carazzolle, M.F.; Zambolim, L.; Caixeta, E.T. High throughput transcriptome analysis of coffee reveals prehaustorial resistance in response to Hemileia vastatrix infection. Plant Mol. Biol. 2017, 95, 607–623. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Guo, Z.; Zhong, H.; Wang, S.; Yang, W.; Liu, Y.; Wang, S. RNA-seq-based transcriptome analysis of aflatoxigenic Aspergillus flavus in response to water activity. Toxins (Basel) 2014, 6, 3187–3207. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Fedorova, N.D.; Montalbano, B.G.; Bhatnagar, D.; Cleveland, T.E.; Bennett, J.W.; Nierman, W.C. Tight control of mycotoxin biosynthesis gene expression in Aspergillus flavus by temperature as revealed by RNA-Seq. FEMS Microbiol. Lett. 2011, 322, 145–149. [Google Scholar] [CrossRef] [Green Version]
- Musungu, B.M.; Bhatnagar, D.; Brown, R.L.; Payne, G.A.; OBrian, G.; Fakhoury, A.M.; Geisler, M. A network approach of gene co-expression in the Zea mays/Aspergillus flavus pathosystem to map host/pathogen interaction pathways. Front. Genet. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, M.K.; Mack, B.M.; Payne, G.A.; Bhatnagar, D. Use of functional genomics to assess the climate change impact on Aspergillus flavus and aflatoxin production. World Mycotoxin J. 2016, 9, 665–672. [Google Scholar] [CrossRef]
- Gilbert, M.K.; Medina, A.; Mack, B.M.; Lebar, M.D.; Rodríguez, A.; Bhatnagar, D.; Magan, N.; Obrian, G.; Payne, G. Carbon dioxide mediates the response to temperature and water activity levels in Aspergillus flavus during infection of Maize Kernels. Toxins (Basel) 2018, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Verce, M.; Schoonejans, J.; Hernandez Aguirre, C.; Molina-Bravo, R.; De Vuyst, L.; Weckx, S. A Combined Metagenomics and Metatranscriptomics Approach to Unravel Costa Rican Cocoa Box Fermentation Processes Reveals Yet Unreported Microbial Species and Functionalities. Front. Microbiol. 2021, 12. [Google Scholar] [CrossRef]
- González-Fernández, R.; Prats, E.; Jorrín-Novo, J.V. Proteomics of plant pathogenic fungi. J. Biomed. Biotechnol. 2010, 2010. [Google Scholar] [CrossRef] [Green Version]
- Crespo-Sempere, A.; Gil, J.V.; Martínez-Culebras, P.V. Proteome analysis of the fungus Aspergillus carbonarius under ochratoxin A producing conditions. Int. J. Food Microbiol. 2011, 147, 162–169. [Google Scholar] [CrossRef]
- Paterson, R.R.M.; Lima, N.; Taniwaki, M.H. Coffee, mycotoxins and climate change. Food Res. Int. 2014, 61, 1–15. [Google Scholar] [CrossRef]
Type of Study | Location | Negative Scenario | Mitigation Strategy | References |
---|---|---|---|---|
Review article | Brazil | Strong decrease in coffee production and productivity in Brazil. | The coffee crop will tend to move south and to uphill regions. | [22] |
Review article | Worldwide | Coffee supply chains will be affected by significant disruption; coffee production will decrease globally; Increase in the price of coffee. | Actions to reduce greenhouse gas emissions are mandatory. | [23] |
Review article | Worldwide | Coffee plant’s physiological performance at elevated atmospheric carbon dioxide (CO2) concentration | Suitability of coffee may be lower than previously assumed. Priorities for further research to improve understanding on how the coffee plant will respond to present and progressive climate change. | [24] |
Analysis of climate data. Modeling and validation of climate suitability. | Nicaragua | Sensitivity of Coffea arabica and the likely impact of climate change on coffee suitability, yield, increased pest and disease pressure and farmers’ livelihoods. | Lower altitudes, whereas the same areas may undergo transformative adaptation in the long term. At higher elevations incremental adaptation may be needed in the long term. | [25] |
Integrating trees in combined agroforestry systems to ameliorate abiotic stress. | Mesoamerica | Significant reductions in coffee and cocoa agroforestry production areas. | Transforming agroforestry systems by changing tree species composition may be the best approach to adapt most of the coffee and cocoa production areas. Urgency for land use planning considering climate change effects and to assess new combinations of agroforestry species in coffee and cocoa plantations. | [26] |
