Isolation and Biochemical Characterization of Six Anaerobic Fungal Strains from Zoo Animal Feces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Media
2.2. Isolation of AF
2.3. Identification of AF
2.4. Carbon Source Usage and Analytics
3. Results
3.1. Isolation and Phylogeny
3.2. Carbon Source Usage
3.3. Metabolite Production
4. Discussion
4.1. Phylogeny
4.2. Carbon Source Usage
4.3. Metabolite Production
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Liu, J.; Chang, X.; Chen, D.; Xue, Y.; Liu, P.; Lin, H.; Han, S. A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process. Technol. 2017, 160, 196–206. [Google Scholar] [CrossRef]
- Behera, S.; Arora, R.; Nandhagopal, N.; Kumar, S. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 2014, 36, 91–106. [Google Scholar] [CrossRef]
- Gruninger, R.J.; Puniya, A.K.; Callaghan, T.M.; Edwards, J.E.; Youssef, N.; Dagar, S.S.; Fliegerova, K.; Griffith, G.W.; Forster, R.; Tsang, A.; et al. Anaerobic fungi (phylum Neocallimastigomycota): Advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol. Ecol. 2014, 90, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liggenstoffer, A.S.; Youssef, N.H.; Wilkins, M.R.; Elshahed, M.S. Evaluating the utility of hydrothermolysis pretreatment approaches in enhancing lignocellulosic biomass degradation by the anaerobic fungus Orpinomyces sp. strain C1A. J. Microbiol. Methods. 2014, 104, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, A.; Smith, O.P.; Youssef, N.H.; Struchtemeyer, C.G.; Atiyeh, H.K.; Elshahed, M.S. Utilizing anaerobic fungi for two-stage sugar extraction and biofuel production from lignocellulosic biomass. Front. Microbiol. 2017, 8, 635. [Google Scholar] [CrossRef] [Green Version]
- Ho, Y.W.; Abdullah, N.; Jalaludin, S. Penetrating Structures of Anaerobic Rumen Fungi in Cattle and Swamp Buffalo. Microbiology 1988, 134, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Ho, Y.W.; Abdullah, N.; Jalaludin, S. Colonization of guinea grass by anaerobic rumen fungi in swamp buffalo and cattle. Anim. Feed Sci. Technol. 1988. [Google Scholar] [CrossRef]
- Youssef, N.H.; Couger, M.B.; Struchtemeyer, C.G.; Liggenstoffer, A.S.; Prade, R.A.; Najar, F.Z.; Atiyeh, H.K.; Wilkins, M.R.; Elshahed, M.S. The genome of the anaerobic fungus orpinomyces sp. strain c1a reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl. Environ. Microbiol. 2013. [Google Scholar] [CrossRef] [Green Version]
- Wilson, C.A.; Wood, T.M. Studies on the cellulase of the rumen anaerobic fungus Neocallimastix frontalis, with special reference to the capacity of the enzyme to degrade crystalline cellulose. Enzyme Microb. Technol. 1992. [Google Scholar] [CrossRef]
- Wang, H.-C.; Chen, Y.-C.; Hseu, R.-S. Purification and characterization of a cellulolytic multienzyme complex produced by Neocallimastix patriciarum J11. Biochem. Biophys. Res. Commun. 2014, 451, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Morrison, J.M.; Elshahed, M.S.; Youssef, N.H. Defined enzyme cocktail from the anaerobic fungus Orpinomyces sp. Strain C1A effectively releases sugars from pretreated corn stover and switchgrass. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kameshwar, A.K.S.; Qin, W. Genome Wide Analysis Reveals the Extrinsic Cellulolytic and Biohydrogen Generating Abilities of Neocallimastigomycota Fungi. J. Genomics. 2018, 6, 74–87. [Google Scholar] [CrossRef] [Green Version]
