Interplay between OmpA and RpoN Regulates Flagellar Synthesis in Stenotrophomonas maltophilia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Media, Plasmids, and Primers
2.2. Construction of in-Frame Deletion Mutants
2.3. Construction of KJL2::OmpAΔOmpA and KJL2::RpoNΔOmpA
2.4. Construction of PrpoN-xylE Transcription Fusion Plasmid, pRpoNxylE
2.5. OMP Preparation and SDS-PAGE
2.6. Catechol 2,3-Dioxygenase (C23O) Activity Assay
2.7. Swimming Assay
2.8. Flagella Staining
2.9. Preparation of Polyclonal Anti-Rabbit Anti-FliC3 Antibody
2.10. SDS–PAGE and Western Blot Analysis
2.11. Transcriptome Analysis
2.12. Quantitative Reverse Transcription-PCR (qRT-PCR)
3. Results
3.1. Bioinformatics Analysis of OmpA
3.2. OmpA Deletion Impairs Bacterial Conjugation
3.3. OmpA Deletion Attenuates Swimming Motility
3.4. Establishment of a Putative Flagellum Synthesis Model for S. maltophilia
3.5. RpoN Downregulation Is Responsible for ΔompA-Mediated Swimming Compromise
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gan, L.; Chen, S.; Jensen, G.J. Molecular organization of Gram-negative peptidoglycan. Proc. Natl. Acad. Sci. USA 2008, 105, 18953–18957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrand, A.; Vergalli, J.; Pages, J.-M.; Davin-Regli, A. An intertwined network of regulation controls membrane permeability including drug influx and efflux in Enterobacteriaceae. Microorganisms 2020, 8, 833. [Google Scholar] [CrossRef] [PubMed]
- Gajdacs, M. The concept of an ideal antibiotics: Implications for drug design. Molecules 2019, 24, 892. [Google Scholar] [CrossRef] [Green Version]
- Wimley, W.C. The versatile β-barrel membrane protein. Curr. Opin. Struct. Biol. 2003, 13, 404–411. [Google Scholar] [CrossRef]
- Silhavy, T.J.; Kahne, D.; Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2010, 2, a000414. [Google Scholar] [CrossRef] [PubMed]
- Pagel, M.; Simonet, V.; Li, J.; Lallemand, M.; Lauman, B.; Delcour, A.H. Phenotypic characterization of pore mutants of the Vibrio cholerae porin OmpU. J. Bacteriol. 2007, 189, 8593–8600. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.K.; Fung, C.P.; Lin, J.C.; Chen, J.H.; Chang, F.Y.; Chen, T.L.; Siu, L.K. Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob. Agents Chemother. 2011, 55, 1485–1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogel, H.; Jahnig, F. Models for the structure of outer-membrane proteins of Escherichia coli derived from raman spectroscopy and prediction methods. J. Mol. Biol. 1986, 190, 191–199. [Google Scholar] [CrossRef]
- De Mot, R.; Vanderleyden, J. The C-terminal sequence conservation between OmpA-related outer membrane proteins and MotB suggests a common function in both gram positive and gram-negative bacteria, possibly in the interaction of these domains with peptidoglycan. Mol. Microbiol. 1994, 12, 333–334. [Google Scholar] [CrossRef]
- Park, J.S.; Lee, W.C.; Yeo, K.J.; Ryu, K.S.; Kumarasiri, M.; Hesek, D.; Lee, M.; Mobashery, S.; Song, J.H.; Kim, S.I.; et al. Mechanism of anchoring of OmpA protein to the cell wall peptidoglycan of the gram-negative bacterial outer membrane. FASEB J. 2012, 26, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 2003, 67, 593–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.G.; Mahon, V.; Lambert, M.A.; Fagan, R.P. A molecular Swiss army knife: OmpA structure, function and expression. FEMS Microbiol. Lett. 2007, 273, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Smani, Y.; Fabrega, A.; Roca, I.; Sanchez-Encinales, V.; Vila, J.; Pachon, J. Role of OmpA in the multidrug resistance phenotype of Acinetobacter baumannii. Antimicrob. Agents Chemother. 2014, 58, 1806–1808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, D.; Hu, Y.; Chen, Z.; Li, M.; Hou, Z.; Luo, X.; Mao, X.; Xue, X. Outer membrane protein A (OmpA) as a potential therapeutic target for Acinetobacter baumannii infection. J. Biomed. Sci. 2020, 27, 26. [Google Scholar] [CrossRef] [Green Version]
