Effects of Lactobacillus reuteri and Streptomyces coelicolor on Growth Performance of Broiler Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Encapsulation of Microorganisms
2.3. Birds and Dietary Treatments
2.4. Management of Experimental Birds and Data Collection
2.5. Processing and Measurement of Carcass Characteristics
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Christensen, H.R.; Frøkiær, H.; Pestka, J.J. Lactobacilli Differentially Modulate Expression of Cytokines and Maturation Surface Markers in Murine Dendritic Cells. J. Immunol. 2002, 168, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-H.; Kim, J.-K.; Kim, H.-J.; Kim, W.-Y.; Kim, Y.-B.; Park, Y.-H. Selection of a Potential Probiotic Lactobacillus Strain and Subsequent in Vivo Studies. Antonie Van Leeuwenhoek 2001, 80, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Wang, Q.; Zeng, X.; Yang, F.; Zhang, J.; Liu, H.; Ma, X.; Qiao, S. Complete Genome Sequence of Lactobacillus reuteri I5007, a Probiotic Strain Isolated from Healthy Piglet. J. Biotechnol. 2014, 179, 63–64. [Google Scholar] [CrossRef] [PubMed]
- Sornplang, P.; Piyadeatsoontorn, S. Probiotic Isolates from Unconventional Sources: A Review. J. Anim. Sci. Technol. 2016, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, R.C.R.; Seney, S.L.; Summers, K.L.; Nomizo, A.; Martinis, E.C.P.D.; Reid, G. Effect of Lactobacillus Rhamnosus GR-1 and Lactobacillus reuteri RC-14 on the Ability of Candida Albicans to Infect Cells and Induce Inflammation. Microbiol. Immunol. 2009, 53, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Bian, L. An in Vitro Antimicrobial and Safety Study of Lactobacillus reuteri DPC16 for Validation of Probiotic Concept. Master’s Thesis, Massey University, Auckland, New Zealand, 2008. [Google Scholar]
- Morita, H.; Toh, H.; Fukuda, S.; Horikawa, H.; Oshima, K.; Suzuki, T.; Murakami, M.; Hisamatsu, S.; Kato, Y.; Takizawa, T.; et al. Comparative Genome Analysis of Lactobacillus reuteri and Lactobacillus fermentum Reveal a Genomic Island for Reuterin and Cobalamin Production. DNA Res. 2008, 15, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Gänzle, M.G.; Höltzel, A.; Walter, J.; Jung, G.; Hammes, W.P. Characterization of Reutericyclin Produced by Lactobacillus reuteri LTH2584. Appl. Environ. Microbiol. 2000, 66, 4325–4333. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.E.; Versalovic, J. Probiotic Lactobacillus reuteri biofilms Produce Antimicrobial and Anti-Inflammatory Factors. BMC Microbiol. 2009, 9, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talarico, T.L.; Dobrogosz, W.J. Chemical Characterization of an Antimicrobial Substance Produced by Lactobacillus reuteri. Antimicrob. Agents Chemother. 1989, 33, 674–679. [Google Scholar] [CrossRef] [Green Version]
- Seo, B.J.; Mun, M.R.; Kim, C.J.; Lee, I.; Chang, Y.H.; Park, Y.H. Bile Tolerant Lactobacillus reuteri Isolated from Pig Feces Inhibits Enteric Bacterial Pathogens and Porcine Rotavirus. Vet. Res. Commun. 2010, 34, 323–333. [Google Scholar] [CrossRef]
- Mukai, T.; Asasaka, T.; Sato, E.; Mori, K.; Matsumoto, M.; Ohori, H. Inhibition of Binding of Helicobacter Pylori to the Glycolipid Receptors by Probiotic Lactobacillus reuteri. FEMS Immunol. Med. Microbiol. 2002, 32, 105–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bérrdy, J.; Horváth, I.; Szentirmai, A. Antibiotics Produced by Streptomyces II. The Tautomeric Transformation of Xanthomycin. Z. Allg. Mikrobiol. 1964, 4, 232–235. [Google Scholar] [CrossRef]