- Liebetanz, E. Die parasitischen Protozoen des Wiederkäuermagens. Arch. für Protistenkd. 1910, 19, 19–83. [Google Scholar]
- Orpin, C.G. Studies on the Rumen Flagellate Neocallimastix frontalis. J. Gen. Microbiol. 1975, 91, 249–262. [Google Scholar] [CrossRef] [Green Version]
- Orpin, C.G. The Occurrence of Chitin in the Cell Walls of the Rumen Organisms Neocallimastix frontalis, Piromonas communis and Sphaeromonas communis. J. Gen. Microbiol. 1977, 99, 215–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hibbett, D.S.; Binder, M.; Bischoff, J.F.; Blackwell, M.; Cannon, P.F.; Eriksson, O.E.; Huhndorf, S.; James, T.; Kirk, P.M.; Lücking, R.; et al. A higher-level phylogenetic classification of the Fungi. Mycol. Res. 2007, 111, 509–547. [Google Scholar] [CrossRef] [PubMed]
- Heath, I.B.; Bauchop, T.; Skipp, R.A. Assignment of the rumen anaerobe Neocallimastix frontalis to the Spizellomycetales (Chytridiomycetes) on the basis of its polyflagellate zoospore ultrastructure. Can. J. Bot. 1983. [Google Scholar] [CrossRef]
- Gold, J.J.; Heath, I.B.; Bauchop, T. Ultrastructural description of a new chytrid genus of caecum anaerobe, Caecomyces equi gen. nov., sp. nov., assigned to the Neocallimasticaceae. BioSystems 1988. [Google Scholar] [CrossRef]
- Hanafy, R.A.; Lanjekar, V.B.; Dhakephalkar, P.K.; Callaghan, T.M.; Dagar, S.S.; Griffith, G.W.; Elshahed, M.S.; Youssef, N.H. Seven new Neocallimastigomycota genera from wild, zoo-housed, and domesticated herbivores greatly expand the taxonomic diversity of the phylum. Mycologia 2020. [Google Scholar] [CrossRef]
- Stabel, M.; Hanafy, R.A.; Schweitzer, T.; Greif, M.; Aliyu, H.; Flad, V.; Young, D.; Lebuhn, M.; Elshahed, M.S.; Ochsenreither, K.; et al. Aestipascuomyces dupliciliberans gen. nov, sp. nov., the First Cultured Representative of the Uncultured SK4 Clade from Aoudad Sheep and Alpaca. Microorganisms 2020, 8, 1734. [Google Scholar] [CrossRef]
- Hanafy, R.A.; Youssef, N.H.; Elshahed, M.S. Paucimyces polynucleatus gen. nov, sp. nov., a novel polycentric genus of anaerobic gut fungi from the faeces of a wild blackbuck antelope. Int. J. Syst. Evol. Microbiol. 2021, 71, 004832. [Google Scholar] [CrossRef]
- Ozkose, E.; Thomas, B.J.; Davies, D.R.; Griffith, G.W.; Theodorou, M.K. Cyllamyces aberensis gen.nov. sp.nov., a new anaerobic gut fungus with branched sporangiophores isolated from cattle. Can. J. Bot. 2001. [Google Scholar] [CrossRef]
- Breton, A.; Bernalier, A.; Dusser, M.; Fonty, G.; Gaillard-Martinie, B.; Guillot, J. Anaeromyces mucronatus nov. gen., nov. sp. A new strictly anaerobic rumen fungus with polycentric thallus. FEMS Microbiol. Lett. 1990. [Google Scholar] [CrossRef] [Green Version]
- Barr, D.J.S.; Kudo, H.; Jakober, K.D.; Cheng, K.-J. Morphology and development of rumen fungi: Neocallimastix sp., Piromyces communis, and Orpinomyces bovis gen.nov., sp.nov. Can. J. Bot. 1989. [Google Scholar] [CrossRef]
- Dagar, S.S.; Kumar, S.; Griffith, G.W.; Edwards, J.E.; Callaghan, T.M.; Singh, R.; Nagpal, A.K.; Puniya, A.K. A new anaerobic fungus (Oontomyces anksri gen. nov., sp. nov.) from the digestive tract of the Indian camel (Camelus dromedarius). Fungal Biol. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callaghan, T.M.; Podmirseg, S.M.; Hohlweck, D.; Edwards, J.E.; Puniya, A.K.; Dagar, S.S.; Griffith, G.W. Buwchfawromyces eastonii gen. nov., sp. nov.: A new anaerobic fungus (Neocallimastigomycota) isolated from buffalo faeces. MycoKeys 2015. [Google Scholar] [CrossRef]
