Comparison of Direct and Indirect Toxoplasma gondii Detection and Genotyping in Game: Relationship and Challenges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Sample Preparation
2.2. ELISA
2.3. Acid Pepsin Digestion
2.4. Direct DNA Extraction from 5 g of Heart or Foreleg Muscle Tissue (DE)
2.5. DNA Extraction from Pepsin Digest (PD)
2.6. Sequence-Specific Magnetic Capture (MC)
2.7. Real-Time PCR (qPCR) Targeting the 529-bp Repetitive Element (529-bp RE)
2.8. Mouse Bioassay and In Vitro Cultivation
2.9. Genotyping by Magnetic Capture and Conventional Endpoint PCR (cPCR) of the GRA6 Gene
2.10. Genotyping by PCR-Restriction Fragment Length Polymorphism (PCR-RFLP)
2.11. Data Analysis
3. Results
3.1. Indirect Detection
3.2. Direct Detection of T. gondii in Muscle Tissue and Correlation with Serological Status
3.2.1. Molecular Analysis of 5 g Muscle Tissue by DE qPCR
3.2.2. Molecular Analysis of 50 g Heart Muscle Tissue by PD qPCR
3.2.3. Molecular Analysis of 50 g Heart Muscle Tissue by MC qPCR
3.2.4. Bioassay
3.2.5. Overall Detection with at Least One Direct Detection Method
3.2.6. Comparison between Different Direct Detection Methods
3.3. Genotypes
3.3.1. Genotyping by Magnetic Capture and cPCR of the GRA6 Gene
3.3.2. Genotyping of T. gondii by PCR-RFLP
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Tenter:, A.M.; Heckeroth, A.R.; Weiss, L.M. Toxoplasma gondii: From animals to humans. Int. J. Parasitol. 2000, 30, 1217–1258. [Google Scholar] [CrossRef] [Green Version]
- Saadatnia, G.; Golkar, M. A review on human toxoplasmosis. Scand. J. Infect. Dis. 2012, 44, 805–814. [Google Scholar] [CrossRef]
- Wilking, H.; Thamm, M.; Stark, K.; Aebischer, T.; Seeber, F. Prevalence, incidence estimations, and risk factors of Toxoplasma gondii infection in Germany: A representative, cross-sectional, serological study. Sci. Rep. 2016, 6, 22551. [Google Scholar] [CrossRef]
- Galal, L.; Hamidović, A.; Dardé, M.L.; Mercier, M. Diversity of Toxoplasma gondii strains at the global level and its determinants. Food and Waterborne Parasitol. 2019, 15, e00052. [Google Scholar] [CrossRef] [PubMed]
- McLeod, R.; Van Tubbergen, C.; Montoya, J.G.; Petersen, E. Human Toxoplasma Infection. In Toxoplasma gondii, 2nd ed.; Weiss, L.M., Kim, K., Eds.; Academic Press: Boston, MA, USA, 2014. [Google Scholar]
- Maenz, M.; Schlüter, D.; Liesenfeld, O.; Schares, G.; Gross, U.; Pleyer, U. Ocular toxoplasmosis past, present and new aspects of an old disease. Prog. Retin. Eye Res. 2014, 39, 77–106. [Google Scholar] [CrossRef] [PubMed]
- McAuley, J.B. Congenital Toxoplasmosis. J. Pediatr. Infect. Dis. 2014, 3 (Suppl. 1), S30–S35. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.; Dubey, J.P. Toxoplasma gondii: Transmission, diagnosis and prevention. Clin. Microbiol. Infect. 2002, 8, 634–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robert-Gangneux, F.; Meroni, V.; Dupont, D.; Botterel, F.; Garcia, J.; Brenier-Pinchart, M.-P.; Accoceberry, I.; Akan, H.; Abbate, I.; Boggian, K.; et al. Toxoplasmosis in Transplant Recipients, Europe, 2010–2014. Emerg. Infect. Dis. 2018, 24, 1497–1504. [Google Scholar] [CrossRef] [PubMed]
- Havelaar, A.H.; Haagsma, J.A.; Mangen, M.J.; Kemmeren, J.M.; Verhoef, L.P.; Vijgen, S.M.; Wilson, M.; Friesema, I.H.; Kortbeek, L.M.; van Duynhoven, Y.T.; et al. Disease burden of foodborne pathogens in the Netherlands, 2009. Int. J. Food Microbiol. 2012, 156, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Scallan, E.; Hoekstra, R.M.; Mahon, B.E.; Jones, T.F.; Griffin, P.M. An assessment of the human health impact of seven leading foodborne pathogens in the United States using disability adjusted life years. Epidemiol. Infect. 2015, 143, 2795–2804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Cook, A.J.; Gilbert, R.E.; Buffolano, W.; Zufferey, J.; Petersen, E.; Jenum, P.A.; Foulon, W.; Semprini, A.E.; Dunn, D.T. Sources of Toxoplasma infection in pregnant women: European multicentre case-control study. European Research Network on Congenital Toxoplasmosis. BMJ 2000, 321, 142–147. [Google Scholar] [CrossRef] [Green Version]
