Early Emergence of Dickeya solani Revealed by Analysis of Dickeya Diversity of Potato Blackleg and Soft Rot Causing Pathogens in Switzerland
Abstract
:1. Introduction
2. Material and Methods
2.1. Bacterial Strains, Culture Conditions, DNA Extraction and Species Identification
2.2. Genome Sequencing and Assembly
2.3. Genome Analysis
2.4. Aggressiveness Assays
3. Results
3.1. The Swiss Collection of E. chrysanthemi
3.2. Diversity of the Pectinolytic Dickeya Isolated in Switzerland
3.3. Genomic Analysis of the Early D. solani
3.4. Aggressiveness of Early D. solani
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van der Wolf, J.M.; De Boer, S.H. Bacterial pathogens of potato. In Potato Biology and Biotechnology: Advances and Perspectives; Vreugdenhil, D., Ed.; Elsevier: Oxford, UK, 2007; pp. 595–617. [Google Scholar]
- van der Wolf, J.M.; Acuña, I.; De Boer, S.H.; Brurberg, M.H.; Cahill, G.; Charkowski, A.O.; Coutinho, T.; Davey, T.; Dees, M.W.; Degefu, Y.Y.; et al. Diseases Caused by Pectobacterium and Dickeya Species Around the World. In Plant Diseases Caused by Pectobacterium and Dickeya Species; Van Gijsegem, F., van der Wolf, J.M., Toth, I.K., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 215–262. [Google Scholar]
- Charkowski, A.; Blanco, C.; Condemine, G.; Expert, D.; Franza, T.; Hayes, C.; Hugouvieux-Cotte-Pattat, N.; López Solanilla, E.; Low, D.; Moleleki, L.; et al. The role of secretion systems and small molecules in soft-rot Enterobacteriaceae pathogenicity. Annu. Rev. Phytopathol. 2012, 50, 425–449. [Google Scholar] [CrossRef] [Green Version]
- Reverchon, S.; Nasser, W. Dickeya ecology, environment sensing and regulation of virulence programme. Environ. Microbiol. Rep. 2013, 5, 622–636. [Google Scholar]
- Van Gijsegem, F.; Hugouvieux-Cotte-Pattat, N.; Kraepiel, Y.; Lojkowska, E.; Moleleki, L.; Gorshkov, V.; Yedidia, I. Molecular interactions of Pectobacterium and Dickeya with plants. In Plant Diseases Caused by Pectobacterium and Dickeya Species; Van Gijsegem, F., van der Wolf, J.M., Toth, I.K., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 85–148. [Google Scholar]
- Pérombelon, M.C.M. Potato diseases caused by soft rot erwinias: An overview of pathogenesis. Plant Pathol. 2002, 51, 1–12. [Google Scholar]
- Toth, I.K.; van der Wolf, J.M.; Saddler, G.; Lojkowska, E.; Hélias, V.; Pirhonen, M.; Tsror (Lahkim), L.; Elphinstone, J.G. Dickeya species: An emerging problem for potato production in Europe. Plant Pathol. 2011, 60, 385–399. [Google Scholar] [CrossRef]
- Parkinson, N.; Stead, D.; Bew, J.; Heeney, J.; Tsror, L.; Elphinstone, J. Dickeya species relatedness and clade structure determined by comparison of recA sequences. Int. J. Syst. Bacteriol. 2009, 59, 2388–2393. [Google Scholar] [CrossRef] [Green Version]
- Sławiak, M.; van Beckhoven, J.R.C.M.; Speksnijder, A.G.C.L.; Czajkowski, R.; Grabe, G.; van der Wolf, J.M. Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. Eur. J. Plant Pathol. 2009, 125, 245–261. [Google Scholar] [CrossRef]
- Hellmers, E. Four wilt diseases of perpetual flowering carnations in Denmark. Dansk Botanisk Arkiv. 1958, 18, 95–140. [Google Scholar]
- Czajkowski, R.; Grabe, G.J.; van der Wolf, J.M. Distribution of Dickeya spp. and Pectobacterium carotovorum subsp. carotovorum in naturally infected seed potatoes. Eur. J. Plant Pathol. 2009, 125, 263–275. [Google Scholar] [CrossRef]