- Hanafy, R.A.; Elshahed, M.S.; Liggenstoffer, A.S.; Griffith, G.W.; Youssef, N.H. Pecoramyces ruminantium, gen. nov., sp. nov., an anaerobic gut fungus from the feces of cattle and sheep. Mycologia 2017. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Lanjekar, V.B.; Dhakephalkar, P.K.; Callaghan, T.M.; Griffith, G.W.; Dagar, S.S. Liebetanzomyces polymorphus gen. et sp. nov., a new anaerobic fungus (Neocallimastigomycota) isolated from the rumen of a goat. MycoKeys 2018. [Google Scholar] [CrossRef] [PubMed]
- Hanafy, R.A.; Elshahed, M.S.; Youssef, N.H. Feramyces austinii, gen. Nov., sp. nov., an anaerobic gut fungus from rumen and fecal samples of wild barbary sheep and fallow deer. Mycologia 2018. [Google Scholar] [CrossRef]
- Ho, Y.W.; Barr, D.J.S. Classification of Anaerobic Gut Fungi from Herbivores with Emphasis on Rumen Fungi from Malaysia. Mycologia 1995. [Google Scholar] [CrossRef]
- Dollhofer, V.; Callaghan, T.M.; Dorn-In, S.; Bauer, J.; Lebuhn, M. Development of three specific PCR-based tools to determine quantity, cellulolytic transcriptional activity and phylogeny of anaerobic fungi. J. Microbiol. Methods. 2016. [Google Scholar] [CrossRef]
- Boxma, B.; Voncken, F.; Jannink, S.; Van Alen, T.; Akhmanova, A.; Van Weelden, S.W.H.; Van Hellemond, J.J.; Ricard, G.; Huynen, M.; Tielens, A.G.M.; et al. The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E. Mol. Microbiol. 2004, 51, 1389–1399. [Google Scholar] [CrossRef]
- Wilken, S.E.; Monk, J.M.; Leggieri, P.A.; Lawson, C.E.; Lankiewicz, T.S.; Seppälä, S.; Daum, C.G.; Jenkins, J.; Lipzen, A.M.; Mondo, S.J.; et al. Experimentally Validated Reconstruction and Analysis of a Genome-Scale Metabolic Model of an Anaerobic Neocallimastigomycota Fungus. mSystems 2021, 6, e00002-21. [Google Scholar] [CrossRef]
- Van der Giezen, M.; Slotboom, D.J.; Horner, D.S.; Dyal, P.L.; Harding, M.; Xue, G.P.; Embley, T.M.; Kunji, E.R.S. Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: A common origin for both organelles. EMBO J. 2002, 21, 572–579. [Google Scholar] [CrossRef] [Green Version]
- Vinzelj, J.; Joshi, A.; Insam, H.; Podmirseg, S.M. Employing anaerobic fungi in biogas production: Challenges & opportunities. Bioresour. Technol. 2020, 300, 122687. [Google Scholar] [CrossRef] [PubMed]
- Ghangas, G.S.; Hu, Y.J.; Wilson, D.B. Cloning of a Thermomonospora fusca xylanase gene and its expression in Escherichia coli and Streptomyces lividans. J. Bacteriol. 1989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marvin-Sikkema, F.D.; Richardson, A.J.; Stewart, C.S.; Gottschal, J.C.; Prins, R.A. Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi. Appl. Environ. Microbiol. 1990, 56, 3793–3797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, S.E.; Theodorou, M.K.; Trinci, A.P.J.; HespelL, R.B. Growth of Anaerobic Rumen Fungi on Defined and Semi-defined Media Lacking Rumen Fluid. Microbiology 1985, 131, 2225–2229. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, X.; Groenewald, J.Z. Phylogeny of anaerobic fungi (phylum Neocallimastigomycota), with contributions from yak in China. Antonie Van Leeuwenhoek 2017, 110, 87–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols: A guide to methods and applications; Innis, M.A., Gelfand, D.H., Eds.; Academic Press: San Diego, CA, USA, 1990; Volume 18, pp. 315–322. [Google Scholar]