- Lee, L.-H.; Zainal, N.; Azman, A.-S.; Eng, S.-K.; Goh, B.-H.; Yin, W.-F.; Ab Mutalib, N.-S.; Chan, K.-G. Diversity and Antimicrobial Activities of Actinobacteria Isolated from Tropical Mangrove Sediments in Malaysia. Sci. World J. 2014, 2014, 698178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ser, H.-L.; Palanisamy, U.D.; Yin, W.-F.; Abd Malek, S.N.; Chan, K.-G.; Goh, B.-H.; Lee, L.-H. Presence of Antioxidative Agent, Pyrrolo[1,2-a]Pyrazine-1,4-Dione, Hexahydro- in Newly Isolated Streptomyces mangrovisoli Sp. Nov. Front. Microbiol. 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, L.T.-H.; Ser, H.-L.; Yin, W.-F.; Chan, K.-G.; Lee, L.-H.; Goh, B.-H. Investigation of Antioxidative and Anticancer Potentials of Streptomyces Sp. MUM256 Isolated from Malaysia Mangrove Soil. Front. Microbiol. 2015, 6. [Google Scholar] [CrossRef]
- Manivasagan, P.; Venkatesan, J.; Sivakumar, K.; Kim, S.-K. Pharmaceutically Active Secondary Metabolites of Marine Actinobacteria. Microbiol. Res. 2014, 169, 262–278. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Ward, L.R.; Burke, C. Screening of Marine Streptomyces Spp. for Potential Use as Probiotics in Aquaculture. Aquaculture 2010, 305, 32–41. [Google Scholar] [CrossRef]
- Augustine, D.; Jacob, J.C.; Philip, R. Exclusion of Vibrio Spp. by an Antagonistic Marine Actinomycete Streptomyces Rubrolavendulae M56. Aquac. Res. 2016, 47, 2951–2960. [Google Scholar] [CrossRef]
- Hopwood, D.A.; Chater, K.F.; Bibb, M.J. CHAPTER 2—Genetics of Antibiotic Production in Streptomyces Coelicolor A3(2), a Model Streptomycete. In Genetics and Biochemistry of Antibiotic Production; Vining, L.C., Stuttard, C., Eds.; Butterworth-Heinemann: Boston, MA, USA, 1995; pp. 65–102. [Google Scholar] [CrossRef]
- Bentley, S.D.; Chater, K.F.; Cerdeño-Tárraga, A.-M.; Challis, G.L.; Thomson, N.R.; James, K.D.; Harris, D.E.; Quail, M.A.; Kieser, H.; Harper, D.; et al. Complete Genome Sequence of the Model Actinomycete Streptomyces Coelicolor A3(2). Nature 2002, 417, 141–147. [Google Scholar] [CrossRef]
- Hopwood, D.A. Forty Years of Genetics with Streptomyces: From in Vivo through in Vitro to in Silico. Microbiology 1999, 145, 2183–2202. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Lyla, P.S.; Ajmal Khan, S. Application of Streptomyces as a Probiotic in the Laboratory Culture of Penaeus Monodon (Fabricius). Israeli J. Aquac. 2006, 58, 198–204. [Google Scholar]
- Dharmaraj, S.; Dhevendaran, K. Evaluation of Streptomyces as a Probiotic Feed for the Growth of Ornamental Fish Xiphophorus Helleri. Food Technol. Biotechnol. 2010, 48, 497–504. [Google Scholar]
- Shi, L.-E.; Zheng, W.; Zhang, Y.; Liu, X.-Y.; Tang, Z.-X. Soy Milk-Based Microspheres as Potential Carriers for the Protection of Enterococcus Faecalis HZNU P2. J. Funct. Foods 2015, 18, 487–491. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA, 1994; pp. 1–156. [Google Scholar]