- Belluco, S.; Simonato, G.; Mancin, M.; Pietrobelli, M.; Ricci, A. Toxoplasma gondii infection and food consumption: A systematic review and meta-analysis of case-controlled studies. Crit. Rev. Food Sci. Nutr. 2018, 58, 3085–3096. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, A.C.; Elbadawi, L.I.; DeSalvo, T.; Straily, A.; Ajzenberg, D.; Letzer, D.; Moldenhauer, E.; Handly, T.L.; Hill, D.; Dardé, M.-L.; et al. Toxoplasmosis Outbreak Associated With Toxoplasma gondii-Contaminated Venison—High Attack Rate, Unusual Clinical Presentation, and Atypical Genotype. Clin. Infect. Dis. 2021, 72, 1557–1565. [Google Scholar] [CrossRef]
- England, J.H.; Bailin, S.S.; Gehlhausen, J.R.; Rubin, D.H. Toxoplasmosis: The Heart of the Diagnosis. Open Forum Infect. Dis. 2018, 6, ofy338. [Google Scholar] [CrossRef]
- Carme, B.; Bissuel, F.; Ajzenberg, D.; Bouyne, R.; Aznar, C.; Demar, M.; Bichat, S.; Louvel, D.; Bourbigot, A.M.; Peneau, C.; et al. Severe acquired toxoplasmosis in immunocompetent adult patients in French Guiana. J. Clin. Microbiol. 2002, 40, 4037–4044. [Google Scholar] [CrossRef] [Green Version]
- Choi, W.Y.; Nam, H.W.; Kwak, N.H.; Huh, W.; Kim, Y.R.; Kang, M.W.; Cho, S.Y.; Dubey, J.P. Foodborne outbreaks of human toxoplasmosis. J. Infect. Dis. 1997, 175, 1280–1282. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.D.; Stec, L.A.; Werner, J.C.; Blumenkranz, M.S.; Glazer, L.; Williams, G.A. Presumed acquired ocular toxoplasmosis in deer hunters. Retina 2001, 21, 226–229. [Google Scholar] [CrossRef]
- Sacks, J.J.; Delgado, D.G.; Lobel, H.O.; Parker, R.L. Toxoplasmosis infection associated with eating undercooked venison. Am. J. Epidemiol. 1983, 118, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P. Toxoplasmosis—An overview. Southeast Asian J. Trop. Med. Public Health 1991, 22, 88–92. [Google Scholar]
- McDonald, J.C.; Gyorkos, T.W.; Alberton, B.; MacLean, J.D.; Richer, G.; Juranek, D. An outbreak of toxoplasmosis in pregnant women in northern Quebec. J. Infect. Dis. 1990, 161, 769–774. [Google Scholar] [CrossRef]
- Bundesinstitut für Risikobewertung. Game meat: Health assessment of human-pathogenic parasites. BfR Opin. 2018, No. 045/2018. [Google Scholar] [CrossRef]
- Fecková, M.; Antolová, D.; Janičko, M.; Monika, H.; Štrkolcová, G.; Goldová, M.; Weissová, T.; Lukáč, B.; Nováková, M. The cross-sectional study of Toxoplasma gondii seroprevalence in selected groups of population in Slovakia. Folia Microbiol. (Praha) 2020, 65, 871–877. [Google Scholar] [CrossRef]
- Plaza, J.; Dámek, F.; Villena, I.; Innes, E.A.; Katzer, F.; Hamilton, C.M. Detection of Toxoplasma gondii in retail meat samples in Scotland. Food and Waterborne Parasitol. 2020, 20, e00086. [Google Scholar] [CrossRef]
- Dubey, J.P.; Lunney, J.K.; Shen, S.K.; Kwok, O.C.; Ashford, D.A.; Thulliez, P. Infectivity of low numbers of Toxoplasma gondii oocysts to pigs. J. Parasitol. 1996, 82, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Robert-Gangneux, F.; Darde, M.L. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin. Microbiol. Rev. 2012, 25, 264–296. [Google Scholar] [CrossRef] [Green Version]
- Chalmers, R.M.; Robertson, L.J.; Dorny, P.; Jordan, S.; Kärssin, A.; Katzer, F.; La Carbona, S.; Lalle, M.; Lassen, B.; Mladineo, I.; et al. Parasite detection in food: Current status and future needs for validation. Trends Food Sci. Technol 2020, 99, 337–350. [Google Scholar] [CrossRef]
- Opsteegh, M.; Langelaar, M.; Sprong, H.; den Hartog, L.; De Craeye, S.; Bokken, G.; Ajzenberg, D.; Kijlstra, A.; van der Giessen, J. Direct detection and genotyping of Toxoplasma gondii in meat samples using magnetic capture and PCR. Int. J. Food Microbiol. 2010, 139, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Bier, N.S.; Stollberg, K.; Mayer-Scholl, A.; Johne, A.; Nöckler, K.; Richter, M. Seroprevalence of Toxoplasma gondii in wild boar and deer in Brandenburg, Germany. Zoonoses Public Health 2020, 67, 601–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opsteegh, M.; Schares, G.; Blaga, R.; van der Giessen, J. Experimental studies on Toxoplasma gondii in the main livestock species (GP/EFSA/BIOHAZ/2013/01) Final report. EFSA 2016, 13, 995E. [Google Scholar] [CrossRef] [Green Version]