- O’Donnell, K.; Reynolds, D.R.; Taylor, J.W. Fusarium and its Near Relatives. In The fungal holomorph: Mitotic, meiotic and pleomorphic speciation in fungal systematics; Reynolds, D.R., Taylor, J.W., Eds.; CAB International: Wallingford, UK, 1993; pp. 225–233. [Google Scholar]
- Haitjema, C.H.; Gilmore, S.P.; Henske, J.K.; Solomon, K.V.; de Groot, R.; Kuo, A.; Mondo, S.J.; Salamov, A.A.; LaButti, K.; Zhao, Z.; et al. A parts list for fungal cellulosomes revealed by comparative genomics. Nat. Microbiol. 2017, 2, 17087. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.L.; Swift, C.L.; Mondo, S.; Seppala, S.; Salamov, A.; Singan, V.; Henrissat, B.; Henske, J.K.; Lee, S.; He, G.; et al. Co-cultivation of the anaerobic fungus Caecomyces churrovis with Methanobacterium bryantii enhances transcription of carbohydrate binding modules. bioRxi 2021. [Google Scholar] [CrossRef]
- Hall, T.A. BIOEDIT: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [Green Version]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2017, 35, 518–522. [Google Scholar] [CrossRef]
- Subramanian, B.; Gao, S.; Lercher, M.J.; Hu, S.; Chen, W.H. Evolview v3: A webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res. 2019, 47, W270–W275. [Google Scholar] [CrossRef]
- Ariyawansa, H.A.; Hyde, K.D.; Jayasiri, S.C.; Buyck, B.; Chethana, K.W.T.; Dai, D.Q.; Dai, Y.C.; Daranagama, D.A.; Jayawardena, R.S.; Lücking, R.; et al. Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 2015. [Google Scholar] [CrossRef]
- Li, G.J.; Hyde, K.D.; Zhao, R.L.; Hongsanan, S.; Abdel-Aziz, F.A.; Abdel-Wahab, M.A.; Alvarado, P.; Alves-Silva, G.; Ammirati, J.F.; Ariyawansa, H.A.; et al. Fungal diversity notes 253–366: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 2016. [Google Scholar] [CrossRef]
- Orpin, C.G.; Munn, E.A. Neocallimastix patriciarum sp.nov., a new member of the Neocallimasticaceae inhabiting the rumen of sheep. Trans. Br. Mycol. Soc. 1986. [Google Scholar] [CrossRef]
- Ho, Y.W.; Barr, D.J.S.; Abdullah, N.; Jalaludin, S.; Kudo, H. Neocallimastix variabilis, a New Species of Anaerobic Fungus from the Rumen of Cattle. Mycotaxon 1993, 46, 241–258. [Google Scholar]
- Webb, J.; Theodorou, M.K. Neocallimastix hurleyensis sp.nov., an anaerobic fungus from the ovine rumen. Can. J. Bot. 1991. [Google Scholar] [CrossRef]
- Hess, M.; Paul, S.S.; Puniya, A.K.; van der Giezen, M.; Shaw, C.; Edwards, J.E.; Fliegerová, K. Anaerobic Fungi: Past, Present, and Future. Front. Microbiol. 2020, 11, 2621. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.S.; Bu, D.; Xu, J.; Hyde, K.D.; Yu, Z. A phylogenetic census of global diversity of gut anaerobic fungi and a new taxonomic framework. Fungal Divers 2018. [Google Scholar] [CrossRef]
- Hanafy, R.A.; Johnson, B.; Youssef, N.; Elshahed, M. Assessing anaerobic gut fungal diversity in herbivores using D1/D2 large ribosomal subunit sequencing and multi-year isolation. Environ. Microbiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Solomon, K.V.; Haitjema, C.H.; Henske, J.K.; Gilmore, S.P.; Borges-Rivera, D.; Lipzen, A.; Brewer, H.M.; Purvine, S.O.; Wright, A.T.; Theodorou, M.K.; et al. Early-branching gut fungi possess large, comprehensive array of biomass-degrading enzymes. Science 2016, 351, 1192–1195. [Google Scholar] [CrossRef] [Green Version]
