Evaluation of Locally Isolated Entomopathogenic Fungi against Multiple Life Stages of Bactrocera zonata and Bactrocera dorsalis (Diptera: Tephritidae): Laboratory and Field Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Collection and Rearing
2.2. Fungal Isolates and Their Culturing
2.3. Experiment 1. EPF Screening Bioassay against Larvae
2.4. Experiment 2. EPF Screening Bioassay against Adults
2.5. Experiment 3. Dose Response Bioassay against Third Instar Larvae and Adults
2.6. Experiment 4. Bioassay against Pupae
2.7. Experiment 5. Sub-Lethal Effect on Fecundity and Subsequent Development
2.8. Experiment 6. Horizontal Transmission Bioassay
2.9. Experiment 7. Greenhouse Efficacy Trial
2.10. Experiment 8. Field-Cage Efficacy Trial
2.11. Statistical Analysis
3. Results
3.1. Experiments 1 and 2. EPF Screening Bioassays against Larvae and Adults
3.2. Experiment 3. Dose Response Bioassay against Third Instar Larvae and Adults
3.3. Experiment 4. Bioassay against Pupae
3.4. Experiment 5. Sub-Lethal Effect on Fecundity and Subsequent Development
3.5. Experiment 6. Horizontal Transmission Bioassay
3.6. Experiment 7. Greenhouse Efficacy Trial
3.7. Experiment 8. Field-Cage Efficacy Trial
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weems, H.V.; Heppner, J.B. Caribbean Fruit Fly (Anastrepha Suspense Loew (Insecta: Diptera: Tephritidae)) Featured Creatures EENY-196: July Reviews; UF/IFAS: Gainesville, FL, USA, 2014; Available online: http://entnemdept.ufl.edu/creatures/fruit/tropical/caribbean_fruit_fly.htm (accessed on 31 May 2016).
- Vargas, R.I.; Piñero, J.C.; Leblanc, L. An overview of pest species of Bactrocera fruit flies (Diptera: Tephritidae) and the integration of biopesticides with other biological approaches for their management with a focus on the Pacific region. Insects 2015, 6, 297–318. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, E. Entomologia Applicata, 3rd ed.; Liguori Editore: Naples, Italy, 1994; Volume 3, pp. 152–161. [Google Scholar]
- Alfaro-Moreno, A.; Entomologõá, A. Los Paraśitosanimales de las Plantascultivadas; Alvarez, C.S., Ed.; Diputacio´n Provincial de Soria: Soria, Spain, 2005; pp. 219–221. [Google Scholar]
- Quesada-Moraga, E.; Ruiz-García, A.; Santiago-Álvarez, C. Laboratory evaluation of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae against puparia and adults of Ceratitis capitata (Diptera: Tephritidae). J. Econ. Entomol. 2006, 99, 1955–1966. [Google Scholar] [CrossRef]
- Ekesi, S.; Billah, M.K. A Field Guide to the Management of Economically Important Tephritid Fruit Flies in Africa; Ekesi, S., Billah, M.K., Eds.; ICIPE Science Press: Nairobi, Kenya, 2006. [Google Scholar]
- Roessler, Y. Insecticidal bait and cover sprays. In Fruit Flies: Their Biology, Natural Enemies and Control; Elsevier: Amsterdam, The Netherlands, 1989; pp. 329–336. [Google Scholar]
- Mangan, R.L. Priorities in formulation and activity of adulticidal insecticide bait sprays for fruit flies. In Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies; Shelly, T., Epsky, N.D., Jang, E.B., Reyes-Flores, J., Vargas, R.I., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 423–456. [Google Scholar]
