Non-B DNA-Forming Motifs Promote Mfd-Dependent Stationary-Phase Mutagenesis in Bacillus subtilis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain Construction
2.2. Stationary-Phase Mutagenesis Assay
2.3. Arg+ Mutant Analysis
2.4. Fluctuation Test
2.5. Statistical Analysis
2.6. Protein Alignment Analysis
3. Results
3.1. Non-B DNA-Forming Motifs Promote Mutagenesis
3.1.1. Hairpins and G4 DNA-Forming Motifs Accumulate Mutations in Stationary Phase B. subtilis Cells
3.1.2. Analysis of the Arg+ Population
3.2. Hairpin- and G4 DNA-Forming Motifs Do Not Influence Mutation Rates in B. subtilis
3.3. Mfd Promotes Mutations at Non-B DNA Sequences
3.3.1. Accumulation of Arg+ Mutations at Non-B DNA Sequences Was Decreased in the Absence of Mfd
3.3.2. Analysis of the Arg+ Population in Mfd− Cells
4. Discussion
4.1. An In Vivo System to Measure the Effects of Non-B DNA-Forming Motifs on Bacterial Mutagenesis
4.2. Non-B DNA-Forming Motifs in Transcribed Coding Regions Promote Mutations in Nutritionally Stressed Cells
4.3. Mfd Promotes Mutations at Non-B DNA Sequences
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luria, S.E.; Delbrück, M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics 1943, 28, 491–511. [Google Scholar] [CrossRef]
- Reimers, J.M.; Schmidt, K.H.; Longacre, A.; Reschke, D.K.; Wright, B.E. Increased transcription rates correlate with increased reversion rates in leuB and argH Escherichia coli auxotrophs. Microbiology 2004, 150, 1457–1466. [Google Scholar] [CrossRef] [Green Version]
- Lang, K.S.; Hall, A.N.; Merrikh, C.N.; Ragheb, M.; Tabakh, H.; Pollock, A.J.; Woodward, J.J.; Dreifus, J.E.; Merrikh, H. Replication-Transcription Conflicts Generate R-Loops that Orchestrate Bacterial Stress Survival and Pathogenesis. Cell 2017, 170, 787–799. [Google Scholar] [CrossRef] [Green Version]
- Wimberly, H.; Shee, C.; Thornton, P.C.; Sivaramakrishnan, P.; Rosenberg, S.M.; Hastings, P.J. R-loops and nicks initiate DNA breakage and genome instability in non-growing Escherichia coli. Nat. Commun. 2013, 4, 2115. [Google Scholar] [CrossRef] [Green Version]
- Merrikh, H. Spatial and Temporal Control of Evolution through Replication–Transcription Conflicts. Trends Microbiol. 2017, 25, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Million-Weaver, S.; Samadpour, A.N.; Moreno-Habel, D.A.; Nugent, P.; Brittnacher, M.J.; Weiss, E.; Hayden, H.S.; Miller, S.I.; Liachko, I.; Merrikh, H. An underlying mechanism for the increased mutagenesis of lagging-strand genes in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 2015, 112, E1096–E1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, S.; Million-Weaver, S.; Chattopadhyay, S.; Sokurenko, E.V.; Merrikh, H. Accelerated gene evolution through replication–transcription conflicts. Nature 2013, 495, 512–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, C.; Pybus, C.; Pedraza-Reyes, M.; Sung, H.-M.; Yasbin, R.E.; Robleto, E. Novel Role of mfd: Effects on Stationary-Phase Mutagenesis in Bacillus subtilis. J. Bacteriol. 2006, 188, 7512–7520. [Google Scholar] [CrossRef] [Green Version]
- Ho, H.N.; Van Oijen, A.M.; Ghodke, H. The transcription-repair coupling factor Mfd associates with RNA polymerase in the absence of exogenous damage. Nat. Commun. 2018, 9, 1570. [Google Scholar] [CrossRef] [Green Version]