- Tsror, L.; Erlich, O.; Lebiush, S.; Hazanovsky, M.; Zig, U.; Slawiak, M.; Grabe, G.; van der Wolf, J.M.; Van de Haar, J.J. Assessment of recent outbreaks of Dickeya sp. (syn. Erwinia chrysanthemi) slow wilt in potato crops in Israel. Eur. J. Plant Pathol. 2009, 123, 311–320. [Google Scholar] [CrossRef]
- Van der Wolf, J.M.; Nijhuis, E.H.; Kowalewska, M.J.; Saddler, G.S.; Parkinson, N.; Elphinstone, J.G.; Pritchard, L.; Toth, I.K.; Lojkowska, E.; Potrykus, M.; et al. Dickeya solani sp. nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum tuberosum). Int. J. Syst. Evol. Microbiol. 2014, 64, 768–774. [Google Scholar] [CrossRef] [Green Version]
- Cazelles, O.; Schwarzel, R. Survey of bacterial diseases caused by Erwinia in seed potato fields in western Switzerland. Rev. Suisse Agric. 1992, 24, 215–218. [Google Scholar]
- de Werra, P.; Bussereau, F.; Kellenberger, I.; Dupuis, B.; Schaerer, S.; Keiser, A. Pomme de terre: L’Empire Pectobacterium contre-attaque. Rech. Agron. Suisse 2015, 6, 256–263. [Google Scholar]
- Cigna, J.; Dewaegeneire, P.; Beury, A.; Gobert, V.; Faure, D. A gapA PCR-sequencing Assay for Identifying the Dickeya and Pectobacterium Potato Pathogens. Plant Dis. 2017, 101, 1278–1282. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Castresana, J. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Neii, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar]
- Gouy, M.; Guindon, S.; Gascuel, O. SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. In Molecular Biology and Evolution; Oxford University Press: Oxford, UK, 2010; Volume 27, pp. 221–224. [Google Scholar]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Delcher, A.L.; Harmon, D.; Kasif, S.; White, O.; Salzberg, S.L. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 1999, 27, 4636–4641. [Google Scholar] [CrossRef]
- Pritchard, L.; Glover, R.H.; Humphris, S.; Elphinstone, J.G.; Toth, I.K. Genomics and taxonomy in diagnostics for food security: Soft-rotting enterobacterial plant pathogens. Anal. Methods 2016, 8, 12–24. [Google Scholar] [CrossRef]
- Miele, V.; Penel, S.; Duret, L. Ultra-fast sequence clustering from similarity networks with SiLiX. BMC Bioinform. 2011, 12, 116. [Google Scholar] [CrossRef] [Green Version]
- Cazelles, O. Survey of Dickeya on potato in Switzerland. In Proceedings of the EAPR 11th Triennial Conference, Edinburgh, UK, 8–13 July 1990; pp. 325–326. [Google Scholar]
- Portier, P.; Pédron, J.; Taghouti, G.; Fischer-Le Saux, M.; Caullireau, E.; Bertrand, C.; Laurent, A.; Chawki, K.; Oulgazi, S.; Moumni, M.; et al. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. Int. J. Syst. Evol. Microbiol. 2019, 69, 3207–3216. [Google Scholar] [PubMed]
- Khayi, S.; Cigna, J.; Chong, T.; Quêtu-Laurent, A.; Chan, K.; Helias, V.; Faure, D. Transfer of the potato plant isolates of Pectobacterium wasabiae to Pectobacterium parmentieri sp. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 5379–5383. [Google Scholar] [CrossRef]
- Motyka-Pomagruk, A.; Zoledowska, S.; Sledz, W.; Lojkowska, E. The occurrence of bacteria from different species of Pectobacteriaceae on seed potato plantations in Poland. Eur. J. Plant Pathol. 2021, 159, 309–325. [Google Scholar] [CrossRef]