- Koebnik, R.; Locher, K.P.; Van Gelder, P. Structure and function of bacterial outer membrane proteins: Barrels in a nutshell. Mol. Microbiol. 2000, 37, 239–253. [Google Scholar] [CrossRef]
- Kim, S.A.; Yoo, S.M.; Hyun, S.H.; Choi, C.H.; Yang, S.Y.; Kim, H.J.; Jang, B.C.; Suh, S.I.; Lee, J.C. Global gene expression patterns and induction of innate immune response in human laryngeal epithelial cells in response to Acinetobacter baumannii outer membrane protein A. FEMS Immunol. Med. Microbiol. 2008, 54, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Chalifour, A.; Jeannin, P.; Gauchat, J.F.; Blaecke, A.; Malissard, M.; N’Guyen, T.; Thieblemont, N.; Delneste, Y. Direct bacterial protein PAMP recognition by human NK cells involves TLRs and triggers alpha-defensin production. Blood 2004, 104, 1778–1783. [Google Scholar] [CrossRef] [Green Version]
- Luo, G.; Lin, L.; Ibrahim, A.S.; Baquir, B.; Pantapalangkoor, P.; Bonomo, R.A.; Doi, Y.; Adams, M.D.; Russo, T.A.; Spellberg, B. Active and passive immunization protects against lethal, extreme drug resistant-Acinetobacter baumannii infection. PLoS ONE 2012, 7, e29446. [Google Scholar] [CrossRef] [Green Version]
- Guan, Q.; Wang, X.; Wang, X.; Teng, D.; Mao, R.; Zhang, Y.; Wang, J. Recombinant outer membrane protein A induces a protective immune response against Escherichia coli infection in mice. Appl. Microbiol. Biotechnol. 2015, 99, 5451–5460. [Google Scholar] [CrossRef]
- Chaban, B.; Hughes, H.V.; Beeby, M. The flagellum in bacterial pathogens: For motility and a whole lot more. Semin. Cell. Dev. Biol. 2015, 46, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Yang, Y.; Chen, P.; Hu, H.; Hardwidge, P.R.; Zhu, G. More than a locomotive organelle: Flagella in Escherichia coli. Appl. Microbiol. Biotechnol. 2015, 99, 8883–8890. [Google Scholar] [CrossRef]
- Armitage, J.P.; Berry, R.M. Assembly and Dynamics of the Bacterial Flagellum. Annu. Rev. Microbiol. 2020, 74, 181–200. [Google Scholar] [CrossRef] [PubMed]
- Apel, D.; Surette, M.G. Bringing order to a complex molecular machine: The assembly of the bacterial flagella. Biochim. Biophys. Acta 2008, 1778, 1851–1858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Newton, A. Regulation of the Caulobacter flagellar gene hierarchy; not just for motility. Mol. Microbiol. 1997, 24, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Prouty, M.G.; Correa, N.E.; Klose, K.E. The novel sigma54- and sigma28-dependent flagellar gene transcription hierarchy of Vibrio cholerae. Mol. Microbiol. 2001, 39, 1595–1609. [Google Scholar] [CrossRef] [PubMed]
- McCarter, L.L. Polar flagellar motility of the Vibrionaceae. Microbiol. Mol. Biol. Rev. 2001, 65, 445–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dasgupta, N.; Wolfgang, M.C.; Goodman, A.L.; Arora, S.K.; Jyot, J.; Lory, S.; Ramphal, R. A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa. Mol. Microbiol. 2003, 50, 809–824. [Google Scholar] [CrossRef] [Green Version]
- Macnab, R.M. How bacteria assemble flagella. Annu. Rev. Microbiol. 2003, 57, 77–100. [Google Scholar] [CrossRef]
- Looney, W.J.; Narita, M.; Mühlemann, K. Stenotrophomonas maltophilia: An emerging opportunist human pathogen. Lancet Infect. Dis. 2009, 9, 312–323. [Google Scholar] [CrossRef]
- Gajdacs, M.; Urban, E. A 10-year single-center expreience on Stenotrophomonas maltophilia resistotyping in Szeged, Hungary. Eur. J. Microbiol. Immunol. 2020, 10, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Gil-Gil, T.; Martínez, J.L.; Blanco, P. Mechanisms of antimicrobial resistance in Stenotrophomonas maltophilia: A review of current knowledge. Expert Rev. Anti-Infect. Ther. 2020, 18, 335–347. [Google Scholar] [CrossRef]