- Dubey, J.P.; Brown, J.; Verma, S.K.; Cerqueira-Cézar, C.K.; Banfield, J.; Kwok, O.C.H.; Ying, Y.; Murata, F.H.A.; Pradhan, A.K.; Su, C. Isolation of viable Toxoplasma gondii, molecular characterization, and seroprevalence in elk (Cervus canadensis) in Pennsylvania, USA. Vet. Parasitol. 2017, 243, 1–5. [Google Scholar] [CrossRef]
- Santoro, M.; Viscardi, M.; Sgroi, G.; D’Alessio, N.; Veneziano, V.; Pellicano, R.; Brunetti, R.; Fusco, G. Real-time PCR detection of Toxoplasma gondii in tissue samples of wild boars (Sus scrofa) from southern Italy reveals high prevalence and parasite load. Parasites Vectors 2019, 12, 335. [Google Scholar] [CrossRef]
- Dubey, J.P. Refinement of pepsin digestion method for isolation of Toxoplasma gondii from infected tissues. Vet. Parasitol. 1998, 74, 75–77. [Google Scholar] [CrossRef]
- Schares, G.; Bangoura, B.; Randau, F.; Goroll, T.; Ludewig, M.; Maksimov, P.; Matzkeit, B.; Sens, M.; Bärwald, A.; Conraths, F.J.; et al. High seroprevalence of Toxoplasma gondii and probability of detecting tissue cysts in backyard laying hens compared with hens from large free-range farms. Int. J. Parasitol. 2017, 47, 765–777. [Google Scholar] [CrossRef]
- Identification of Toxoplasma gondii DNA in Food Matrices (Fresh or Processed Meat) by LAMP (MI-12). Available online: https://web.archive.org/web/20210705124950/https://www.iss.it/documents/5430402/5722370/MI_12_rev._1.pdf/a82a4078-f511-affe-8f90-cabc397bc8ce?t=1620381672663 (accessed on 5 July 2021).
- Talabani, H.; Asseraf, M.; Yera, H.; Delair, E.; Ancelle, T.; Thulliez, P.; Brezin, A.P.; Dupouy-Camet, J. Contributions of immunoblotting, real-time PCR, and the Goldmann-Witmer coefficient to diagnosis of atypical toxoplasmic retinochoroiditis. J. Clin. Microbiol. 2009, 47, 2131–2135. [Google Scholar] [CrossRef] [Green Version]
- Bier, N.S.; Schares, G.; Johne, A.; Martin, A.; Nöckler, K.; Mayer-Scholl, A. Performance of three molecular methods for detection of Toxoplasma gondii in pork. Food and Waterborne Parasitol. 2019, 14, e00038. [Google Scholar] [CrossRef]
- Herrmann, D.C.; Maksimov, P.; Maksimov, A.; Sutor, A.; Schwarz, S.; Jaschke, W.; Schliephake, A.; Denzin, N.; Conraths, F.J.; Schares, G. Toxoplasma gondii in foxes and rodents from the German Federal States of Brandenburg and Saxony-Anhalt: Seroprevalence and genotypes. Vet. Parasitol. 2012, 185, 78–85. [Google Scholar] [CrossRef]
- Su, C.; Shwab, E.K.; Zhou, P.; Zhu, X.Q.; Dubey, J.P. Moving towards an integrated approach to molecular detection and identification of Toxoplasma gondii. Parasitology 2010, 137, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaulin, C.; Ramsay, D.; Thivierge, K.; Tataryn, J.; Courville, A.; Martin, C.; Cunningham, P.; Desilets, J.; Morin, D.; Dion, R. Acute Toxoplasmosis among Canadian Deer Hunters Associated with Consumption of Undercooked Deer Meat Hunted in the United States. Emerg. Infect. Dis. 2020, 26, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Olsen, A.; Berg, R.; Tagel, M.; Must, K.; Deksne, G.; Enemark, H.L.; Alban, L.; Johansen, M.V.; Nielsen, H.V.; Sandberg, M.; et al. Seroprevalence of Toxoplasma gondii in domestic pigs, sheep, cattle, wild boars, and moose in the Nordic-Baltic region: A systematic review and meta-analysis. Parasite Epidemiol. Control. 2019, 5, e00100. [Google Scholar] [CrossRef]
- Rostami, A.; Riahi, S.M.; Fakhri, Y.; Saber, V.; Hanifehpour, H.; Valizadeh, S.; Gholizadeh, M.; Pouya, R.H.; Gamble, H.R. The global seroprevalence of Toxoplasma gondii among wild boars: A systematic review and meta-analysis. Vet. Parasitol. 2017, 244, 12–20. [Google Scholar] [CrossRef]