- Martinez, R.J.; Bruce, D.; Detter, C.; Goodwin, L.A.; Han, J.; Han, C.S.; Held, B.; Land, M.L.; Mikhailova, N.; Nolan, M.; et al. Complete Genome Sequence of Rahnella aquatilis CIP 78. J. Bacteriol. 2012, 194, 3020–3021. [Google Scholar] [CrossRef] [Green Version]
- Khayi, S.; Blin, P.; Pédron, J.; Chong, T.M.; Chan, K.G.; Moumni, M.; Hélias, V.; Van Gijsegem, F.; Faure, D. Population genomics reveals additive and replacing horizontal gene transfers in the emerging pathogen Dickeya solani. BMC Genom. 2015, 16, 788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pédron, J.; Mondy, S.; Raoul des Essarts, Y.; Van Gijsegem, F.; Faure, D. Genomic and metabolic comparison with Dickeya dadantii 3937 reveals the emerging Dickeya solani potato pathogen to display distinctive metabolic activities and T5SS/T6SS-related toxin repertoire. BMC Genom. 2014, 15, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raoul des Essarts, Y.; Pédron, J.; Blin, P.; Van Dijk, E.; Faure, D.; Van Gijsegem, F. Common and distinctive adaptive traits expressed in Dickeya dianthicola and Dickeya solani pathogens when exploiting potato plant host. Environ. Microbiol. 2019, 21, 1004–1018. [Google Scholar] [CrossRef] [PubMed]
- Golanowska, M.; Potrykus, M.; Motyka-Pomagruk, A.; Kabza, M.; Bacci, G.; Galardini, M.; Bazzicalupo, M.; Makalowska, I.; Smalla, K.; Lojkowska, E.; et al. Comparison of highly and weakly virulent Dickeya solani strains, with a view on the pangenome and panregulon of this species. Front. Microbiol. 2018, 9, 1940. [Google Scholar] [CrossRef] [Green Version]
- Pédron, J.; Van Gijsegem, F. Diversity in the Bacterial Genus Dickeya Grouping Plant Pathogens and Waterways Isolates. OBM Genet. 2019, 3, 22. [Google Scholar] [CrossRef] [Green Version]
- Sarfraz, S.; Riaz, K.; Oulghazi, S.; Cigna, J.; Alam, M.W.; Dessaux, Y.; Faure, D. First report of Dickeya dianthicola causing blackleg disease on potato plants in Pakistan. Plant Dis. 2018, 102, 2027–2028. [Google Scholar] [CrossRef]
- Oulghazi, S.; Khayi, S.; Lafkih, N.; Massaoudi, Y.; El Karkouri, A.; El Hassouni, M.; Faure, D.; Moumni, M. First report of Dickeya dianthicola causing blackleg on potato in Morocco. Plant Dis. 2017, 101, 1671–1672. [Google Scholar] [CrossRef]
- Charkowski, A.O. The changing face of bacterial soft-rot diseases. Annu. Rev. Phytopathol. 2018, 56, 269–288. [Google Scholar] [CrossRef]
- Ozturk, M.; Aksoy, H.M. First report of Dickeya solani associated with potato blackleg and soft rot in Turkey. J. Plant Pathol. 2017, 99, 298. [Google Scholar]
- Cardoza, Y.F.; Duarte, V.; Lopes, C.A. First report of blackleg of potato caused by Dickeya solani in Brazil. Plant Dis. 2017, 101, 243. [Google Scholar] [CrossRef]
- McNally, R.R.; Curland, R.D.; Webster, B.T.; Robinson, A.P.; Ishimaru, C.A. First report of stem rot on potato caused by Dickeya chrysanthemi in Minnesota. Plant Dis. 2018, 102, 238. [Google Scholar] [CrossRef]
- DeLindo, L.; French, E. Erwinia species attacking potato in the humid tropics of Peru. Fitopatologia 1981, 16, 69–74. [Google Scholar]
- Ngadze, E.; Coutinho, T.A.; van der Waals, J.E. First report of soft rot of potatoes caused by Dickeya dadantii in Zimbabwe. Plant Dis. 2010, 94, 1263. [Google Scholar] [CrossRef] [PubMed]