- Koyama, J.; Kakinohana, H.; Miyatake, T. Eradication of the melon fly, Bactrocera cucurbitae, in Japan: Importance of behavior, ecology, genetics, and evolution. Annu. Rev. Entomol. 2004, 49, 331–349. [Google Scholar] [CrossRef]
- Vargas, R.I.; Long, J.; Miller, N.W.; Delate, K.; Jackson, C.G.; Uchida, G.K.; Bautista, R.C.; Harris, E.J. Releases of Psyttalia fletcheri (Hymenoptera: Braconidae) and sterile flies to suppress melon fly (Diptera: Tephritidae) in Hawaii. J. Econ. Entomol. 2004, 97, 1531–1539. [Google Scholar] [CrossRef]
- Hsu, J.C.; Feng, H.T.; Wu, W.J. Resistance and synergistic effects of insecticides in Bactrocera dorsalis (Diptera: Tephritidae) in Taiwan. J. Econ. Entomol. 2004, 97, 1682–1688. [Google Scholar] [CrossRef] [PubMed]
- Haider, H.; Ahmed, S.; Khan, R.R. Determination of level of insecticide resistance in fruit fly, Bactrocera zonata (Saunders) (Diptera: Tephritidae) by bait bioassay. Int. J. Agric. Biol. 2011, 13, 815–818. [Google Scholar]
- Nadeem, M.K.; Ahmed, S.; Ashfaq, M.; Sahi, S.T. Evaluation of resistance to different insecticides against field populations of Bactrocera zonata (Saunders) (Diptera: Tephritidae) in Multan, Pakistan. Pak. J. Zool. 2012, 44, 495–501. [Google Scholar]
- Coppel, H.C.; Mertins, J.W. Biological Insect Pest Suppression. Springer: Berlin, Germany; New York, NY, USA, 1997. [Google Scholar]
- Magaña, C.; Hernández-Crespo, P.; Ortego, F.; Castañera, P. Resistance to malathion in field populations of Ceratitis capitata. J. Econ. Entomol. 2007, 100, 1836–1843. [Google Scholar] [CrossRef]
- Gulzar, S.; Usman, M.; Wakil, W.; Wu, S.; Olivier-Hofman, C.; Srinivasan, R.; Toews, M.; Shapiro-Ilan, D. Virulence of entomopathogenic nematodes to pupae of Frankliniella fusca (Thysanoptera: Thripidae). J. Econ. Entomol. 2021, toab132. [Google Scholar] [CrossRef]
- Usman, M.; Gulzar, S.; Wakil, W.; Piñero, J.C.; Leskey, T.C.; Nixon, L.J.; Oliveira-Hofman, C.; Wu, S.; Shapiro-Ilan, D. Potential of entomopathogenic nematodes against the pupal stage of the apple maggot Rhagoletis pomonella (Walsh) (Diptera: Tephritidae). J. Nematol. 2020, 52, e2020–e2079. Available online: https://www.exeley.com/journal_of_nematology/doi/10.21307/jofnem-2020-079 (accessed on 7 July 2021). [CrossRef] [PubMed]
- Usman, M.; Gulzar, S.; Wakil, W.; Wu, S.; Piñero, J.C.; Leskey, T.C.; Nixon, L.J.; Oliveira-Hofman, C.; Toews, M.D.; Shapiro-Ilan, D. Virulence of entomopathogenic fungi to Rhagoletis pomonella (Diptera: Tephritidae) and interactions with entomopathogenic nematodes. J. Econ. Entomol. 2020, 113, 2627–2633. [Google Scholar] [CrossRef]
- Gulzar, S.; Wakil, W.; Shapiro-Ilan, D.I. Combined Effect of entomopathogens against Thrips tabaci Lindeman (Thysanoptera: Thripidae): Laboratory, greenhouse and field trials. Insects 2021, 12, 456. [Google Scholar] [CrossRef]
- Wakil, W.; Tahir, M.; Al-Sadi, A.M.; Shapiro-Ilan, D. Interactions between two invertebrate pathogens: An endophytic fungi and externally applied bacterium. Front. Microbiol. 2020, 11, 2624. [Google Scholar] [CrossRef] [PubMed]