- Bell, D.D.; Weaver, W.D. (Eds.) Commercial Chicken Meat and Egg Production, 5th ed.; Springer: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- Fajardo, P.; Pastrana, L.; Méndez, J.; Rodríguez, I.; Fuciños, C.; Guerra, N.P. Effects of Feeding of Two Potentially Probiotic Preparations from Lactic Acid Bacteria on the Performance and Faecal Microflora of Broiler Chickens. Sci. World J. 2012, 562635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SAS Institute. SAS/STAT User’s Guide; Version 9.3; SAS Institute Inc.: Cary, NC, USA, 2011. [Google Scholar]
- Shim, Y.H.; Ingale, S.L.; Kim, J.S.; Kim, K.H.; Seo, D.K.; Lee, S.C.; Chae, B.J.; Kwon, P.I.K. A Multi-Microbe Probiotic Formulation Processed at Low and High Drying Temperatures: Effects on Growth Performance, Nutrient Retention and Caecal Microbiology of Broilers. Br. Poult. Sci. 2012, 53, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Hung, A.T.; Lin, S.-Y.; Yang, T.-Y.; Chou, C.-K.; Liu, H.-C.; Lu, J.-J.; Wang, B.; Chen, S.-Y.; Lien, T.-F. Effects of Bacillus Coagulans ATCC 7050 on Growth Performance, Intestinal Morphology, and Microflora Composition in Broiler Chickens. Anim. Prod. Sci. 2012, 52, 874. [Google Scholar] [CrossRef]
- Mookiah, S.; Sieo, C.C.; Ramasamy, K.; Abdullah, N.; Ho, Y.W. Effects of Dietary Prebiotics, Probiotic and Synbiotics on Performance, Caecal Bacterial Populations and Caecal Fermentation Concentrations of Broiler Chickens. J. Sci. Food Agric. 2014, 94, 341–348. [Google Scholar] [CrossRef]
- Lan, P.T.N.; Binh, L.T.; Benno, Y. Impact of Two Probiotic Lactobacillus Strains Feeding on Fecal Lactobacilli and Weight Gains in Chicken. J. Gen. Appl. Microbiol. 2003, 49, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Aluwong, T.; Hassan, F.; Dzenda, T.; Kawu, M.; Ayo, J. Effect of Different Levels of Supplemental Yeast on Body Weight, Thyroid Hormone Metabolism and Lipid Profile of Broiler Chickens. J. Vet. Med. Sci. 2013, 75, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Shahir, M.H.; Afsarian, O.; Ghasemi, S.; Tellez, G. Effects of Dietary Inclusion of Probiotic or Prebiotic on Growth Performance, Organ Weight, Blood Parameters and Antibody Titers Against Influenza and Newcastle in Broiler Chickens. Int. J. Poult. Sci. 2014, 13, 70–75. [Google Scholar] [CrossRef] [Green Version]
- Cavazzoni, V.; Adami, A.; Castrovilli, C. Performance of Broiler Chickens Supplemented with Bacillus Coagulans as Probiotic. Br. Poult. Sci. 1998, 39, 526–529. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.Z.; Ho, Y.W.; Abdullah, N.; Jalaludin, S. Growth Performance, Intestinal Microbial Populations, and Serum Cholesterol of Broilers Fed Diets Containing Lactobacillus Cultures. Poult. Sci. 1998, 77, 1259–1265. [Google Scholar] [CrossRef] [PubMed]
- Zulkifli, I.; Abdullah, N.; Azrin, N.M.; Ho, Y.W. Growth Performance and Immune Response of Two Commercial Broiler Strains Fed Diets Containing Lactobacillus Cultures and Oxytetracycline under Heat Stress Conditions. Br. Poult. Sci. 2000, 41, 593–597. [Google Scholar] [CrossRef]
- Kabir, S.M.L.; Rahman, M.M.; Rahman, M.B.; Rahman, M.M.; Ahmed, S.U. The Dynamics of Probiotics on Growth Performance and Immune Response in Broilers. Int. J. Poult. Sci. 2004, 3, 361–364. [Google Scholar] [CrossRef]