- Cother, E.J. Bacterial seed tuber decay in irrigated sandy soils of New South Wales. Potato Res. 1980, 23, 75–84. [Google Scholar] [CrossRef]
- Cother, E.J.; Bradley, J.K.; Gillings, M.R.; Fahy, P.C. Characterization of Erwinia chrysanthemi biovars in alpine water sources by biochemical properties, GLC fatty acid analyses and genomic DNA fingerprinting. J. Appl. Bacteriol. 1992, 73, 99–107. [Google Scholar] [CrossRef]
Strain Name | Isolation Year | Origin * | Host Plant | Species Definition |
---|---|---|---|---|
E. chrysanthemi CH85/54 | 1985 | CH | S. tuberosum cv. Ostara | D. dianthicola |
E. chrysanthemi CH86/31-1 | 1986 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH86/31-5 | 1986 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH86/33-14 | 1986 | CH | S. tuberosum cv. Bintje | D. dianthicola |
E. chrysanthemi CH86/40-7 | 1986 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH87/29 | 1987 | CH | S. tuberosum | D. dianthicola |
E. chrysanthemi CH87/88 | 1987 | CH | S. tuberosum cv. Désirée | Rhanella aquatilis |
E. chrysanthemi CH86/33 | 1986 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH87/89-26 | 1987 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH87/89-27 | 1987 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH88/23 | 1988 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH88/26 | 1988 | CH | S. tuberosum cv. Bintje | D. dianthicola |
E. chrysanthemi CH88/33 | 1988 | CH | S. tuberosum cv. Désirée | Rhanella aquatilis |
E. chrysanthemi CH88/39 | 1988 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH88/49 | 1988 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH88/50 | 1988 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH88/51 | 1988 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH88/52-2 | 1988 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH88/53 | 1988 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH88/61 | 1988 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH88/63-2 | 1988 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH88/64 | 1988 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH88/65 | 1988 | CH | S. tuberosum cv. Urgenta | D. dianthicola |
E. chrysanthemi CH88/66 | 1988 | NL | S. tuberosum | D. dianthicola |
E. chrysanthemi CH88/67 | 1988 | CH | S. tuberosum | D. dianthicola |
E. chrysanthemi CH88/68 | 1988 | CH | S. tuberosum | D. dianthicola |
E. chrysanthemi CH88/70 | 1988 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH88/72 | 1988 | CH | S. tuberosum cv. Granola | D. dianthicola |
E. chrysanthemi CH88/75 | 1988 | CH | S. tuberosum cv. Aula | D. dianthicola |
E. chrysanthemi CH88/85 | 1988 | CH | S. tuberosum cv. Eba | D. dianthicola |
E. chrysanthemi CH88/111-3 | 1988 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH88/141 | 1988 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH88/161-1 | 1988 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH88/161-2 | 1988 | CH | S. tuberosum cv. Désirée | P. versatile |
