Culture-Free Detection of Antibiotic Resistance Markers from Native Patient Samples by Hybridization Capture Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Samples and Bacterial Isolates
2.1.1. Aseptic Urine and Synovial Fluid Samples
2.1.2. Septic Urine Samples
2.2. Wet-Lab Workflow
2.2.1. Cultivation, DNA Isolation, and Quantification
2.2.2. ARESdb AMR Panel Design
2.2.3. Library Preparation and Target Enrichment
2.2.4. 16S rRNA Amplicon Sequencing
2.3. Dry-Lab Workflow
2.3.1. 16S rRNA Data Analysis
2.3.2. Bioinformatics NGS Data Pipeline
2.3.3. Bioinformatics NGS Data Analysis
2.3.4. Aseptic Sample Background Marker Removal
3. Results
3.1. ARESdb AMR Panel Sensitivity and LOD for Aseptic Synovial Fluids
3.2. ARESdb AMR Panel Sensitivity and LOD in Aseptic Urine
3.2.1. Male Urine
3.2.2. Female Urine
3.3. Utility in Septic Urine Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. GLASS Whole-Genome Sequencing for Surveillance of Antimicrobial Resistance; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Rochford, C.; Sridhar, D.; Woods, N.; Saleh, Z.; Hartenstein, L.; Ahlawat, H.; Whiting, E.; Dybul, M.; Cars, O.; Goosby, E.; et al. Global governance of antimicrobial resistance. Lancet 2018, 391, 1976–1978. [Google Scholar] [CrossRef]
- WHO. Global Tuberculosis Report 2018; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Livermore, D.M. The need for new antibiotics. Clin. Microbiol. Infect. Suppl. 2004, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Guitor, A.K.; Raphenya, A.R.; Klunk, J.; Kuch, M.; Alcock, B.; Surette, M.G.; McArthur, A.G.; Poinar, H.N.; Wright, G.D. Capturing the resistome: A targeted capture method to reveal antibiotic resistance determinants in metagenomes. Antimicrob. Agents Chemother. 2020, 64, e01324-19. [Google Scholar] [CrossRef] [Green Version]
- Quan, J.; Langelier, C.; Kuchta, A.; Batson, J.; Teyssier, N.; Lyden, A.; Caldera, S.; McGeever, A.; Dimitrov, B.; King, R.; et al. FLASH: A next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences. Nucleic Acids Res. 2019, 47, e83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitt, W.G.; Alizadeh, M.; Husseini, G.A.; McClellan, D.S.; Buchanan, C.M.; Bledsoe, C.G.; Robison, R.A.; Blanco, R.; Roeder, B.L.; Melville, M.; et al. Rapid separation of bacteria from blood-review and outlook. Biotechnol. Prog. 2016, 32, 823–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Molecular Methods for Antimicrobial Resistance (AMR) Diagnostics to Enhance the Global Antimicrobial Resistance Surveillance System; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Lepuschitz, S.; Weinmaier, T.; Mrazek, K.; Beisken, S.; Weinberger, J.; Posch, A.E. Analytical Performance Validation of Next-Generation Sequencing Based Clinical Microbiology Assays Using a K-mer Analysis Workflow. Front. Microbiol. 2020, 11, 1883. [Google Scholar] [CrossRef] [PubMed]
- Nadkarni, M.A.; Martin, F.E.; Jacques, N.A.; Hunter, N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 2002, 148, 257–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funakoshi, K.; Bagheri, M.; Zhou, M.; Suzuki, R.; Abe, H.; Akashi, H. Highly sensitive and specific Alu-based quantification of human cells among rodent cells. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Ferreira, I.; Beisken, S.; Lueftinger, L.; Weinmaier, T.; Klein, M.; Bacher, J.; Patel, R.; von Haeseler, A.; Posch, A.E. Species identification and antibiotic resistance prediction by analysis of whole-genome sequence data by use of ARESdb: An analysis of isolates from the unyvero lower respiratory tract infection trial. J. Clin. Microbiol. 2020, 58, e00273-20. [Google Scholar] [CrossRef] [Green Version]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMB J. 2011, 17, 10. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Andrews, S.; Krueger, F.; Seconds-Pichon, A.; Biggins, F.; Wingett, S. Babraham Bioinformatics-FastQC a Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 4 August 2021).