- Le, T.T.; Yang, Y.; Tan, C.; Suhanovsky, M.M.; Fulbright, R.M.; Inman, J.T.; Li, M.; Lee, J.; Perelman, S.; Roberts, J.W.; et al. Mfd Dynamically Regulates Transcription via a Release and Catch-Up Mechanism. Cell 2018, 172, 344–357. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.Y.; Llewellyn, E.; Chen, J.; Olinares, P.D.B.; Brewer, J.; Chait, B.T.; Campbell, E.A.; Darst, S.A. Structural basis for transcription complex disruption by the Mfd translocase. Elife 2021, 10, 1–28. [Google Scholar] [CrossRef]
- Ragheb, M.; Thomason, M.K.; Hsu, C.; Nugent, P.; Gage, J.; Samadpour, A.N.; Kariisa, A.; Merrikh, C.N.; Miller, S.I.; Sherman, D.R.; et al. Inhibiting the Evolution of Antibiotic Resistance. Mol. Cell 2019, 73, 157–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.; Gong, Z.; Liang, T.; Chen, Y.; Xie, J. The role of Mfd in Mycobacterium tuberculosis physiology and underlying regulatory network. Microbiol. Res. 2021, 246, 126718. [Google Scholar] [CrossRef]
- Ukkivi, K.; Kivisaar, M. Involvement of transcription-coupled repair factor Mfd and DNA helicase UvrD in mutational processes in Pseudomonas putida. DNA Repair 2018, 72, 18–27. [Google Scholar] [CrossRef]
- Gómez-Marroquín, M.; Martin, H.A.; Pepper, A.; Girard, M.E.; Kidman, A.A.; Vallin, C.; Yasbin, R.E.; Pedraza-Reyes, M.; Robleto, E.A. Stationary-Phase Mutagenesis in Stressed Bacillus subtilis Cells Operates by Mfd-Dependent Mutagenic Pathways. Genes 2016, 7, 33. [Google Scholar] [CrossRef]
- Suárez, V.P.; Martínez, L.E.; Leyva-Sánchez, H.C.; Valenzuela-García, L.I.; Lara-Martínez, R.; Jiménez-García, L.F.; Ramírez-Ramírez, N.; Obregon-Herrera, A.; Cuéllar-Cruz, M.; Robleto, E.A.; et al. Transcriptional coupling and repair of 8-OxoG activate a RecA—Dependent checkpoint that controls the onset of sporulation in Bacillus subtilis. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ragheb, M.N.; Merrikh, C.; Browning, K.; Merrikh, H. Mfd regulates RNA polymerase association with hard-to-transcribe regions in vivo, especially those with structured RNAs. Proc. Natl. Acad. Sci. USA 2021, 118, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Martin, H.A.; Sundararajan, A.; Ermi, T.S.; Heron, R.; Gonzales, J.; Lee, K.; Anguiano-Mendez, D.; Schilkey, F.; Pedraza-Reyes, M.; Robleto, E.A. Mfd Affects Global Transcription and the Physiology of Stressed Bacillus subtilis Cells. Front. Microbiol. 2021, 12, 1–14. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, H.-H.; Zheng, K.-W.; Hao, Y.-H.; Tan, Z. DNA G-quadruplex formation in response to remote downstream transcription activity: Long-range sensing and signal transducing in DNA double helix. Nucleic Acids Res. 2013, 41, 7144–7152. [Google Scholar] [CrossRef]
- Duquette, M.L.; Handa, P.; Vincent, J.A.; Taylor, A.F.; Maizels, N. Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev. 2004, 18, 1618–1629. [Google Scholar] [CrossRef] [Green Version]