E. chrysanthemi CH88/166 | 1988 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH88/169-1 | 1988 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH88/169-3 | 1988 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH88/172-2 | 1988 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH88/196 | 1988 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH88/197 | 1988 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH89/48 | 1989 | CH | S. tuberosum cv. Eba | D. dianthicola |
E. chrysanthemi CH89/50 | 1989 | CH | S. tuberosum cv. Eba | D. dianthicola |
E. chrysanthemi CH89/53 | 1989 | CH | S. tuberosum cv. Urgenta | D. dianthicola |
E. chrysanthemi CH89/55 | 1989 | CH | S. tuberosum cv. Nicola | D. dianthicola |
E. chrysanthemi CH90/95-2-4 | 1990 | CH | S. tuberosum cv. Eba | D. dianthicola |
E. chrysanthemi CH90/105-1-3 | 1990 | CH | S. tuberosum cv. Ostara | D. dianthicola |
E. chrysanthemi CH90/110-7-1 | 1990 | CH | S. tuberosum cv. Bintje | D. dianthicola |
E. chrysanthemi CH90/141 | 1990 | CH | S. tuberosum cv. Urgenta | D. dianthicola |
E. chrysanthemi CH90/140 | 1990 | CH | S. tuberosum cv. Bintje | D. dianthicola |
E. chrysanthemi CH91/53-4 | 1991 | CH | S. tuberosum cv. Désirée | P. versatile |
E. chrysanthemi CH91/70-1 | 1991 | CH | S. tuberosum cv. Eba | D. chrysanthemi |
E. chrysanthemi CH91/71-2 | 1991 | CH | S. tuberosum cv. Eba | D. oryzeae |
E. chrysanthemi CH91/75-1 | 1991 | CH | S. tuberosum cv. Eba | P. parmentieri |
E. chrysanthemi CH91/83-2 | 1991 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH91/87-1 | 1991 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH91/111 | 1991 | CH | S. tuberosum cv. Urgenta | D. dianthicola |
E. chrysanthemi CH91/116-8 | 1991 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH91/49-9 | 1991 | CH | S. tuberosum cv. Eba | D. dianthicola |
E. chrysanthemi CH91/101-4 | 1991 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH91/94-1 | 1991 | CH | S. tuberosum cv. Eba | D. dianthicola |
E. chrysanthemi CH91/97-1 | 1991 | CH | S. tuberosum cv. Nicola | D. dianthicola |
E. chrysanthemi CH91/302 | 1991 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH91/308 | 1991 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH93/38-23-1 | 1993 | CH | S. tuberosum cv. Sirtema | D. dianthicola |
E. chrysanthemi CH93/38-26-2 | 1993 | CH | S. tuberosum cv. Sirtema | D. dianthicola |
E. chrysanthemi CH93/40-8-1 | 1993 | CH | S. tuberosum cv. Ostara | D. dianthicola |
E. chrysanthemi CH93/38-165-1 | 1993 | CH | S. tuberosum cv. Urgenta | D. dianthicola |
E. chrysanthemi CH93/38-188-3 | 1993 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH93/38-317-4 | 1993 | CH | S. tuberosum cv. Eba | D. chrysanthemi |
E. chrysanthemi CH93/40-24-1 | 1993 | CH | S. tuberosum cv. Granola | D. chrysanthemi |
E. chrysanthemi CH93/40-83-1 | 1993 | CH | S. tuberosum cv. Bintje | D. dianthicola |
E. chrysanthemi CH91/87-1 | 1994 | CH | S. tuberosum cv. Désirée | D. dianthicola |
E. chrysanthemi CH94/71-1 | 1994 | CH | Zea mays | D. dianthicola |
E. chrysanthemi CH94/71-3 | 1994 | CH | Zea mays | D. dianthicola |
E. chrysanthemi CH33 Jäggi | 1995 | CH | unknown | D. dianthicola |
E. chrysanthemi CH96/35-1 | 1996 | NL | S. tuberosum cv. Agria | D. solani |
E. chrysanthemi CH96/35-2 | 1996 | NL | S. tuberosum cv. Agria | D. dianthicola |
E. chrysanthemi CH96/36-1 | 1996 | NL | S. tuberosum cv. Agria | D. dianthicola |
E. chrysanthemi CH97/29-295 | 1997 | CH | S. tuberosum cv. Erntestolz | D. dianthicola |