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Luo, X.; Qian, J.; Pang, X.; Song, J.; Qian, G.; Chen, J.; Chen, S. FastUniq: A Fast De Novo Duplicates Removal Tool for Paired Short Reads. PLoS ONE 2012, 7, 52249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souvorov, A.; Agarwala, R.; Lipman, D.J. SKESA: Strategic k-mer extension for scrupulous assemblies. Genome Biol. 2018, 19, 153. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef]
- Shi, X.; Kadiyala, U.; Vanepps, J.S.; Yau, S.T. Culture-free bacterial detection and identification from blood with rapid, phenotypic, antibiotic susceptibility testing. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Greninger, A.L.; Messacar, K.; Dunnebacke, T.; Naccache, S.N.; Federman, S.; Bouquet, J.; Mirsky, D.; Nomura, Y.; Yagi, S.; Glaser, C.; et al. Clinical metagenomic identification of Balamuthia mandrillaris encephalitis and assembly of the draft genome: The continuing case for reference genome sequencing. Genome Med. 2015, 7, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thoendel, M.; Jeraldo, P.; Greenwood-Quaintance, K.E.; Chia, N.; Abdel, M.P.; Steckelberg, J.M.; Osmon, D.R.; Patel, R. A Novel Prosthetic Joint Infection Pathogen, Mycoplasma salivarium, Identified by Metagenomic Shotgun Sequencing. Clin. Infect. Dis. 2017, 65, 332–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasman, H.; Saputra, D.; Sicheritz-Ponten, T.; Lund, O.; Svendsen, C.A.; Frimodt-Moller, N.; Aarestrup, F.M. Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples. J. Clin. Microbiol. 2014, 52, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Joensen, K.G.; Engsbro, A.L.Ø.; Lukjancenko, O.; Kaas, R.S.; Lund, O.; Westh, H.; Aarestrup, F.M. Evaluating next-generation sequencing for direct clinical diagnostics in diarrhoeal disease. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, K.; Mwaigwisya, S.; Crossman, L.C.; Doumith, M.; Munroe, D.; Pires, C.; Khan, A.M.; Woodford, N.; Saunders, N.J.; Wain, J.; et al. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J. Antimicrob. Chemother. 2017, 72, 104–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thoendel, M.J.; Jeraldo, P.R.; Greenwood-Quaintance, K.E.; Yao, J.Z.; Chia, N.; Hanssen, A.D.; Abdel, M.P.; Patel, R. Identification of prosthetic joint infection pathogens using a shotgun metagenomics approach. Clin. Infect. Dis. 2018, 67, 1333–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanderson, N.D.; Street, T.L.; Foster, D.; Swann, J.; Atkins, B.L.; Brent, A.J.; McNally, M.A.; Oakley, S.; Taylor, A.; Peto, T.E.A.; et al. Real-time analysis of nanopore-based metagenomic sequencing from infected orthopaedic devices 06 Biological Sciences 0604 Genetics 06 Biological Sciences 0605 Microbiology. BMC Genomics 2018, 19, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Street, T.L.; Sanderson, N.D.; Atkins, B.L.; Brent, A.J.; Cole, K.; Foster, D.; McNally, M.A.; Oakley, S.; Peto, L.; Taylor, A.; et al. Molecular diagnosis of orthopedic-device-related infection directly from sonication fluid by metagenomic sequencing. J. Clin. Microbiol. 2017, 55, 2334–2347. [Google Scholar] [CrossRef] [Green Version]