- Mountzouris, K.C.; Tsirtsikos, P.; Kalamara, E.; Nitsch, S.; Schatzmayr, G.; Fegeros, K. Evaluation of the Efficacy of a Probiotic Containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus Strains in Promoting Broiler Performance and Modulating Cecal Microflora Composition and Metabolic Activities1. Poult. Sci. 2007, 86, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Samli, H.E.; Senkoylu, N.; Koc, F.; Kanter, M.; Agma, A. Effects of Enterococcus Faecium and Dried Whey on Broiler Performance, Gut Histomorphology and Intestinal Microbiota. Arch. Anim. Nutr. 2007, 61, 42–49. [Google Scholar] [CrossRef]
- Jha, R.; Das, R.; Oak, S.; Mishra, P. Probiotics (Direct-Fed Microbials) in Poultry Nutrition and Their Effects on Nutrient Utilization, Growth and Laying Performance, and Gut Health: A Systematic Review. Animals 2020, 10, 1863. [Google Scholar] [CrossRef]
- Gheorghe, A.; Tabuc, C.; Habeanu, M.; Dumitru, M.; Lefter, N.A. Effect of Dietary Supplementation with Probiotic Mixture Based on Lactobacillus Strains on Performance, Gastrointestinal Development and Ileal Microflora in Broilers. J. Biotechnol. 2018, 280, S41. [Google Scholar] [CrossRef]
- Lokapirnasari, W.P.; Sahidu, A.M.; Maslachah, L.; Sabdoningrum, E.K.; Yulianto, A.B. Effect of Lactobacillus casei and Lactobacillus acidophilus in Laying Hens Challenged by Escherichia coli Infection. Sains Malays. 2020, 49, 1237–1244. [Google Scholar] [CrossRef]
- Fuller, R. Probiotics in Man and Animals. J. Appl. Bacteriol. 1989, 66, 365–378. [Google Scholar]
- Nahashon, S.N.; Nakaue, H.S.; Mirosh, L.W. Nutrient Retention and Production Parameters of Single Comb White Leghorn Layers Fed Diets with Varying Crude Protein Levels and Supplemented with Direct-Fed Microbials. Anim. Feed Sci. Technol. 1996, 61, 17–26. [Google Scholar] [CrossRef]
- Murugesan, G.R.; Persia, M.E. Influence of a Direct-Fed Microbial and Xylanase Enzyme on the Dietary Energy Uptake Efficiency and Performance of Broiler Chickens. J. Sci. Food Agric. 2015, 95, 2521–2527. [Google Scholar] [CrossRef]
- Flores, C.; Williams, M.; Pieniazek, J.; Dersjant-Li, Y.; Awati, A.; Lee, J.T. Direct-Fed Microbial and Its Combination with Xylanase, Amylase, and Protease Enzymes in Comparison with AGPs on Broiler Growth Performance and Foot-Pad Lesion Development. J. Appl. Poult. Res. 2016, 25, 328–337. [Google Scholar] [CrossRef]
- Cole, C.B.; Fuller, R.; Newport, M.J. Effect of Diluted Yoghurt on the Gut Microbiology and Growth of Piglets. Food Microbiol. 1987, 4, 83–85. [Google Scholar] [CrossRef]
- Jin, L.Z.; Ho, Y.W.; Abdullah, N.; Jalaludin, S. Probiotics in Poultry: Modes of Action. World. Poult. Sci. J. 1997, 53, 351–368. [Google Scholar] [CrossRef]
- Wealleans, A.L.; Walsh, M.C.; Romero, L.F.; Ravindran, V. Comparative Effects of Two Multi-Enzyme Combinations and a Bacillus Probiotic on Growth Performance, Digestibility of Energy and Nutrients, Disappearance of Non-Starch Polysaccharides, and Gut Microflora in Broiler Chickens. Poult. Sci 2017, 96, 4287–4297. [Google Scholar] [CrossRef]
- Dunham, H.J.; Williams, C.; Edens, F.W.; Casas, I.A.; Dobrogosz, W.J. Lactobacillus reuteri immunomodulation of stressor-associated diseases in newly hatched chickens and turkeys. Poult. Sci. 1993, 72 (Suppl. S1), 103. [Google Scholar]
- Jin, L.Z.; Ho, Y.W.; Abdullah, N.; Jalaludin, S. Digestive and Bacterial Enzyme Activities in Broilers Fed Diets Supplemented with Lactobacillus Cultures. Poult. Sci. 2000, 79, 886–891. [Google Scholar] [CrossRef] [PubMed]