- Belluco, S.; Mancin, M.; Conficoni, D.; Simonato, G.; Pietrobelli, M.; Ricci, A. Investigating the Determinants of Toxoplasma gondii Prevalence in Meat: A Systematic Review and Meta-Regression. PLoS ONE 2016, 11, e0153856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamarra, J.A.; Cabezon, O.; Pabon, M.; Arnal, M.C.; Luco, D.F.; Dubey, J.P.; Gortazar, C.; Almeria, S. Prevalence of antibodies against Toxoplasma gondii in roe deer from Spain. Vet. Parasitol. 2008, 153, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Meerburg, B.G.; Kijlstra, A. Changing climate-changing pathogens: Toxoplasma gondii in North-Western Europe. Parasitol. Res. 2009, 105, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Havakhah, Y.; Esmaeili Rastaghi, A.R.; Amiri, S.; Babaie, J.; Aghighi, Z.; Golkar, M. Prevalence of Toxoplasma gondii in Sheep and Goats in Three Counties of Gilan Province, North of Iran the More Humid Climate the Higher Prevalence. Jommid 2014, 2, 80–83. [Google Scholar]
- Lutz, W. Serologischer Nachweis von Antikörpern gegen Toxoplasma gondii und Leptospira bei Schwarzwild. Z. Jagdwiss. 1997, 43, 283–287. [Google Scholar] [CrossRef]
- Rommel, M.; Sommer, R.; Janitschke, K. Toxoplasma-Infektionen beim Schwarzwild. Z. Jagdwiss. 1967, 13, 35–36. [Google Scholar] [CrossRef]
- Tackmann, K. Seroprevalence of Antibodies against Toxoplasma gondii in Wild Boars (Sus scrofa); Office for Official Publications of the European Communitites: Luxembourg, 1999. [Google Scholar]
- Berger-Schoch, A.E.; Bernet, D.; Doherr, M.G.; Gottstein, B.; Frey, C.F. Toxoplasma gondii in Switzerland: A serosurvey based on meat juice analysis of slaughtered pigs, wild boar, sheep and cattle. Zoonoses Public Health 2011, 58, 472–478. [Google Scholar] [CrossRef]
- Grema, C.; Hotea, I.; Imre, M.; Dărăbuș, G.; Pascu, C.; Mariș, C.; Herman, V. Seroprevalence of Toxoplasmosis and Swine Influenza in Wild Boars. Sci Parasitol 2015, 16, 20–27. [Google Scholar]
- Heddergott, M.; Steinbach, P.; Pohl, D.; Frantz, A.C. First report on the sero-epidemiology of Toxoplasma gondii infection in German roe deer (Capreolus capreolus). Parasite 2018, 25, 52. [Google Scholar] [CrossRef]
- San Miguel, J.M.; Gutiérrez-Expósito, D.; Aguado-Martínez, A.; González-Zotes, E.; Pereira-Bueno, J.; Gómez-Bautista, M.; Rubio, P.; Ortega-Mora, L.M.; Collantes-Fernández, E.; Álvarez-García, G. Effect of different ecosystems and management practices on Toxoplasma gondii and Neospora caninum infections in wild ruminants in Spain. J. Wildl. Dis. 2016, 52, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Aubert, D.; Ajzenberg, D.; Richomme, C.; Gilot-Fromont, E.; Terrier, M.E.; de Gevigney, C.; Game, Y.; Maillard, D.; Gibert, P.; Darde, M.L.; et al. Molecular and biological characteristics of Toxoplasma gondii isolates from wildlife in France. Vet. Parasitol. 2010, 171, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Vikoren, T.; Tharaldsen, J.; Fredriksen, B.; Handeland, K. Prevalence of Toxoplasma gondii antibodies in wild red deer, roe deer, moose, and reindeer from Norway. Vet. Parasitol. 2004, 120, 159–169. [Google Scholar] [CrossRef]
- Bartova, E.; Sedlak, K.; Pavlik, I.; Literak, I. Prevalence of Neospora caninum and Toxoplasma gondii antibodies in wild ruminants from the countryside or captivity in the Czech Republic. J. Parasitol. 2007, 93, 1216–1218. [Google Scholar] [CrossRef]
- Ferroglio, E.; Bosio, F.; Trisciuoglio, A.; Zanet, S. Toxoplasma gondii in sympatric wild herbivores and carnivores: Epidemiology of infection in the Western Alps. Parasites Vectors 2014, 7, 196. [Google Scholar] [CrossRef] [Green Version]
- Halová, D.; Mulcahy, G.; Rafter, P.; Turčeková, L.; Grant, T.; de Waal, T. Toxoplasma gondii in Ireland: Seroprevalence and novel molecular detection method in sheep, pigs, deer and chickens. Zoonoses Public Health 2013, 60, 168–173. [Google Scholar] [CrossRef]