- Henske, J.K.; Wilken, S.E.; Solomon, K.V.; Smallwood, C.R.; Shutthanandan, V.; Evans, J.E.; Theodorou, M.K.; O’Malley, M.A. Metabolic characterization of anaerobic fungi provides a path forward for bioprocessing of crude lignocellulose. Biotechnol. Bioeng. 2018, 115, 874–884. [Google Scholar] [CrossRef] [PubMed]
- Henske, J.K.; Gilmore, S.P.; Knop, D.; Cunningham, F.J.; Sexton, J.A.; Smallwood, C.R.; Shutthanandan, V.; Evans, J.E.; Theodorou, M.K.; O’Malley, M.A. Transcriptomic characterization of Caecomyces churrovis: A novel, non-rhizoid-forming lignocellulolytic anaerobic fungus. Biotechnol. Biofuels. 2017, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breton, A.; Bernalier, A.; Bonnemoy, F.; Fonty, G.; Gaillard, B.; Gouet, P. Morphological and metabolic characterization of a new species of strictly anaerobic rumen fungus: Neocallimastix joyonii. FEMS Microbiol. Lett. 1989. [Google Scholar] [CrossRef]
- Li, Y.; Jin, W.; Cheng, Y.; Zhu, W. Effect of the Associated Methanogen Methanobrevibacter thaueri on the Dynamic Profile of End and Intermediate Metabolites of Anaerobic Fungus Piromyces sp. F1. Curr. Microbiol. 2016, 73, 434–441. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Jin, W.; Mao, S.Y.; Zhu, W.Y. Production of citrate by anaerobic fungi in the presence of co-culture methanogens as revealed by 1H NMR spectrometry. Asian-Australasian J. Anim. Sci. 2013, 26, 1416–1423. [Google Scholar] [CrossRef] [Green Version]
- Henske, J.K.; Gilmore, S.P.; Haitjema, C.H.; Solomon, K.V.; O’Malley, M.A. Biomass-degrading enzymes are catabolite repressed in anaerobic gut fungi. AIChE J. 2018, 64, 4263–4270. [Google Scholar] [CrossRef]
- Marvin-Sikkema, F.D.; Pedro Gomes, T.M.; Grivet, J.P.; Gottschal, J.C.; Prins, R.A. Characterization of hydrogenosomes and their role in glucose metabolism of Neocallimastix sp. L2. Arch. Microbiol. 1993, 160, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Szenk, M.; Dill, K.A.; de Graff, A.M.R. Why Do Fast-Growing Bacteria Enter Overflow Metabolism? Testing the Membrane Real Estate Hypothesis. Cell Syst. 2017, 5, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Teusink, B.; Wiersma, A.; Molenaar, D.; Francke, C.; de Vos, W.M.; Siezen, R.J.; Smid, E.J. Analysis of Growth of Lactobacillus plantarum WCFS1 on a Complex Medium Using a Genome-scale Metabolic Model*. J. Biol. Chem. 2006, 281, 40041–40048. [Google Scholar] [CrossRef] [Green Version]
- Sonenshein, A.L. Control of key metabolic intersections in Bacillus subtilis. Nat. Rev. Microbiol. 2007, 5, 917–927. [Google Scholar] [CrossRef]
- De Alteriis, E.; Cartenì, F.; Parascandola, P.; Serpa, J.; Mazzoleni, S. Revisiting the Crabtree/Warburg effect in a dynamic perspective: A fitness advantage against sugar-induced cell death. Cell Cycle. 2018, 17, 688–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total Metabolites [mmol] | ||||||
---|---|---|---|---|---|---|
G341 | PP313 | W212 | SA222 | X2152 | A252 | |
Cellobiose | 4.015 ± 0.079 | 3.741 ± 0.12 | 3.606 ± 0.154 | 3.519 ± 0.218 | 3.983 ± 0.052 | 4.434 ± 0.07 |
Cellulose | 3.85 ± 0.069 | 0.093 ± 0.047 | 4.061 ± 0.015 | 1.181 ± 0.112 | 3.409 ± 0.159 | 3.238 ± 0.321 |