- Tornaletti, S.; Park-Snyder, S.; Hanawalt, P.C. G4-forming Sequences in the Non-transcribed DNA Strand Pose Blocks to T7 RNA Polymerase and Mammalian RNA Polymerase II. J. Biol. Chem. 2008, 283, 12756–12762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, S.; Ogloblina, A.M.; Belotserkovskii, B.P.; Dolinnaya, N.; Yakubovskaya, M.G.; Mirkin, S.M.; Hanawalt, P.C. Transcription blockage by stable H-DNA analogs in vitro. Nucleic Acids Res. 2015, 43, 6994–7004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, X.; Gertz, E.M.; Wójtowicz, D.; Zhabinskaya, D.; Levens, D.; Benham, C.J.; Schäffer, A.A.; Przytycka, T.M. Potential non-B DNA regions in the human genome are associated with higher rates of nucleotide mutation and expression variation. Nucleic Acids Res. 2014, 42, 12367–12379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piazza, A.; Adrian, M.; Samazan, F.; Heddi, B.; Hamon, F.; Serero, A.; Lopes, J.; Teulade-Fichou, M.; Phan, A.T.; Nicolas, A. Short loop length and high thermal stability determine genomic instability induced by G-quadruplex-forming minisatellites. EMBO J. 2015, 34, 1718–1734. [Google Scholar] [CrossRef] [Green Version]
- Szlachta, K.; Thys, R.G.; Atkin, N.D.; Pierce, L.C.T.; Bekiranov, S.; Wang, Y.-H. Alternative DNA secondary structure formation affects RNA polymerase II promoter-proximal pausing in human. Genome Biol. 2018, 19, 89. [Google Scholar] [CrossRef]
- Northam, M.R.; Moore, E.A.; Mertz, T.M.; Binz, S.K.; Stith, C.M.; Stepchenkova, E.I.; Wendt, K.L.; Burgers, P.M.J.; Shcherbakova, P.V. DNA polymerases ζ and Rev1 mediate error-prone bypass of non-B DNA structures. Nucleic Acids Res. 2014, 42, 290–306. [Google Scholar] [CrossRef] [Green Version]
- Teng, F.-Y.; Hou, X.-M.; Fan, S.-H.; Rety, S.; Dou, S.-X.; Xi, X.-G. Escherichia coli DNA polymerase I can disrupt G-quadruplex structures during DNA replication. FEBS J. 2017, 284, 4051–4065. [Google Scholar] [CrossRef] [Green Version]
- Scheibye-Knudsen, M.; Tseng, A.; Jensen, M.B.; Scheibye-Alsing, K.; Fang, E.F.; Iyama, T.; Bharti, S.K.; Marosi, K.; Froetscher, L.; Kassahun, H.; et al. Cockayne syndrome group A and B proteins converge on transcription-linked resolution of non-B DNA. Proc. Natl. Acad. Sci. USA 2016, 113, 12502–12507. [Google Scholar] [CrossRef] [Green Version]
- Huber, M.D.; Lee, D.C.; Maizels, N. G4 DNA unwinding by BLM and Sgs1p: Substrate specificity and substrate-specific inhibition. Nucleic Acids Res. 2002, 30, 3954–3961. [Google Scholar] [CrossRef] [Green Version]
- Wright, B.E.; Schmidt, K.H.; Davis, N.; Hunt, A.T.; Minnick, M.F., II. Correlations between secondary structure stability and mutation frequency during somatic hypermutation. Mol. Immunol. 2008, 45, 3600–3608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parekh, V.J.; Niccum, B.A.; Shah, R.; Rivera, M.A.; Novak, M.J.; Geinguenaud, F.; Wien, F.; Arluison, V.; Sinden, R.R. Role of Hfq in Genome Evolution: Instability of G-Quadruplex Sequences in E. coli. Microorganisms 2019, 8, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maizels, N.; Gray, L.T. The G4 Genome. PLoS Genet. 2013, 9, e1003468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricardo, F.; Cecília, S.; José, M.A. New molecular interactions broaden the functions of the RNA chaperone Hfq. Curr. Genet. 2019, 65, 1313–1319. [Google Scholar]
- Rochat, T.; Delumeau, O.; Figueroa-Bossi, N.; Noirot, P.; Bossi, L.; Dervyn, E.; Bouloc, P. Tracking the Elusive Function of Bacillus subtilis Hfq. PLoS ONE 2015, 10, e0124977. [Google Scholar] [CrossRef] [Green Version]
- Sinden, R.R.; Zheng, G.X.; Brankamp, R.G.; Allen, K.N. On the deletion of inverted repeated DNA in Escherichia coli: Effects of length, thermal stability, and cruciform formation in vivo. Genetics 1991, 129, 991–1005. [Google Scholar] [CrossRef]