Coffee Species | Location | Study Design | NGS Strategy | References |
---|---|---|---|---|
Coffea arabica L. var. typica | Nanegal, Ecuador | Evaluation of two different wet and dry post-harvest methods on microbial community structure and metabolite profiles over a 15 and 28 day time period, respectively. | Targeted Amplicon Sequencing; Illumina MiSeq sequencing of the V4 region of 16S rRNA (bacteria) and ITS1 region (fungi). | [69] |
Coffea arabica L. | Veracruz, Mexico | Evaluation of storage of green coffee beans in jute bags for one year with sampling once a month. | Targeted Amplicon Sequencing; Illumina MiSeq sequencing of the V4 variable region of 18S rRNA gene (fungi). | [74] |
Coffea arabica var. Catuaí | Cerrado Mineiro, Minas Gerais, Brazil | Evaluation of bacterial community composition at 0, 12 and 24 h of fermentation. | Targeted Amplicon Sequencing; Illumina MiSeq sequencing of the V3 region of 16S rRNA (bacteria only). | [72] |
Coffea arabica L. | Buesaco, Colombia | Evaluation of microbial communities in liquid fraction of "washed" fermenting coffee bean at 0, 6, 12, 18, 24, 36 and 48 h. | Targeted Amplicon Sequencing; Illumina based sequencing of V4 region both of 16S and 18S rRNA genes (bacteria and fungi, respectively). | [75] |
Coffea arabica L. var. Typica | Nanegal, Ecuador | Evaluation of microbial community profile, metabolites and bean chemistry during the entire wet processing chain and evaluated sensory quality of final coffee product. | Targeted Amplicon Sequencing; Illumina MiSeq sequencing of the V4 region of 16S rRNA gene (bacteria) and ITS1 region of the 26S gene (fungi). | [78] |
Coffea arabica var. Catimor | Yunnan, China | Compared effect of demucilaging and depulping, fermentation duration and soaking on the microbial community composition and meta-metabolomic profiles. | Targeted Amplicon Sequencing (see Zhang et al., 2019a) AND Shotgun Metagenomics | [60] |
Coffea arabica var. Bourbon | Teven, Australia | Evaluation of microbial composition during wet fermentation over time (36 h). | Targeted Amplicon Sequencing; Illumina MiSeq sequencing of the V3-V4 region of 16S rRNA gene (bacteria) and ITS region of the 26S gene (fungi). | [76] |
Coffea arabica L. var. Typica | Nanegal, Ecuador | Evaluation of microbial dynamics during wet fermentation comparing standard (16 h) and extended (64 h) protocols. | Shotgun metagenomics, Illumina MiSeq | [71] |
Coffea arabica var. Bourbon | Teven, Australia | Evaluation of role of yeasts during wet fermentation by adding Natamycin, a food-grade anti-fungal agent. | Targeted Amplicon Sequencing; Illumina MiSeq sequencing of the V3-V4 region of 16S rRNA gene (bacteria) and ITS region of the 26S gene (fungi). | [77] |
Coffea sp. | Teupasenti, Honduras | Evaluation of coffee farm microbiome and contribution to fermentation | Targeted Amplicon Sequencing; Illumina sequencing of 16S (Bacteria) and 18S rRNA gene (Fungi) | [73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, D.G.; Coelho, C.C.d.S.; Ferreira, A.B.R.; Freitas-Silva, O. Brazilian Coffee Production and the Future Microbiome and Mycotoxin Profile Considering the Climate Change Scenario. Microorganisms 2021, 9, 858. https://doi.org/10.3390/microorganisms9040858
dos Santos DG, Coelho CCdS, Ferreira ABR, Freitas-Silva O. Brazilian Coffee Production and the Future Microbiome and Mycotoxin Profile Considering the Climate Change Scenario. Microorganisms. 2021; 9(4):858. https://doi.org/10.3390/microorganisms9040858
Chicago/Turabian Styledos Santos, Deiziane Gomes, Caroline Corrêa de Souza Coelho, Anna Beatriz Robottom Ferreira, and Otniel Freitas-Silva. 2021. "Brazilian Coffee Production and the Future Microbiome and Mycotoxin Profile Considering the Climate Change Scenario" Microorganisms 9, no. 4: 858. https://doi.org/10.3390/microorganisms9040858
APA Styledos Santos, D. G., Coelho, C. C. d. S., Ferreira, A. B. R., & Freitas-Silva, O. (2021). Brazilian Coffee Production and the Future Microbiome and Mycotoxin Profile Considering the Climate Change Scenario. Microorganisms, 9(4), 858. https://doi.org/10.3390/microorganisms9040858