Fructose | 3.85 ± 0.15 | 3.31 ± 0.247 | 3.608 ± 0.043 | 3.286 ± 0.09 | 3.865 ± 0.361 | 3.868 ± 0.184 |
Glucose | 3.736 ± 0.02 | 3.167 ± 0.287 | 3.347 ± 0.192 | 3.399 ± 0.087 | 3.926 ± 0.085 | 4.039 ± 0.14 |
Inulin | 3.153 ± 0.436 | X | X | X | X | 0.315 ± 0.419 |
Lactose | 1.3 ± 0.104 | 2.146 ± 0.122 | 2.428 ± 0.035 | 2.168 ± 0.055 | 2.403 ± 0.418 | 3.759 ± 0.15 |
Maltose | 3.83 ± 0.132 | 0.08 ± 0.038 | 3.542 ± 0.084 | 3.279 ± 0.087 | 0.035 ± 0.002 | 4.201 ± 0.187 |
Mannose | 3.265 ± 0.35 | X | X | 3.339 ± 0.058 | X | 3.498 ± 0.268 |
Pectin | 0.16 ± 0.007 | 0.352 ± 0.155 | 0.269 ± 0.085 | 0.393 ± 0.027 | 0.408 ± 0.063 | 0.444 ± 0.15 |
Starch | 3.578 ± 0.397 | 0.204 ± 0.152 | 3.934 ± 0.293 | 3.521 ± 0.695 | 0.008 ± 0.001 | 4.032 ± 0.33 |
Wheat straw | 2.29 ± 0.024 | 1.565 ± 0.021 | 2.312 ± 0.071 | 1.709 ± 0.025 | 1.707 ± 0.096 | 2.682 ± 0.08 |
Sucrose | 4.125 ± 0.077 | X | 3.978 ± 0.232 | 3.721 ± 0.066 | 0.246 ± 0.042 | 4.309 ± 0.134 |
Trehalose | 0.008 ± 0.003 | X | X | 0.005 ± 0 | 0.006 ± 0 | 0.007 ± 0.005 |
Xylan | 2.627 ± 0.02 | 2.841 ± 0.061 | 2.557 ± 0.04 | 2.54 ± 0.101 | 2.781 ± 0.226 | 3.201 ± 0.415 |
Xylose | 3.925 ± 0.273 | 3.23 ± 0.061 | 3.271 ± 0.156 | 3.357 ± 0.108 | 3.478 ± 0.209 | 3.664 ± 0.397 |
C-Balance | ||||||
---|---|---|---|---|---|---|
G341 | PP313 | W212 | SA222 | X2152 | A252 | |
Cellobiose | 0.787 ± 0.026 | 0.702 ± 0.035 | 0.597 ± 0.027 | 0.659 ± 0.050 | 0.633 ± 0.053 | 0.795 ± 0.008 |
Fructose | 0.828 ± 0.052 | 0.679 ± 0.060 | 0.675 ± 0.023 | 0.654 ± 0.033 | 0.784 ± 0.062 | 0.781 ± 0.037 |
Glucose | 0.772 ± 0.009 | 0.628 ± 0.064 | 0.584 ± 0.032 | 0.700 ± 0.034 | 0.730 ± 0.023 | 0.778 ± 0.030 |
Maltose | 0.775 ± 0.028 | X | 0.604 ± 0.017 | 0.621 ± 0.016 | X | 0.804 ± 0.033 |
Mannose | 0.626 ± 0.074 | X | X | 0.762 ± 0.017 | X | 0.771 ± 0.046 |
Xylose | 0.841 ± 0.043 | 0.692 ± 0.038 | 0.687 ± 0.026 | 0.691 ± 0.035 | 0.677 ± 0.036 | 0.725 ± 0.090 |
Ø | 0.772 ± 0.083 | 0.675 ± 0.059 | 0.629 ± 0.05 | 0.681 ± 0.055 | 0.713 ± 0.071 | 0.776 ± 0.054 |
Lactose | 0.472 ± 0.017 | 0.385 ± 0.022 | 0.423 ± 0.011 | 0.432 ± 0.029 | 0.394 ± 0.097 | 0.805 ± 0.023 |
Lactose* | 0.966 ± 0.027 | 0.828 ± 0.044 | 0.889 ± 0.017 | 0.885 ± 0.039 | 0.699 ± 0.152 | 0.841 ± 0.027 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stabel, M.; Schweitzer, T.; Haack, K.; Gorenflo, P.; Aliyu, H.; Ochsenreither, K. Isolation and Biochemical Characterization of Six Anaerobic Fungal Strains from Zoo Animal Feces. Microorganisms 2021, 9, 1655. https://doi.org/10.3390/microorganisms9081655
Stabel M, Schweitzer T, Haack K, Gorenflo P, Aliyu H, Ochsenreither K. Isolation and Biochemical Characterization of Six Anaerobic Fungal Strains from Zoo Animal Feces. Microorganisms. 2021; 9(8):1655. https://doi.org/10.3390/microorganisms9081655
Chicago/Turabian StyleStabel, Marcus, Tabea Schweitzer, Karoline Haack, Pascal Gorenflo, Habibu Aliyu, and Katrin Ochsenreither. 2021. "Isolation and Biochemical Characterization of Six Anaerobic Fungal Strains from Zoo Animal Feces" Microorganisms 9, no. 8: 1655. https://doi.org/10.3390/microorganisms9081655
APA StyleStabel, M., Schweitzer, T., Haack, K., Gorenflo, P., Aliyu, H., & Ochsenreither, K. (2021). Isolation and Biochemical Characterization of Six Anaerobic Fungal Strains from Zoo Animal Feces. Microorganisms, 9(8), 1655. https://doi.org/10.3390/microorganisms9081655