E. chrysanthemi CH97/29-309 | 1997 | CH | S. tuberosum cv. Erntestolz | D. dianthicola |
E. chrysanthemi CH98/10 | 1998 | NL | S. tuberosum cv. Agria | D. chrysanthemi |
E. chrysanthemi CH99/18-774 | 1999 | NL | S. tuberosum cv. Eba | D. solani |
CH05026 | 2005 | CH | S. tuberosum cv. Agria | D. solani |
CH07044 | 2007 | CH | S. tuberosum cv. Tripla | D. solani |
IPO2222T | 2007 | NL | S. tuberosum | D. solani |
3337 | 2008 | France | S. tuberosum | D. solani |
Strain | Accession Number | Genome Size | Number of Contigs | Coverage | Number of CDS | Number of tRNAs |
---|---|---|---|---|---|---|
CH9635-1 | GCA_016404945.1 | 4,872,960 | 52 | 58× | 4149 | 51 |
CH9918-774 | GCA_016404885.1 | 4,881,636 | 72 | 49× | 4160 | 49 |
CH05026 | GCA_016404895.1 | 4,874,174 | 52 | 65× | 4146 | 54 |
CH07044 | GCA_016404925.1 | 4,878,125 | 39 | 79× | 4133 | 61 |
Strains | CH9635-1 | CH9918-774 | CH05026 | CH07044 |
---|---|---|---|---|
# SNP/InDels | 57/3 | 51/2 | 54/3 | 86/8 |
common | 47/2 | |||
remaining | 10/1 | 4/0 | 7/1 | 39/6 |
# intergenic | 1/1 | 1/0 | 1/1 | 3/3 |
# in tRNA | - | 1 | 1 | 2 |
# in CDS | 9/0 | 2/0 | 5/0 | 34/3 |
neutral | 8 | 2 | 4 | 29 |
aa change | 1 | - | 1 | 5 |
frame shift | - | - | - | 3 |
# of affected CDS | 4 | 2 | 5 | 5 |
Strains | Protein Family Number | Hypothetical(*) | With Known Function |
---|---|---|---|
Specific protein families | |||
CH9635-1 | 17 | 16 (2) | VgrG |
CH9918-774 | 14 | 9 | Mobile element protein 2 truncated ABC transporter permease 2 truncated cellulose synthase CbsC |
CH05026 | 3 | 3 | |
CH07044 | 8 | 8 (1) | |
Dso3337 | 14 | 6 | 2 phage-related 2 truncated aconitate hydratase 2 2 truncated PotA ABC transporter 2 truncated VgrG |
IPO2222 | 10 | 10 (4) | |
Absent protein families | |||
CH9635-1 | 7 | 7 (2) | |
CH9918-774 | 7 | 6 | ABC transporter permease (truncated) |
CH05026 | 9 | 9 | |
CH07044 | 8 | 8 | |
Dso3337 | 5 | 2 | 1 phage-related Ferredoxin PotA ABC transporter |
IPO2222 | 8 | 4 | 2 phage-related proteins regulator YfeR (truncated) truncated CmaU-related protein |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pédron, J.; Schaerer, S.; Kellenberger, I.; Van Gijsegem, F. Early Emergence of Dickeya solani Revealed by Analysis of Dickeya Diversity of Potato Blackleg and Soft Rot Causing Pathogens in Switzerland. Microorganisms 2021, 9, 1187. https://doi.org/10.3390/microorganisms9061187
Pédron J, Schaerer S, Kellenberger I, Van Gijsegem F. Early Emergence of Dickeya solani Revealed by Analysis of Dickeya Diversity of Potato Blackleg and Soft Rot Causing Pathogens in Switzerland. Microorganisms. 2021; 9(6):1187. https://doi.org/10.3390/microorganisms9061187
Chicago/Turabian StylePédron, Jacques, Santiago Schaerer, Isabelle Kellenberger, and Frédérique Van Gijsegem. 2021. "Early Emergence of Dickeya solani Revealed by Analysis of Dickeya Diversity of Potato Blackleg and Soft Rot Causing Pathogens in Switzerland" Microorganisms 9, no. 6: 1187. https://doi.org/10.3390/microorganisms9061187
APA StylePédron, J., Schaerer, S., Kellenberger, I., & Van Gijsegem, F. (2021). Early Emergence of Dickeya solani Revealed by Analysis of Dickeya Diversity of Potato Blackleg and Soft Rot Causing Pathogens in Switzerland. Microorganisms, 9(6), 1187. https://doi.org/10.3390/microorganisms9061187