- Gnirke, A.; Melnikov, A.; Maguire, J.; Rogov, P.; LeProust, E.M.; Brockman, W.; Fennell, T.; Giannoukos, G.; Fisher, S.; Russ, C.; et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat. Biotechnol. 2009, 27, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Gottschick, C.; Deng, Z.L.; Vital, M.; Masur, C.; Abels, C.; Pieper, D.H.; Wagner-Döbler, I. The urinary microbiota of men and women and its changes in women during bacterial vaginosis and antibiotic treatment. Microbiome 2017, 5, 99. [Google Scholar] [CrossRef] [Green Version]
- Nicolle, L.E.; Evans, G.; Laverdieve, M.; Phillips, P.; Quan, C.; Rotstein, C. Complicated urinary tract infection in adults. Can. J. Infect. Dis. Med. Microbiol. 2005, 16, 349–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonkat, G.; Pickard, R.; Bartoletti, R. EAU Guidelines on Urological Infections; EAU Guidelines Office: Arnhem, The Netherlands, 2019. [Google Scholar]
Sample ID | Gender | Sample Type | Type of UTI | Presence/Absence of Leukocytes (+/−) | Culture Pos. Detected Species | Antibiotic Treatment | CFU/mL |
---|---|---|---|---|---|---|---|
ID-1 | m | MSU | recurrent | − | E. coli | Fosfomycin | >10,000 |
ID-2 | m | MSU | recurrent | + | E. coli ESBL | none | >10,000 |
ID-3 | m | MSU | recurrent | + | E. coli | none | >10,000 |
ID-4 | m | MSU | recurrent | + | C. koseri | none | >10,000 |
ID-5 | m | CU | acute | − | E. hormaechei | none | >10,000 |
ID-6 | m | MSU | recurrent | − | E. coli ESBL | none | >10,000 |
ID-7 | f | MSU | recurrent | + | Enterococcus sp. | none | >10,000 |
ID-8 | f | MSU | acute | − | E. coli | none | >10,000 |
ID-9 | f | MSU | acute | − | K. pneumoniae | none | >10,000 |
ID-10 | f | MSU | acute | + | E. coli | none | >10,000 |
ID-11 | f | MSU | acute | − | Enterococcus sp. | none | >10,000 |
ID-12 | m | CU | acute | + | E. coli ESBL | none | >10,000 |
ID-13 | f | CU | acute | + | E. coli | none | >10,000 |
Sensitivity Synovial Fluid | Sensitivity Male Urine | Sensitivity Female Urine | |||||
---|---|---|---|---|---|---|---|
Species | [CFU/mL] | MG | ARESdb AMR Panel | MG | ARESdb AMR Panel | MG | ARESdb AMR Panel |
K. quasipneumoniae | 10 | 0%/0% | 18%/5% | 0%/0% | 0%/0% | 0%/0% | 0%/4% |
100 | 53%/42% | 4%/4% | 44%/12% | ||||
1000 | 97%/95% | 40%/66% | 96%/94% | ||||
10,000 | 97%/97% | 8%/10% | 98%/98% | 98%/98% | |||
100,000 | 97%/97% | 90%/98% | 98%/96% | 4%/6% | 98%/98% | ||
E. faecium | 10 | 0%/0% | 33%/22% | 0%/0% | 6%/63% | 0%/0% | 67%/73% |
100 | 83%/89% | 88%/94% | 93%/93% | ||||
1000 | 89%/89% | 25%/31% | 94%/94% | 93%/93% | |||
10,000 | 94%/94% | 88%/94% | 94%/94% | 33%/53% | 93%/93% | ||
100,000 | 94%/94% | 94%/94% | 94%/94% | 93%/93% | 93%/93% | ||
S. aureus | 10 | 0%/0% | 0%/0% | 0%/0% | 0%/0% | 0%/0% | 0%/0% |
100 | 21%/7% | 8%/8% | |||||
1000 | 86%/79% | 100%/100% | 100%/100% | ||||
10,000 | 100%/100% | 100%/100% | 100%/100% | ||||
100,000 | 100%/100% | 100%/100% | 100%/100% | 100%/100% | |||
E. coli | 10 | 0%/0% | 36%/45% | 0%/0% | 0%/1% | 0%/0% | 0%/0% |
100 | 73%/77% | 0%/1% | 36%/41% | ||||
1000 | 95%/95% | 58%/57% | 97%/99% | ||||