- Schmidt, K.H.; Reimers, J.M.; Wright, B.E. The effect of promoter strength, supercoiling and secondary structure on mutation rates in Escherichia coli. Mol. Microbiol. 2006, 60, 1251–1261. [Google Scholar] [CrossRef]
- Bernhardt, J.; Weibezahn, J.; Scharf, C.; Hecker, M. Bacillus subtilis During Feast and Famine: Visualization of the Overall Regulation of Protein Synthesis during Glucose Starvation by Proteome Analysis. Genome Res. 2003, 13, 224–237. [Google Scholar] [CrossRef] [Green Version]
- López, D.; Kolter, R. Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis. FEMS Microbiol. Rev. 2010, 34, 134–149. [Google Scholar] [CrossRef] [Green Version]
- Pybus, C.; Pedraza-Reyes, M.; Ross, C.A.; Martin, H.; Ona, K.; Yasbin, R.E.; Robleto, E. Transcription-Associated Mutation in Bacillus subtilis Cells under Stress. J. Bacteriol. 2010, 192, 3321–3328. [Google Scholar] [CrossRef] [Green Version]
- Martin, H.A.; Kidman, A.A.; Socea, J.; Vallin, C.; Pedraza-Reyes, M.; Robleto, E.A. The Bacillus subtilis K-State Promotes Stationary-Phase Mutagenesis via Oxidative Damage. Genes 2020, 11, 190. [Google Scholar] [CrossRef] [Green Version]
- Ambriz-Aviña, V.; Yasbin, R.E.; Robleto, E.A.; Pedraza-Reyes, M. Role of Base Excision Repair (BER) in Transcription-associated Mutagenesis of Nutritionally Stressed Nongrowing Bacillus subtilis Cell Subpopulations. Curr. Microbiol. 2016, 73, 721–726. [Google Scholar] [CrossRef] [Green Version]
- Leyva-Sánchez, H.C.; Villegas-Negrete, N.; Abundiz-Yañez, K.; Yasbin, R.E.; Robleto, E.A.; Pedraza-Reyes, M. Role of Mfd and GreA in Bacillus subtilis Base Excision Repair-Dependent Stationary-Phase Mutagenesis. J. Bacteriol. 2020, 202, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef] [PubMed]
- Kikin, O.; D’Antonio, L.; Bagga, P.S. QGRS Mapper: A web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 2006, 34, W676–W682. [Google Scholar] [CrossRef] [PubMed]
- Martin, H.A.; Porter, K.E.; Vallin, C.; Ermi, T.; Contreras, N.; Pedraza-Reyes, M.; Robleto, E.A. Mfd protects against oxidative stress in Bacillus subtilis independently of its canonical function in DNA repair. BMC Microbiol. 2019, 19, 26. [Google Scholar] [CrossRef] [PubMed]
- Itaya, M.; Kondo, K.; Tanaka, T. A neomycin resistance gene cassette selectable in a single copy state in the Bacillus subtilis chromosome. Nucleic Acids Res. 1989, 17, 4410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, H.-M.; Yasbin, R.E. Adaptive, or Stationary-Phase, Mutagenesis, a Component of Bacterial Differentiation in Bacillus subtilis. J. Bacteriol. 2002, 184, 5641–5653. [Google Scholar] [CrossRef] [Green Version]
- Foster, P.L. Methods for Determining Spontaneous Mutation Rates. Methods Enzymol. 2006, 409, 195–213. [Google Scholar]
- Rosche, W.A.; Foster, P.L. Determining Mutation Rates in Bacterial Populations. Methods 2000, 20, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Ogasawara, N. Markedly unbiased codon usage in Bacillus subtilis. Gene 1985, 40, 145–150. [Google Scholar]
- Li, G.-W.; Oh, E.; Weissman, J.S. The anti-Shine–Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 2012, 484, 538–541. [Google Scholar] [CrossRef]