- Brisbin, J.T.; Gong, J.; Orouji, S.; Esufali, J.; Mallick, A.I.; Parvizi, P.; Shewen, P.E.; Sharif, S. Oral Treatment of Chickens with Lactobacilli Influences Elicitation of Immune Responses. Clin. Vaccine Immunol. 2011, 18, 1447–1455. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.N.; Yi, X.W.; Yu, H.F.; Dong, B.; Qiao, S.Y. Free Radical Scavenging Activity of Lactobacillus fermentum in Vitro and Its Antioxidative Effect on Growing–Finishing Pigs. J. Appl. Microbiol. 2009, 107, 1140–1148. [Google Scholar] [CrossRef]
- Yu, B.; Liu, J.R.; Chiou, M.Y.; Hsu, Y.R.; Chiou, P.W.S. The Effects of Probiotic Lactobacillus reuteri Pg4 Strain on Intestinal Characteristics and Performance in Broilers. Asian Australas. J. Anim. Sci. 2007, 20, 1243–1251. [Google Scholar] [CrossRef]
- Awad, W.A.; Ghareeb, K.; Abdel-Raheem, S.; Böhm, J. Effects of Dietary Inclusion of Probiotic and Synbiotic on Growth Performance, Organ Weights, and Intestinal Histomorphology of Broiler Chickens. Poult. Sci. 2009, 88, 49–56. [Google Scholar] [CrossRef]
- Nakphaichit, M.; Thanomwongwattana, S.; Phraephaisarn, C.; Sakamoto, N.; Keawsompong, S.; Nakayama, J.; Nitisinprasert, S. The Effect of Including Lactobacillus reuteri KUB-AC5 during Post-Hatch Feeding on the Growth and Ileum Microbiota of Broiler Chickens. Poult. Sci. 2011, 90, 2753–2765. [Google Scholar] [CrossRef]
- Bansal, G.R.; Singh, V.P.; Sachan, N. Effect of Probiotic Supplementation on the Performance of Broilers. Asian J. Anim. Sci. 2011, 5, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Olnood, C.G.; Beski, S.S.M.; Choct, M.; Iji, P.A. Novel Probiotics: Their Effects on Growth Performance, Gut Development, Microbial Community and Activity of Broiler Chickens. Anim. Nutr. 2015, 1, 184–191. [Google Scholar] [CrossRef]
- Wang, A.N.; Cai, C.J.; Zeng, X.F.; Zhang, F.R.; Zhang, G.L.; Thacker, P.A.; Wang, J.J.; Qiao, S.Y. Dietary Supplementation with Lactobacillus fermentum I5007 Improves the Anti-Oxidative Activity of Weanling Piglets Challenged with Diquat. J. Appl. Microbiol. 2013, 114, 1582–1591. [Google Scholar] [CrossRef]
- Hickling, D.; Guenter, W.; Jackson, M.E. The effects of dietary methionine and lysine on broiler chicken performance and breast meat yield. Can. J. Anim. Sci. 2011. [Google Scholar] [CrossRef] [Green Version]
- Kanagaraju, P.; Rathnapraba, S.; Churchil, R.; Madhan Kumar, N.; Swapnil, S. Nutritional Interventions to Improve Breast Meat Yield in Broilers—Review. Int. J. Livest. Res. 2019, 9, 49–61. [Google Scholar] [CrossRef]
- Summers, J.D.; Leeson, S. Poultry Nutrition Handbook; University of Guelph: Guelph, ON, Canada, 1985. [Google Scholar]
- Humam, A.M.; Loh, T.C.; Foo, H.L.; Samsudin, A.A.; Mustapha, N.M.; Zulkifli, I.; Izuddin, W.I. Effects of Feeding Different Postbiotics Produced by Lactobacillus plantarum on Growth Performance, Carcass Yield, Intestinal Morphology, Gut Microbiota Composition, Immune Status, and Growth Gene Expression in Broilers under Heat Stress. Animals 2019, 9, 644. [Google Scholar] [CrossRef] [Green Version]
- Mohan, B.; Kadirvel, R.; Natarajan, A.; Bhaskaran, M. Effect of Probiotic Supplementation on Growth, Nitrogen Utilisation and Serum Cholesterol in Broilers. Br. Poult. Sci. 1996, 37, 395–401. [Google Scholar] [CrossRef]