- Calero-Bernal, R.; Saugar, J.M.; Frontera, E.; Pérez-Martín, J.E.; Habela, M.A.; Serrano, F.J.; Reina, D.; Fuentes, I. Prevalence and Genotype Identification of Toxoplasma gondii in Wild Animals from Southwestern Spain. J. Wildl. Dis. 2015, 51, 233–238. [Google Scholar] [CrossRef]
- Burg, J.L.; Grover, C.M.; Pouletty, P.; Boothroyd, J.C. Direct and sensitive detection of a pathogenic protozoan, Toxoplasma gondii, by polymerase chain reaction. J. Clin. Microbiol. 1989, 27, 1787–1792. [Google Scholar] [CrossRef] [Green Version]
- Belaz, S.; Gangneux, J.-P.; Dupretz, P.; Guiguen, C.; Robert-Gangneux, F. A 10-year retrospective comparison of two target sequences, REP-529 and B1, for Toxoplasma gondii detection by quantitative PCR. J. Clin. Microbiol. 2015, 53, 1294–1300. [Google Scholar] [CrossRef] [Green Version]
- Homan, W.L.; Vercammen, M.; De Braekeleer, J.; Verschueren, H. Identification of a 200- to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR. Int. J. Parasitol. 2000, 30, 69–75. [Google Scholar] [CrossRef]
- Dubey, J.P.; Velmurugan, G.V.; Rajendran, C.; Yabsley, M.J.; Thomas, N.J.; Beckmen, K.B.; Sinnett, D.; Ruid, D.; Hart, J.; Fair, P.A.; et al. Genetic characterisation of Toxoplasma gondii in wildlife from North America revealed widespread and high prevalence of the fourth clonal type. Int. J. Parasitol. 2011, 41, 1139–1147. [Google Scholar] [CrossRef] [Green Version]
- Delhaes, L.; Ajzenberg, D.; Sicot, B.; Bourgeot, P.; Dardé, M.-L.; Dei-Cas, E.; Houfflin-Debarge, V. Severe congenital toxoplasmosis due to a Toxoplasma gondii strain with an atypical genotype: Case report and review. Prenat. Diagn. 2010, 30, 902–905. [Google Scholar] [CrossRef]
- Demar, M.; Ajzenberg, D.; Maubon, D.; Djossou, F.; Panchoe, D.; Punwasi, W.; Valery, N.; Peneau, C.; Daigre, J.L.; Aznar, C.; et al. Fatal outbreak of human toxoplasmosis along the Maroni River: Epidemiological, clinical, and parasitological aspects. Clin. Infect. Dis. 2007, 45, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Ajzenberg, D.; Cogné, N.; Paris, L.; Bessières, M.H.; Thulliez, P.; Filisetti, D.; Pelloux, H.; Marty, P.; Dardé, M.L. Genotype of 86 Toxoplasma gondii isolates associated with human congenital toxoplasmosis, and correlation with clinical findings. J. Infect. Dis. 2002, 186, 684–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, D.C.; Pantchev, N.; Vrhovec, M.G.; Barutzki, D.; Wilking, H.; Fröhlich, A.; Lüder, C.G.K.; Conraths, F.J.; Schares, G. Atypical Toxoplasma gondii genotypes identified in oocysts shed by cats in Germany. Int. J. Parasitol. 2010, 40, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, S.; Basso, W.; Benavides Silván, J.; Ortega-Mora, L.M.; Maksimov, P.; Gethmann, J.; Conraths, F.J.; Schares, G. Toxoplasma gondii infection and toxoplasmosis in farm animals: Risk factors and economic impact. Food and Waterborne Parasitol. 2019, 15, e00037. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P.; Murata, F.H.A.; Cerqueira-Cézar, C.K.; Kwok, O.C.H. Epidemiologic and Public Health Significance of Toxoplasma gondii Infections in Venison: 2009–2020. J. Parasitol. 2021, 107, 309–319. [Google Scholar] [CrossRef]
- Jurankova, J.; Basso, W.; Neumayerova, H.; Balaz, V.; Janova, E.; Sidler, X.; Deplazes, P.; Koudela, B. Brain is the predilection site of Toxoplasma gondii in experimentally inoculated pigs as revealed by magnetic capture and real-time PCR. Food Microbiol. 2014, 38, 167–170. [Google Scholar] [CrossRef]
- Burrells, A.; Taroda, A.; Opsteegh, M.; Schares, G.; Benavides, J.; Dam-Deisz, C.; Bartley, P.M.; Chianini, F.; Villena, I.; van der Giessen, J.; et al. Detection and dissemination of Toxoplasma gondii in experimentally infected calves, a single test does not tell the whole story. Parasites Vectors 2018, 11, 45. [Google Scholar] [CrossRef] [Green Version]
- Koethe, M.; Straubinger, R.K.; Pott, S.; Bangoura, B.; Geuthner, A.C.; Daugschies, A.; Ludewig, M. Quantitative detection of Toxoplasma gondii in tissues of experimentally infected turkeys and in retail turkey products by magnetic-capture PCR. Food Microbiol. 2015, 52, 11–17. [Google Scholar] [CrossRef]