- Biagi, M.; Vialichka, A.; Jurkovic, M.; Wu, T.; Shajee, A.; Lee, M.; Patel, S.; Mendes, R.E.; Wenzler, E. Actvitiy of cefiderocol alone and in combination with levofloxacin, minocycline, polymyxin B or trimethoprim-sulfamethoxazole against multidrug-resistant Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 2020, 64, e00559-20. [Google Scholar]
- Huang, Y.W.; Huang, H.H.; Huang, K.H.; Chen, W.C.; Lin, Y.T.; Hsu, C.C.; Yang, T.C. AmpI functions as an iron exporter to alleviate β-lactam-mediated reactive oxygen species stress in Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 2019, 63, e02467-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, G.; Tang, X.; Shang, X.; Li, Y.; Wang, J.; Yue, J.; Li, Y. Identification of immunogenic outer membrane proteins and evaluation of their protective efficacy against Stenotrophomonas maltophilia. BMC Infect. Dis. 2018, 18, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Tang, X.; Zhao, Z.; Wang, H.; Wang, X.; Shang, X.; Liu, P.; Kou, Z.; Jiang, Y.; Li, Y. Intranasal immunization with recombinant outer membrane protein A induces protective immune response aginst Stenotrophomonas maltophilia infection. PLoS ONE 2019, 14, e0214596. [Google Scholar]
- Yang, T.C.; Huang, Y.W.; Hu, R.M.; Huang, S.C.; Lin, Y.T. AmpDI is involved in expression of the chromosomal L1 and L2 β-lactamases of Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 2009, 53, 2902–2907. [Google Scholar] [CrossRef] [Green Version]
- Li, L.H.; Zhang, M.S.; Wu, C.J.; Lin, Y.T.; Yang, T.C. Overexpression of SmeGH contributes to the acquired MDR of Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 2019, 74, 2225–2229. [Google Scholar] [CrossRef]
- Lin, C.W.; Huang, Y.W.; Hu, R.M.; Chiang, K.H.; Yang, T.C. The role of AmpR in regulation of L1 and L2 β-lactamases in Stenotrophomonas maltophilia. Res. Microbiol. 2009, 160, 152–158. [Google Scholar] [CrossRef]
- Lin, Y.T.; Huang, Y.W.; Chen, S.J.; Chang, C.W.; Yang, T.C. The SmeYZ efflux pump of Stenotrophomonas maltophilia contributes to drug resistance, virulence-related characteristics, and virulence in mice. Antimicrob. Agents Chemother. 2015, 59, 4067–4073. [Google Scholar] [CrossRef] [Green Version]
- Crossman, L.C.; Gould, V.C.; Dow, J.M.; Vernikos, G.S.; Okazaki, A.; Sebaihia, M.; Saunders, D.; Arrowsmith, C.; Carver, T.; Peters, N.; et al. The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol. 2008, 9, R74. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.H.; Chen, W.C.; Lin, C.W.; Lin, Y.T.; Ning, H.C.; Chang, Y.C.; Yang, T.C. Relationship of the CreBC two-component regulatory system and inner membrane protein CreD with swimming motility in Stenotrophomonas maltophilia. PLoS ONE 2017, 12, e0174704. [Google Scholar] [CrossRef]
- Chen, C.H.; Huang, C.C.; Chung, T.C.; Hu, R.M.; Huang, Y.W.; Yang, T.C. Contribution of resistance-nodulation-division efflux pump operon smeU1-V-W-U2-X to multidrug resistance of Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 2011, 55, 5826–5833. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−(delta delta C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Hu, R.M.; Huang, K.J.; Wu, L.T.; Hsiao, Y.J.; Yang, T.C. Induction of L1 and L2 β-lactamases of Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 2008, 52, 1198–1200. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira-Garcia, D.; Dall’Agnol, M.; Rosales, M.; Azzuz, A.C.; Martinez, M.B.; Girón, J.A. Characterization of flagella produced by clinical strains of Stenotrophomonas maltophilia. Emerg. Infect. Dis. 2002, 8, 918–923. [Google Scholar] [CrossRef]
- Ritchings, B.W.; Almira, E.C.; Lory, S.; Ramphal, R. Cloning and phenotypic characterization of fleS and fleR, new response regulators of Pseudomonas aeruginosa which regulate motility and adhesion to mucin. Infect. Immun. 1995, 63, 4868–4876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Josenhans, C.; Suerbaum, S. The role of motility as a virulence factor in bacteria. Int. J. Med. Microbiol. 2002, 291, 605–614. [Google Scholar] [CrossRef]