- Moreira, J.; Mendes, A.A.; Garcia, E.A.; Garcia, R.G.; Almeida, I.C.L., Jr. JCG. Effect of probiotic use on broiler performance and carcass yield. In XXXVIII SBZ Annual Meeting; Annals; SBZ: Piracicaba, Brazil, 2001; pp. 852–854. [Google Scholar]
- Vargas, J.G., Jr.; Toledo, R.S.; Albino, L.F.T.; Rostango, H.S.; Oliveira, J.E.; Carvalho, D.C.O. Carcass characteristics of broilers, submitted to rations containing probiotics, prebiotics and antibiotics. In XXXIX Annual Meeting of SBZ; SBZ: Recife, Brazil, 2002. [Google Scholar]
- Rehman, A.; Arif, M.; Sajjad, N.; Al-Ghadi, M.Q.; Alagawany, M.; Abd El-Hack, M.E.; Alhimaidi, A.R.; Elnesr, S.S.; Almutairi, B.O.; Amran, R.A.; et al. Dietary Effect of Probiotics and Prebiotics on Broiler Performance, Carcass, and Immunity. Poult. Sci. 2020, 99, 6946–6953. [Google Scholar] [CrossRef]
- Yousefi, M.; Karkoodi, K. Effect of probiotic Thepax and Saccharomyces cerevisiae supplementation on performance and egg quality of laying hens. Int. J. Poult. Sci. 2007, 6, 52–54. [Google Scholar]
- Sarangi, N.R.; Babu, L.K.; Kumar, A.; Pradhan, C.R.; Pati, P.K.; Mishra, J.P. Effect of Dietary Supplementation of Prebiotic, Probiotic, and Synbiotic on Growth Performance and Carcass Characteristics of Broiler Chickens. Vet. World 2016, 9, 313–319. [Google Scholar] [CrossRef] [Green Version]
Ingredients | 0–3 WOA | 4–6 WOA | 7–8 WOA |
---|---|---|---|
Corn (8% CP) | 46.468 | 56.088 | 62.000 |
Soybean meal (47.5%) | 40.000 | 32.000 | 27.000 |
Wheat middlings | 1.000 | 1.000 | 1.000 |
Alfalfa meal (17% CP) | 1.000 | 1.000 | 1.000 |
Poult. Blend. Fat (8158 Kcal ME/Kg) | 7.900 | 6.300 | 5.388 |
Dical. Phosphate (18% P, 22% Ca) | 1.900 | 1.900 | 1.900 |
Limestone flour (38% Ca) | 1.000 | 1.000 | 1.000 |
D,L-Methionine (98%) 1 | 0.150 | 0.130 | 0.130 |
L-Cystenine (98%) | 0.032 | 0.032 | 0.032 |
Salt | 0.300 | 0.300 | 0.300 |
Vitamin-Mineral premix 2 | 0.250 | 0.250 | 0.250 |
Calculated levels | |||
ME (Kcal/Kg) | 3200 | 3200 | 3200 |
CP (%) | 23 | 20 | 20 |
Calcium | 0.93 | 0.91 | 0.89 |
Total Phosphorous | 0.73 | 0.70 | 0.69 |
Avail Phosphorous | 0.47 | 0.46 | 0.45 |
Cysteine | 0.40 | 0.36 | 0.34 |
Methionine | 0.50 | 0.44 | 0.42 |
Meth+Cys | 0.91 | 0.81 | 0.76 |
Arg | 1.58 | 1.34 | 1.19 |
Thr | 0.89 | 0.77 | 0.69 |
Lys | 1.31 | 1.10 | 0.97 |
Analyzed Levels (%) | |||
Crude Protein | 22.92 | 20.03 | 20.06 |
Crude Fat | 4.91 | 5.20 | 5.51 |
Calcium | 0.90 | 0.89 | 0.91 |
Treatment | (Weeks of Age) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Lacto 1 | Strepto 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Total |
(ppm) | ---------------------------------------------------------------(g/Bird/Week)---------------------------------------------------------(g) | |||||||||
0 | 0 | 122.30 c | 340.75 a | 662.21 a | 852.87 a | 1104.19 a | 1120.06 a | 1411.04 a | 1058.98 b | 6672 a |
100 | 0 | 160.82 a | 332.25 b | 641.53 b | 816.37 c | 1012.83 d | 1035.94 c | 1200.31 d | 862.74 c | 6063 c |
0 | 100 | 133.43 b | 326.68 c | 625.20 c | 830.20 b | 1026.63 c | 1041.24 c | 1272.05 c | 1064.69 b | 6320 b |
50 | 50 | 139.16 b | 324.55 c | 641.01 b | 860.79 a | 1084.62 b | 1099.63 b | 1350.75 b | 1144.31 a | 6645 a |
PSEM 3 | 2.31 | 1.75 | 2.88 | 2.94 | 6.08 | 5.78 | 4.13 | 12.19 | 33.27 | |
Probability | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Treatment | Weeks of Age | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Lacto 1 | Strepto 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Total |