- Schares, G.; Koethe, M.; Bangoura, B.; Geuthner, A.C.; Randau, F.; Ludewig, M.; Maksimov, P.; Sens, M.; Bärwald, A.; Conraths, F.J.; et al. Toxoplasma gondii infections in chickens—Performance of various antibody detection techniques in serum and meat juice relative to bioassay and DNA detection methods. Int. J. Parasitol. 2018, 48, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Schrader, C.; Schielke, A.; Ellerbroek, L.; Johne, R. PCR inhibitors—Occurrence, properties and removal. J. Appl. Microbiol. 2012, 113, 1014–1026. [Google Scholar] [CrossRef] [PubMed]
Game Species | Sample Matrix | Method | Proportion of Positively Tested Animals (%) (No. Positive/No. Tested; 95% CI) | Range of Cq-Values |
---|---|---|---|---|
Wild boar | Foreleg muscle | DE qPCR | 7.69 (1/13; 0.19–36.03) | 32.09 |
Heart | DE qPCR | 7.59 (18/237; 4.46–11.74) | 30.71–39.68 | |
PD qPCR | 11.72 (15/128; 6.71–18.59) | 28.72–37.15 | ||
MC qPCR | 13.16 (5/38; 4.41–28.09) | 32.21–35.65 | ||
Bioassay | 30 (3/10; 6.67–65.25) | na | ||
Any direct detection method a | 11.81 (28/237; 8–16.62) | 28.72–39.68 | ||
Roe deer | Foreleg muscle | DE qPCR | 0 (0/5; 0–52.18) | na |
Heart | DE qPCR | 4.79 (7/146; 1.95–9.63) | 30.81–39.68 | |
PD qPCR | 3.8 (3/79; 0.79–10.7) | 30.07–37.18 | ||
MC qPCR | 25 (2/8; 3.19–65.09) | 30.81–34.21 | ||
Bioassay | 7.69 (1/13; 0.19–36.03) | na | ||
Any direct detection method a | 5.48 (8/146; 2.4–10.51) | 30.07–39.68 | ||
Fallow deer | Foreleg muscle | DE qPCR | nd | na |
Heart | DE qPCR | 0 (0/51; 0–6.98) | na | |
PD qPCR | 0 (0/42; 0–8.41) | na | ||
MC qPCR | 3.45 (1/29; 0.09–17.76) | 31.26 | ||
Bioassay | nd | na | ||
Any direct detection method a | 1.96 (1/51; 0.05–10.45) | 31.26 | ||
Red deer | Foreleg muscle | DE qPCR | 0 (0/7; 0–40.96) | na |
Heart | DE qPCR | 0 (0/52; 0–6.85) | na | |
PD qPCR | 0 (0/31; 0–11.22) | na | ||
MC qPCR | 8.33 (1/12; 0.21–38.48) | 38.5 | ||
Bioassay | nd | na | ||
Any direct detection method a | 1.92 (1/52; 0.05–10.26) | 38.5 |
Game Species | Method | Proportion of Positive Results among Seropositive Animals in % (No. Positive/No. Seropositive; 95% CI) | Proportion of Positive Results among Seronegative Animals in % (No. Positive/No. Seronegative; 95% CI) | p-Value, Fischer’s Exact Test |
---|---|---|---|---|
Wild boar | DE qPCR | 36.96 (17/46; 23.21–52.45) | 0.52 (1/191; 0.01–2.88) | <0.001 |
PD qPCR | 61.9 (13/21; 38.44–81.89) | 1.87 (2/107; 0.23–6.59) | <0.001 | |
MC qPCR | 50 (3/6; 11.81–88.19) | 6.25 (2/32; 0.77–20.81) | 0.02 | |
Any direct detection method a | 52.17 (24/46; 36.95–67.11) | 2.09 (4/191; 0.57–5.28) | <0.001 | |
Roe deer | DE qPCR | 41.18 (7/17; 18.44–67.08) | 0 (0/129; 0–2.82) | <0.001 |
PD qPCR | 37.5 (3/8; 8.52–75.51) | 0 (0/71; 0–5.06) | <0.001 | |
MC qPCR | 50 (1/2; 1.26–98.74) | 16.67 (1/6; 0.42–64.12) | 0.46 | |
Any direct detection method a | 41.18 (7/17; 18.44–67.08) | 0.78 (1/129; 0.02–4.24) | <0.001 | |
Fallow deer | DE qPCR | nd | 0 (0/51; 0–6.98) | na |
PD qPCR | nd | 0 (0/42; 0–8.41) | na | |
MC qPCR | nd | 3.45 (1/29; 0.09–17.76) | na | |
Any direct detection method a | nd | 1.96 (1/51; 0.05–10.45) | na | |
Red deer | DE qPCR | 0 (0/4; 0–60.24) | 0 (0/48; 0–7.4) | na |
PD qPCR | 0 (0/3; 0–70.76) | 0 (0/28; 0–12.34) | na | |
MC qPCR | 100 (1/1; 2.5–100) | 0 (0/11; 0–28.49) | 0.08 | |
Any direct detection method a | 25 (1/4; 0.63–80.59) | 0 (0/48; 0–7.4) | 0.08 |
Game Species | DE qPCR vs. ELISA a | MC qPCR vs. ELISA b | PD qPCR vs. ELISA c | Direct Detection d vs. ELISA a |
---|---|---|---|---|
Wild boar | 0.47 (0.32–0.63) | 0.47 (0.07–0.87) | 0.68 (0.49–0.86) | 0.59 (0.45–0.73) |
Roe deer | 0.55 (0.31–0.79) | 0.33 (-0.41–1) | 0.52 (0.16–0.88) | 0.53 (0.28–0.77) |
Fallow deer | na | na | na | na |
Red deer | na | 1 | na | 0.38 (-0.15–0.92) |
Total | 0.48 (0.36–0.61) | 0.5 (0.21–0.8) | 0.61 (0.45–0.77) | 0.57 (0.45–0.68) |
Game Species | DE qPCR vs. PD qPCR | DE qPCR vs. MC qPCR | PD qPCR vs. MC qPCR |