- Spangenberg, C.; Heuer, T.; Bürger, C.; Tümmler, B. Genetic diversity of flagellins of Pseudomonas aeruginosa. FEBS Lett. 1996, 396, 213–217. [Google Scholar] [CrossRef] [Green Version]
- Jyot, J.; Dasgupta, N.; Ramphal, R. FleQ, the major flagellar gene regulator in Pseudomonas aeruginosa, binds to enhancer sites located either upstream or atypically downstream of the RpoN binding site. J. Bacteriol. 2002, 184, 5251–5260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starnbach, M.N.; Lory, S. The fliA (rpoF) gene of Pseudomonas aeruginosa encodes an alternative sigma factor required for flagellin synthesis. Mol. Microbiol. 1992, 6, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.K.; Ritchings, B.W.; Almira, E.C.; Lory, S.; Ramphal, R. A transcriptional activator, FleQ, regulates mucin adhesion and flagellar gene expression in Pseudomonas aeruginosa in a cascade manner. J. Bacteriol. 1997, 179, 5574–5581. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Liu, X.; Zhang, L.; Hou, B.; Li, B.; Tan, C.; Li, Z.; Zhou, R.; Li, S. Virulence characteristics of extraintestinal pathogenic Escherichia coli deletion of gene encoding the outer membrane protein X. J. Vet. Med. Sci. 2016, 78, 1261–1267. [Google Scholar] [CrossRef] [Green Version]
- Martinez, R.M.; Dharmasena, M.N.; Kirn, T.J.; Taylor, R.K. Characterization of two outer membrane proteins, FlgO and FlgP, that influence vibrio cholerae motility. J. Bacteriol. 2009, 191, 5669–5679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bari, W.; Lee, K.M.; Yoon, S.S. Structural and functional importance of outer membrane proteins in Vibrio cholerae flagellum. J. Microbiol. 2012, 50, 631–637. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, D.; Wu, T.; Zhang, Z.; Raza, S.H.A.; Schreurs, N.; Zhang, L.; Yang, G.; Wang, C.; Qian, A.; et al. Maltoporin (LamB protein) contributes to the virulence and adhesion of Aeromonas veronii TH0426. J. Fish. Dis. 2019, 42, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.M.; Silhavy, T.J. Envelope stress response: Balancing damage repair and toxicity. Nat. Rev. Microbiol. 2019, 17, 417–418. [Google Scholar] [CrossRef] [PubMed]
- Manoil, C.; Rosenbusch, J.P. Conjugation-deficient mutants of Escherichia coli distinguish classes of functions of the outer membrane OmpA protein. Mol. Gen. Genet. 1982, 187, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Klimke, W.A.; Rypien, C.D.; Klinger, B.; Kennedy, R.A.; Rodriguez-Maillard, J.M.; Frost, L.S. The mating pair stabilization protein, TraN, of the F plasmid is an outer-membrane protein with two regions that are important for its function in conjugation. Microbiology 2005, 151, 3527–3540. [Google Scholar] [CrossRef] [Green Version]
- Lerminiaux, N.A.; Cameron, A.D.S. Horizontal transfer of antibiotic resistance genes in clinical environments. Can. J. Microbiol. 2019, 65, 34–44. [Google Scholar] [CrossRef]
- Graf, F.E.; Palm, M.; Warringer, J.; Farewell, A. Inhibiting conjugation as a tool in the fight against antibiotic resistance. Drug Dev. Res. 2019, 80, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Gajdacs, M.; Urban, E. Prevalence and antibiotic resistance of Stenotrophomonas maltophilia in respiratory tract samples: A 10-year epidemiological snapshot. Health Serv. Res. Manag. Epidemiol. 2019, 6, 2333392819870774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Smlt | Gene | RPKM a | Fold | Encoded Protein | |
---|---|---|---|---|---|
KJ | KJΔOmpA | ||||
Class I | |||||
2297 | rpoN | 104.48 | 18.26 | −5.72 | σ54 sigma factor |
Class II | |||||
2295 | fleQ | 226.20 | 137.15 | −1.64 | transcriptional activator |
2270 | fliA | 98.17 | 156.68 | +1.59 | σ28 sigma factor |