(ppm) | ---------------------------------------------------------------(g/Bird/Week)--------------------------------------------------(g) | |||||||||
0 | 0 | 86.73 b | 248.28 a | 455.38 b | 554.44 a | 592.52 a,b | 579.90 a | 732.07 a | 344.54 a | 3594 |
100 | 0 | 98.25 a | 240.65 a | 488.06 a | 528.87 a,b | 570.24 b | 545.82 a | 600.72 b | 290.93 a | 3364 |
0 | 100 | 84.49 b | 253.65 a | 444.13 b | 540.85 a | 611.22 a,b | 483.88 b | 573.47 b | 360.69 a | 3352 |
50 | 50 | 93.88 a | 253.56 a | 463.57 a,b | 558.91 a | 625.55 a | 531.21 a,b | 669.06 a,b | 365.65 a | 3561 |
PSEM 3 | 2.37 | 6.18 | 10.03 | 11.11 | 16.02 | 19.32 | 28.66 | 31.6 | - | |
Probability | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | - |
Treatment | (Weeks of Age) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Lacto 1 | Strepto 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Average |
(ppm) | (g Feed/g Body Weight Gain) | |||||||||
0 | 0 | 1.43 b | 1.42 a | 1.52 a | 1.56 a | 2.05 a | 2.04 a | 2.45 a | 3.43 a | 1.99 |
100 | 0 | 1.68 a | 1.45 a | 1.35 b | 1.60 a | 1.84 a,b | 1.99 a | 2.24 a | 2.92 a | 1.88 |
0 | 100 | 1.66 a | 1.34 a | 1.45 a,b | 1.56 a | 1.71 b | 2.09 a | 2.20 a | 2.92 a | 1.86 |
50 | 50 | 1.52 b | 1.32 a | 1.45 a,b | 1.58 a | 1.78 b | 2.16 a | 2.18 a | 3.12 a | 1.88 |
PSEM 3 | 0.04 | 0.04 | 0.05 | 0.03 | 0.08 | 0.07 | 0.21 | 0.19 | - | |
Probability | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | - |
Dietary Treatment (ppm) | Carcass Characteristic (%) | |||||||
---|---|---|---|---|---|---|---|---|
Lactobacillus | Streptococcus | Carcass | Breast | Thighs | Drumsticks | Wings | Fat | Prob 1 |
0 | 0 | 81 a | 33.9 a | 11.8 a | 10.1 a,b | 8.6 a | 1.4 a | p < 0.001 |
100 | 0 | 82 a | 32.5 a | 12.4 a | 10.5 a | 9.2 a | 1.1 a | p < 0.001 |
0 | 100 | 84 a | 35.3 a | 12.0 a | 9.5 b | 8.7 a | 1.5 a | p < 0.001 |
50 | 50 | 80 a | 32.7 a | 11.6 a | 10.2 a,b | 8.7 a | 1.4 a | p < 0.001 |
PSEM 2 | 1.40 | 0.99 | 0.43 | 0.29 | 0.28 | 0.17 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhogoju, S.; Khwatenge, C.N.; Taylor-Bowden, T.; Akerele, G.; Kimathi, B.M.; Donkor, J.; Nahashon, S.N. Effects of Lactobacillus reuteri and Streptomyces coelicolor on Growth Performance of Broiler Chickens. Microorganisms 2021, 9, 1341. https://doi.org/10.3390/microorganisms9061341
Bhogoju S, Khwatenge CN, Taylor-Bowden T, Akerele G, Kimathi BM, Donkor J, Nahashon SN. Effects of Lactobacillus reuteri and Streptomyces coelicolor on Growth Performance of Broiler Chickens. Microorganisms. 2021; 9(6):1341. https://doi.org/10.3390/microorganisms9061341
Chicago/Turabian StyleBhogoju, Sarayu, Collins N. Khwatenge, Thyneice Taylor-Bowden, Gabriel Akerele, Boniface M. Kimathi, Joseph Donkor, and Samuel N. Nahashon. 2021. "Effects of Lactobacillus reuteri and Streptomyces coelicolor on Growth Performance of Broiler Chickens" Microorganisms 9, no. 6: 1341. https://doi.org/10.3390/microorganisms9061341
APA StyleBhogoju, S., Khwatenge, C. N., Taylor-Bowden, T., Akerele, G., Kimathi, B. M., Donkor, J., & Nahashon, S. N. (2021). Effects of Lactobacillus reuteri and Streptomyces coelicolor on Growth Performance of Broiler Chickens. Microorganisms, 9(6), 1341. https://doi.org/10.3390/microorganisms9061341