---|---|---|---|
Wild boar | 0.46 (0.04–0.88) | 0.54 (0.09–0.98) | 0.68 (0.35–1) |
Roe deer | 1 | 0.6 (−0.07–1) | 0.6 (−0.07–1) |
Fallow deer | na | na | na |
Red deer | na | na | na |
Total | 0.58 (0.22–0.95) | 0.47 (0.13–0.82) | 0.59 (0.29–0.89) |
Method | qPCR-Negative | qPCR-Positive | p-Value, Fischer’s Exact Test | |
---|---|---|---|---|
All game species | DE qPCR | 84 | 3 | 0.048 |
50 g qPCR a | 76 | 11 | ||
DE qPCR | 84 | 3 | 0.329 | |
PD qPCR | 80 | 7 | ||
DE qPCR | 84 | 3 | 0.132 | |
MC qPCR | 78 | 9 | ||
PD qPCR | 80 | 7 | 0.794 | |
MC qPCR | 78 | 9 |
Game Species | Method | Proportion of Positive Results in % (No. Positive/ No. Tested; 95% CI) | Range of Cq-Values | Proportion of Positive Results among Seropositive Animals in % (No. Positive/ No. Seropositive; 95% CI) | Proportion of Positive Results among Seronegative Animals in % (No. Positive/ No. Seronegative; 95% CI) |
---|---|---|---|---|---|
Wild boar | DE qPCR | 5.26 (2/38; 0.64–17.75) | 35.43–39.68 | 33.33 (2/6; 4.33–77.72) | 0 (0/32; 0–10.89) |
PD qPCR | 15.79 (6/38; 6.02–31.25) | 29.77–37.15 | 66.67 (4/6; 22.28–95.67) | 6.25 (2/32; 0.77–20.81) | |
MC qPCR | 13.51 (5/38; 4.41–28.09) | 32.21–35.65 | 50 (3/6; 11.81–88.19) | 6.25 (2/32; 0.77–20.81) | |
Any direct detection method a | 18.42 (7/38; 7.74–34.33) | 29.77–39.68 | 66.67 (4/6; 22.28–95.67) | 9.38 (3/32; 1.98–25.02) | |
Roe deer | DE qPCR | 12.5 (1/8; 0.32–52.65) | 30.81–39.02 | 50 (1/2; 1.26–98.74) | 0 (0/6; 0–45.93) |
PD qPCR | 12.5 (1/8; 0.32–52.65) | 30.63–37.18 | 50 (1/2; 1.26–98.74) | 0 (0/6; 0–45.93) | |
MC qPCR | 25 (2/8; 3.19–65.09) | 30.81–34.21 | 50 (1/2; 1.26–98.74) | 16.67 (1/6; 0.42–64.12) | |
Any direct detection method a | 25 (2/8; 3.19–65.09) | 30.63–39.02 | 50 (1/2; 1.26–98.74) | 16.67 (1/6; 0.42–64.12) | |
Fallow deer | DE qPCR | 0 (0/29; 0–11.94) | nd | nd | 0 (0/29; 0–11.94) |
PD qPCR | 0 (0/29; 0–11.94) | nd | nd | 0 (0/29; 0–11.94) | |
MC qPCR | 3.45 (1/29; 0.09–17.76) | 31.26 | nd | 3.45 (1/29; 0.09–17.76) | |
Any direct detection method a | 3.45 (1/29; 0.09–17.76) | 31.26 | nd | 3.45 (1/29; 0.09–17.76) | |
Red deer | DE qPCR | 0 (0/12; 0–26.46) | na | 0 (0/1; 0–97.5) | 0 (0/11; 0–28.49) |
PD qPCR | 0 (0/12; 0–26.46) | na | 0 (0/1; 0–97.5) | 0 (0/11; 0–28.49) | |
MC qPCR | 8.33 (1/12; 0.21–38.48) | 38.49 | 100 (1/1; 2.5–100) | 0 (0/11; 0–28.49) | |
Any direct detection method a | 8.33 (1/12; 0.21–38.48) | 38.49 | 100 (1/1; 2.5–100) | 0 (0/11; 0–28.49) |
Game Species | ID | SAG1 | 5′-SAG2 | 3′-SAG2 | SAG3 | BTUB | GRA6 | c22-8 | c29-2 | L358 | PK1 | alt. SAG2 | Apico | Type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wild boar | 19–171 isolate | II + III | I + II | II | II | II | II | II | II | II | II | II | I | Clonal type II (ToxoDB#3) |
20–528 isolate | II + III | I + II | II | II | II | II | II | II | II | II | II | I | Clonal type II (ToxoDB#3) | |
20–531 isolate | II + III | I + II | II | II | II | II | II | II | II | II | II | I | Clonal type II (ToxoDB#3) | |
19–201 | II + III | I + II | II | II | II | II | II | II | II | II | II | I | Clonal type II (ToxoDB#3) | |
18–24 | II + III | I + II | II | II | II | II | II | n.d. | II | II | II | II | Incomplete | |
19–491 | II + III | I + II | II | II | II | II | II | n.d. | II | n.d. | II | I | Incomplete | |
19–389 | II + III | I + II | II | II | n.d. | n.d. a | II | n.d. | II | II | II | I | Incomplete | |
18–92 | II + III | I + II | II | II | II | n.d. a | II | n.d. | II | II | n.d. | n.d. | Incomplete | |
20–531 | II + III | I + II | II | n.d. | II | II | II | n.d. | II | II | n.d. | I | Incomplete | |
19–151 | II + III | n.d. | II | II | n.d. | n.d. a | II | II | II | II | n.d. | I | Incomplete | |
18–85 | n.d. | I + II | II | II | n.d. | n.d. a | n.d. | II | II | n.d. | II | I | Incomplete | |
17–63 | n.d. | I + II | II | II | II | n.d. a | n.d. | n.d. | II | n.d. | II | I | Incomplete | |
19–353 | II + III | n.d. | II | n.d. | n.d. | n.d. a | II | n.d. | II | II | II | n.d. | Incomplete | |