- Shields, D.C.; Sharp, P.M. Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases. Nucleic Acids Res. 1987, 15, 8023–8040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guédin, A.; Gros, J.; Alberti, P.; Mergny, J.-L. How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids Res. 2010, 38, 7858–7868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouzine, F.; Gupta, A.; Baranello, L.; Wojtowicz, D.; Ben-Aissa, K.; Liu, J.; Przytycka, M.T.; Levens, D. Transcription-dependent dynamic supercoiling is a short-range genomic force. Nat. Struct. Mol. Biol. 2013, 20, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhabinskaya, D.; Benham, C.J. Competitive superhelical transitions involving cruciform extrusion. Nucleic Acids Res. 2013, 41, 9610–9621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, X.; Wójtowicz, D.; Bowers, A.A.; Levens, D.; Benham, C.J.; Przytycka, T.M. The genome-wide distribution of non-B DNA motifs is shaped by operon structure and suggests the transcriptional importance of non-B DNA structures in Escherichia coli. Nucleic Acids Res. 2013, 41, 5965–5977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawal, P.; Kummarasetti, V.B.R.; Ravindran, J.; Kumar, N.; Halder, K.; Sharma, R.; Mukerji, M.; Das, S.K.; Chowdhury, S. Genome-wide prediction of G4 DNA as regulatory motifs: Role in Escherichia coli global regulation. Genome Res. 2006, 16, 644–655. [Google Scholar] [CrossRef] [Green Version]
- Beaume, N.; Pathak, R.; Yadav, V.; Kota, S.; Misra, H.S.; Gautam, H.K.; Chowdhury, S. Genome-wide study predicts promoter-G4 DNA motifs regulate selective functions in bacteria: Radioresistance of D. radiodurans involves G4 DNA-mediated regulation. Nucleic Acids Res. 2012, 41, 76–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dey, U.; Sarkar, S.; Teronpi, V.; Yella, V.R.; Kumar, A. G-quadruplex motifs are functionally conserved in cis-regulatory regions of pathogenic bacteria: An in-silico evaluation. Biochimie 2021, 184, 40–51. [Google Scholar] [CrossRef]
- Vidales, L.E.; Cárdenas, L.C.; Robleto, E.; Yasbin, R.E.; Pedraza-Reyes, M. Defects in the error prevention oxidized guanine system potentiate stationary-phase mutagenesis in Bacillus subtilis. J. Bacteriol. 2009, 191, 506–513. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, T.; Roy, S.; Kumar, S.; Chakraborty, T.K.; Maiti, S. In the Sense of Transcription Regulation by G-Quadruplexes: Asymmetric Effects in Sense and Antisense Strands. Biochemistry 2014, 53, 3711–3718. [Google Scholar] [CrossRef]
- Eddy, J.; Vallur, A.C.; Varma, S.; Liu, H.; Reinhold, W.C.; Pommier, Y.; Maizels, N. G4 motifs correlate with promoter-proximal transcriptional pausing in human genes. Nucleic Acids Res. 2011, 39, 4975–4983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endoh, T.; Kawasaki, Y.; Sugimoto, N. Suppression of Gene Expression by G-Quadruplexes in Open Reading Frames Depends on G-Quadruplex Stability. Angew. Chem. 2013, 125, 5522–5526. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, S.M.; Shee, C.; Frisch, R.L.; Hastings, P.J. Stress-induced mutation via DNA breaks in Escherichia coli: A molecular mechanism with implications for evolution and medicine. BioEssays 2012, 34, 885–892. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Marroquín, M.; Vidales, L.E.; Debora, B.N.; Santos-Escobar, F.; Obregón-Herrera, A.; Robleto, E.A.; Pedraza-Reyes, M. Role of Bacillus subtilis DNA Glycosylase MutM in Counteracting Oxidatively Induced DNA Damage and in Stationary-Phase-Associated Mutagenesis. J. Bacteriol. 2015, 197, 1963–1971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, H.M.; Yeamans, G.; Ross, C.a.; Yasbin, R.E. Roles of YqjH and YqjW, homologs of the Escherichia coli UmuC/DinB or Y superfamily of DNA polymerases, in stationary-phase mutagenesis and UV-induced mutagenesis of Bacillus subtilis. J. Bacteriol. 2003, 185, 2153–2160. [Google Scholar] [CrossRef] [Green Version]
- Barajas-Ornelas, R.D.C.; Ramírez-Guadiana, F.H.; Juárez-Godínez, R.; Ayala-García, V.M.; Robleto, E.A.; Yasbin, R.E.; Pedraza-Reyes, M. Error-Prone Processing of Apurinic/Apyrimidinic (AP) Sites by PolX Underlies a Novel Mechanism That Promotes Adaptive Mutagenesis in Bacillus subtilis. J. Bacteriol. 2014, 196, 3012–3022. [Google Scholar] [CrossRef] [Green Version]
Strain or Plasmid | Relevant Genotype | Source or Reference |
---|---|---|
CV1000 (+Hairpin) | metB5, hisC952, leuC427, argF::neo, amyE::pHS− argF+SLS | This study |
CV2000 (−Hairpin) | metB5, hisC952, leuC427, argF::neo, amyE::pHS− argF−SLS | This study |
CV1001 (+Hairpin Mfd−) | metB5, hisC952, leuC427, argF::neo, mfd::tc, amyE::pHS− argF+SLS | This study |
CV2009 (−Hairpin Mfd−) | metB5, hisC952, leuC427, argF::neo, mfd::tc, amyE::pHS− argF−SLS | This study |
TE300 (+G4) | metB5, hisC952, leuC427, argF::neo, amyE::pHS− argF+G4 | This study |
TE302 (−G4) | metB5, hisC952, leuC427, argF::neo, amyE::pHS− argF−G4 | This study |
TE400 (+G4 Mfd−) | metB5, hisC952, leuC427, argF::neo, mfd::tc amyE::pHS− argF+G4 | This study |
YB9801 (Mfd−) | metB5, hisC952, leuC427, mfd::tet | [8] |
CV4000 (argF-) | metB5, hisC952, leuC427, argF::neo | [45] |
TE402 (−G4 Mfd−) | metB5, hisC952, leuC427, argF::neo, mfd::tc amyE::pHS−argF−G4 | This study |
pBEST502 | neomycin resistance (Nmr) gene | [46] |
pDR111 | pdr111 amyE-hyper-SPANK (spec) | Rudner lab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ermi, T.; Vallin, C.; García, A.G.R.; Bravo, M.; Cordero, I.F.; Martin, H.A.; Pedraza-Reyes, M.; Robleto, E. Non-B DNA-Forming Motifs Promote Mfd-Dependent Stationary-Phase Mutagenesis in Bacillus subtilis. Microorganisms 2021, 9, 1284. https://doi.org/10.3390/microorganisms9061284
Ermi T, Vallin C, García AGR, Bravo M, Cordero IF, Martin HA, Pedraza-Reyes M, Robleto E. Non-B DNA-Forming Motifs Promote Mfd-Dependent Stationary-Phase Mutagenesis in Bacillus subtilis. Microorganisms. 2021; 9(6):1284. https://doi.org/10.3390/microorganisms9061284
Chicago/Turabian StyleErmi, Tatiana, Carmen Vallin, Ana Gabriela Regalado García, Moises Bravo, Ismaray Fernandez Cordero, Holly Anne Martin, Mario Pedraza-Reyes, and Eduardo Robleto. 2021. "Non-B DNA-Forming Motifs Promote Mfd-Dependent Stationary-Phase Mutagenesis in Bacillus subtilis" Microorganisms 9, no. 6: 1284. https://doi.org/10.3390/microorganisms9061284
APA StyleErmi, T., Vallin, C., García, A. G. R., Bravo, M., Cordero, I. F., Martin, H. A., Pedraza-Reyes, M., & Robleto, E. (2021). Non-B DNA-Forming Motifs Promote Mfd-Dependent Stationary-Phase Mutagenesis in Bacillus subtilis. Microorganisms, 9(6), 1284. https://doi.org/10.3390/microorganisms9061284