2271 | fleN | 159.21 | 197.77 | +1.24 | flagella number regulator |
2272 | flhF | 14.26 | 22.09 | +1.54 | flagellar polar location |
2273 | flhA | 8.14 | 5.07 | −1.60 | flagellar export protein |
2274 | flhB | 8.63 | 2.49 | −3.45 | flagellar export protein |
2277 | fliR | 14.57 | 6.78 | −2.14 | flagellar export protein |
2278 | fliQ | 19.71 | 49.47 | 2.50 | flagellar export protein |
2279 | fliP | 15.18 | 10.43 | −1.45 | flagellar export protein |
2280 | fliO | 38.14 | 17.37 | −2.19 | flagellar export protein |
2281 | fliN | 52.03 | 45.24 | −1.15 | flagellar motor switch protein |
2282 | fliM | 16.48 | 4.96 | −3.32 | flagellar motor switch protein |
2283 | fliL | 19.49 | 3.80 | −5.12 | basal body-associated protein |
2285 | fliJ | 12.00 | 48.53 | +4.04 | chaperone, export of hook proteins |
2286 | fliI | 26.64 | 61.27 | +2.30 | flagellum-specific ATPase |
2287 | fliH | 42.91 | 98.07 | +2.28 | flagella assembly protein |
2288 | fliG | 56.09 | 72.82 | +1.29 | motor switch protein |
2289 | fliF | 47.05 | 14.73 | −3.19 | basal body MS ring |
2290 | fliE | 45.59 | 1.00 | −45.6 | basal body MS ring/rod adapter |
2302 | fliS | 664.26 | 365.25 | −1.81 | chaperone for filament elongation |
2303 | fliD | 297.89 | 237.50 | −1.25 | filament cap |
2319 | flgA | 46.60 | 27.82 | −1.67 | basal body P-ring biosynthesis protein |
2320 | flgM | 1908.60 | 1317.64 | −1.44 | anti-sigma factor FlgM |
2321 | flgN | 775.79 | 607.01 | −1.27 | chaperone |
Class III | |||||
2284 | fliK | 19.85 | 72.54 | +3.65 | flagellar hook-length control |
2307 | flgL | 54.28 | 246.26 | +4.53 | hook-filament junctional protein |
2308 | flgK | 49.76 | 215.68 | +4.33 | hook-filament junctional protein |
2309 | flgJ | 20.28 | 50.41 | +2.48 | flagellum specific muramidase |
2310 | flgI | 15.17 | 36.478 | +2.40 | basal body P-ring |
2311 | flgH | 36.78 | 72.24 | +1.96 | basal body L-ring |
2312 | flgG | 60.97 | 90.60 | +1.48 | basal body rod |
2313 | flgF | 5.34 | 9.46 | +1.76 | basal body rod |
2314 | flgE | 13.12 | 25.11 | +1.91 | hook |
2315 | flgD | 24.64 | 13.39 | −1.83 | hook capping protein |
2316 | flgC | 15.23 | 8.49 | −1.79 | basal body rod |
2317 | flgB | 48.91 | 7.05 | −6.93 | basal body rod |
Class IV | |||||
2265 | motD | 71.76 | 106.27 | +1.48 | flagellar motor protein |
2266 | motC | 353.41 | 347.85 | −1.01 | flagellar motor protein |
2267 | cheA | 92.22 | 186.55 | +2.02 | chemotaxis sensor kinase regulator |
2268 | cheZ | 241.78 | 467.49 | +1.93 | chemotaxis protein |
2269 | cheY | 268.99 | 388.99 | +1.44 | chemotaxis response regulator |
2304 | fliC1 | 395.14 | 510.14 | +1.29 | flagellin |
2305 | fliC2 | 23.32 | 31.10 | +1.33 | flagellin |
2306 | fliC3 | 180.47 | 109.26 | −1.65 | flagellin |
2318 | cheV | 164.29 | 70.89 | −2.31 | chemotaxis response regulator |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, C.-H.; Chang, C.-L.; Huang, H.-H.; Lin, Y.-T.; Li, L.-H.; Yang, T.-C. Interplay between OmpA and RpoN Regulates Flagellar Synthesis in Stenotrophomonas maltophilia. Microorganisms 2021, 9, 1216. https://doi.org/10.3390/microorganisms9061216
Liao C-H, Chang C-L, Huang H-H, Lin Y-T, Li L-H, Yang T-C. Interplay between OmpA and RpoN Regulates Flagellar Synthesis in Stenotrophomonas maltophilia. Microorganisms. 2021; 9(6):1216. https://doi.org/10.3390/microorganisms9061216
Chicago/Turabian StyleLiao, Chun-Hsing, Chia-Lun Chang, Hsin-Hui Huang, Yi-Tsung Lin, Li-Hua Li, and Tsuey-Ching Yang. 2021. "Interplay between OmpA and RpoN Regulates Flagellar Synthesis in Stenotrophomonas maltophilia" Microorganisms 9, no. 6: 1216. https://doi.org/10.3390/microorganisms9061216
APA StyleLiao, C. -H., Chang, C. -L., Huang, H. -H., Lin, Y. -T., Li, L. -H., & Yang, T. -C. (2021). Interplay between OmpA and RpoN Regulates Flagellar Synthesis in Stenotrophomonas maltophilia. Microorganisms, 9(6), 1216. https://doi.org/10.3390/microorganisms9061216