18–133 | n.d. | I + II | II | II | II | n.d. a | n.d. | n.d. | II | n.d. | n.d. | n.d. | Incomplete | |
19–219 | n.d. | I + II | II | n.d. | n.d. | n.d. a | II | n.d. | n.d. | n.d. | II | I | Incomplete | |
19–164 | II + III | I + II | II | n.d. | n.d. | n.d. a | n.d. | n.d. | II | n.d. | n.d. | I | Incomplete | |
19–153 | n.d. | I + II | II | n.d. | n.d. | n.d. a | n.d. | n.d. | II | n.d. | n.d. | I | Incomplete | |
18–140 | II + III | I + II | II | n.d. | n.d. | n.d. a | n.d. | n.d. | II | n.d. | n.d. | n.d. | Incomplete | |
19–203 | n.d. | n.d. | II | II | n.d. | n.d. a | II | n.d. | II | n.d. | n.d. | n.d. | Incomplete | |
20–528 | n.d. | I + II | II | n.d. | n.d. | n.d. a | n.d. | n.d. | II | n.d. | n.d. | I | Incomplete | |
18–108 | n.d. | n.d. | II | n.d. | n.d. | n.d. a | n.d. | n.d. | II | n.d. | n.d. | I | Incomplete | |
17–72 | II + III | n.d. | n.d. | n.d. | n.d. | n.d. a | n.d. | n.d. | n.d. | II | n.d. | n.d. | Incomplete | |
19–481 | n.d. | n.d. | II | n.d. | n.d. | n.d. a | n.d. | n.d. | n.d. | n.d. | n.d. | I | Incomplete | |
19–171 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. a | n.d. | n.d. | II | n.d. | n.d. | n.d. | Incomplete | |
19–378 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. a | n.d. | n.d. | II | n.d. | n.d. | n.d. | Incomplete | |
19–161 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | I | Incomplete | |
19–152 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. a | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | Incomplete | |
17–98 | II + III | I + II | II | n.d. | n.d. | III | n.d. | III | II | n.d. | n.d. | I | Incomplete | |
17–146 | n.d. | n.d. | II | II | n.d. | n.d. a | n.d. | n.d. | II | III | II | n.d. | Incomplete | |
17–78 | n.d. | n.d. | II | n.d. | n.d. | n.d. a | n.d. | n.d. | II | I | n.d. | I | Incomplete | |
Roe deer | 19–186 isolate | II + III | I + II | II | II | II | II | II | II | II | II | II | I | Clonal type II (ToxoDB #3) |
19–423 | II + III | I + II | II | II | II | II | II | II | II | II | II | n.d. | Incomplete | |
19–186 | II + III | I + II | II | II | n.d. | n.d. a | n.d. | n.d. | II | II | II | I | Incomplete | |
17–307 | II + III | n.d. | n.d. | II | n.d. | n.d. | n.d. | n.d. | II | n.d. | n.d. | I | Incomplete | |
18–147 | n.d. | n.d. | n.d. | II | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | I | Incomplete | |
18–77 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | Incomplete | |
17–268 | II + III | I + II | II | I | n.d. | II | n.d. | II | II | II | II | n.d. | Incomplete | |
17–269 | n.d. | I + II | n.d. | III | III | III | n.d. | n.d. | n.d. | II | n.d. | n.d. | Incomplete |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stollberg, K.C.; Schares, G.; Mayer-Scholl, A.; Hrushetska, I.; Diescher, S.; Johne, A.; Richter, M.H.; Bier, N.S. Comparison of Direct and Indirect Toxoplasma gondii Detection and Genotyping in Game: Relationship and Challenges. Microorganisms 2021, 9, 1663. https://doi.org/10.3390/microorganisms9081663
Stollberg KC, Schares G, Mayer-Scholl A, Hrushetska I, Diescher S, Johne A, Richter MH, Bier NS. Comparison of Direct and Indirect Toxoplasma gondii Detection and Genotyping in Game: Relationship and Challenges. Microorganisms. 2021; 9(8):1663. https://doi.org/10.3390/microorganisms9081663
Chicago/Turabian StyleStollberg, Kaya C., Gereon Schares, Anne Mayer-Scholl, Iryna Hrushetska, Susanne Diescher, Annette Johne, Martin H. Richter, and Nadja S. Bier. 2021. "Comparison of Direct and Indirect Toxoplasma gondii Detection and Genotyping in Game: Relationship and Challenges" Microorganisms 9, no. 8: 1663. https://doi.org/10.3390/microorganisms9081663
APA StyleStollberg, K. C., Schares, G., Mayer-Scholl, A., Hrushetska, I., Diescher, S., Johne, A., Richter, M. H., & Bier, N. S. (2021). Comparison of Direct and Indirect Toxoplasma gondii Detection and Genotyping in Game: Relationship and Challenges. Microorganisms, 9(8), 1663. https://doi.org/10.3390/microorganisms9081663