10,000 | 95%/95% | 1%/− | 99%/97% | 97%/97% | |||
100,000 | 95%/95% | 78%/88% | 97%/97% | 1%/14% | 99%/99% |
Markers | Sensitivity | Reads on Target | Enrichment Factor | ||||||
---|---|---|---|---|---|---|---|---|---|
Sample ID | Species | WGS Isolate | MG | ARESdb AMR Panel | MG | ARESdb AMR Panel | MG | ARESdb AMR Panel | ARESdb AMR Panel |
ID-1 | E. coli | 85 | 84/84 | 84/84 | 99%/99% | 99%/99% | 1.44%/1.45% | 67%/68% | 47/47 |
ID-2 | E. coli | 107 | 106/106 | 106/106 | 99%/99% | 99%/99% | 2.32%/2.67% | 60%/60% | 26/23 |
ID-3 | E. coli | 104 | 102/103 | 103/102 | 98%/99% | 99%/98% | 1.50%/1.45% | 65%/65% | 43/45 |
ID-4 | C. koseri | 45 | 43/43 | 43/42 | 96%/96% | 96%/93% | 0.82%/0.80% | 34%/35% | 41/44 |
ID-5 | E. hormaechei | 47 | 46/46 | 46/46 | 98%/98% | 98%/98% | 1.38%/1.38% | 62%/62% | 45/45 |
ID-6 | E. coli | 119 | 118/118 | 118/118 | 99%/99% | 99%/99% | 2.30%/2.29% | 60%/61% | 26/27 |
ID-7 | E. faecalis | 8 | 8/8 | 8/8 | 100%/100% | 100%/100% | 0.80%/0.62% | 73%/73% | 92/118 |
ID-8 | E. coli | 89 | 87/87 | 87/87 | 98%/98% | 98%/98% | 2.59%/2.64% | 69%/69% | 26/26 |
ID-9 | K. pneumoniae | 51 | 50/50 | 50/50 | 98%/98% | 98%/98% | 1.14%/1.11% | 52%/52% | 45/47 |
ID-10 | E. coli | 91 | 90/90 | 90/90 | 99%/99% | 99%/99% | 1.57%/1.48% | 61%/60% | 39/41 |
ID-11 | Enterococcus sp. | 9 | 9/9 | 9/9 | 100%/100% | 100%/100% | 0.71%/0.72% | 69%/70% | 97/97 |
ID-12 | E. coli | 109 | 108/108 | 108/107 | 99%/99% | 99%/98% | 1.48%/1.48% | 58%/58% | 39/39 |
ID-13 | E. coli | 101 | 100/100 | 100/100 | 99%/99% | 99%/99% | 1.96%/1.86% | 67%/67% | 34/36 |
AVERAGE | 74 | 73 | 73 | 99% | 99% | 1.54% | 61% | 47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, I.; Lepuschitz, S.; Beisken, S.; Fiume, G.; Mrazek, K.; Frank, B.J.H.; Huber, S.; Knoll, M.A.; von Haeseler, A.; Materna, A.; et al. Culture-Free Detection of Antibiotic Resistance Markers from Native Patient Samples by Hybridization Capture Sequencing. Microorganisms 2021, 9, 1672. https://doi.org/10.3390/microorganisms9081672
Ferreira I, Lepuschitz S, Beisken S, Fiume G, Mrazek K, Frank BJH, Huber S, Knoll MA, von Haeseler A, Materna A, et al. Culture-Free Detection of Antibiotic Resistance Markers from Native Patient Samples by Hybridization Capture Sequencing. Microorganisms. 2021; 9(8):1672. https://doi.org/10.3390/microorganisms9081672
Chicago/Turabian StyleFerreira, Ines, Sarah Lepuschitz, Stephan Beisken, Giuseppe Fiume, Katharina Mrazek, Bernhard J. H. Frank, Silke Huber, Miriam A. Knoll, Arndt von Haeseler, Arne Materna, and et al. 2021. "Culture-Free Detection of Antibiotic Resistance Markers from Native Patient Samples by Hybridization Capture Sequencing" Microorganisms 9, no. 8: 1672. https://doi.org/10.3390/microorganisms9081672
APA StyleFerreira, I., Lepuschitz, S., Beisken, S., Fiume, G., Mrazek, K., Frank, B. J. H., Huber, S., Knoll, M. A., von Haeseler, A., Materna, A., Hofstaetter, J. G., Posch, A. E., & Weinberger, J. (2021). Culture-Free Detection of Antibiotic Resistance Markers from Native Patient Samples by Hybridization Capture Sequencing. Microorganisms, 9(8), 1672. https://doi.org/10.3390/microorganisms9081672