- Wakil, W.; Yasin, M.; Shapiro-Ilan, D. Effect of single and combined applications of entomopathogenic fungi and nematodes against Rhynchophorus ferrugineus (Olivier). Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Tahir, M.; Wakil, W.; Ali, A.; Sahi, S.T. Pathogenicity of Beauveria bassiana, and Metarhizium anisopliae isolates against larvae of the polyphagous pest Helicoverpa armigera. Entomol. Gen. 2019, 38, 225–242. [Google Scholar] [CrossRef]
- Navrozidis, E.; Vasara, E.; Karamanolis, D.; Salpiggidis, G. Biological control of Bactrocera oleae (Diptera: Tephritidae) using a Greek Bacillus thuringiensis isolate. J. Econ. Entomol. 2000, 93, 1657–1661. [Google Scholar] [CrossRef]
- Yousef, M.; Lozano-Tovar, M.D.; Garrido-Jurado, I.; Quesada-Moraga, E. Biocontrol of Bactrocera oleae (Diptera: Tephritidae) with Metarhizium brunneum and its extracts. J. Econ. Entomol. 2013, 106, 1118–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekesi, S.; Maniania, N.K.; Lux, S.A. Effect of soil temperature and moisture on survival and infectivity of Metarhizium anisopliae to four tephritid fruit fly puparia. J. Invertebr. Pathol. 2003, 83, 157–167. [Google Scholar] [CrossRef]
- Ekesi, S.; Maniania, N.K.; Mohamed, S.A.; Lux, S.A. Effect of soil application of Metarhizium anisopliae on African tephritid fruit flies and their associated endoparasitoids. Biol. Control. 2005, 35, 83–91. [Google Scholar] [CrossRef]
- Quesada-Moraga, E.; Martín-Carballo, I.; Garrido-Jurado, I.; Santiago-Álvarez, C. Horizontal transmission of Metarhizium anisopliae among laboratory populations of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Biol. Control. 2008, 47, 115–124. [Google Scholar] [CrossRef]
- Toledo, J.; Campos, S.E.; Flores, S.; Liedo, P.; Barrera, J.F.; Villaseñor, A.; Montoya, P. Horizontal transmission of Beauveria bassiana in Anastrepha ludens (Diptera: Tephritidae), under laboratory and field-cage conditions. J. Econ. Entomol. 2007, 100, 291–297. [Google Scholar] [CrossRef]
- Wilson, W.M.; Ibarra, J.E.; Oropeza, A.; Hernández, M.A.; Toledo-Hernández, R.A.; Toledo, J. Infection of Anastrepha ludens (Diptera: Tephritidae) adults during emergence from soil treated with Beauveria bassiana under various texture, humidity, and temperature conditions. Florida Entomol. 2017, 100, 503–508. [Google Scholar] [CrossRef] [Green Version]
- Toledo-Hernández, R.A.; Toledo, J.; Valle-Mora, J.; Holguín-Meléndez, F.; Liedo, P.; Huerta-Palacios, G. Pathogenicity and virulence of Purpureocillium lilacinum (Hypocreales: Ophiocordycipitaceae) on Mexican fruit fly adults. Florida Entomol. 2019, 102, 309–314. [Google Scholar] [CrossRef] [Green Version]
- Daniel, C.; Wyss, E. Susceptibility of different life stages of the European cherry fruit fly, Rhagoletis cerasi, to entomopathogenic fungi. J. Appl. Entomol. 2009, 133, 473–483. [Google Scholar] [CrossRef]
- Cossentine, J.; Thistlewood, H.; Goettel, M.; Jaronski, S. Susceptibility of preimaginal western cherry fruit fly, Rhagoletis indifferens (Diptera: Tephritidae) to Beauveria bassiana (Balsamo) Vuillemin Clavicipitaceae (Hypocreales). J. Invertebr. Pathol. 2010, 104, 105–109. [Google Scholar] [CrossRef]
- Yousef, M.; Alba-Ramírez, C.; Garrido-Jurado, I.; Mateu, J.; Díaz, S.R.; Valverde-García, P.; Quesada-Moraga, E. Metarhizium brunneum (Ascomycota; Hypocreales) treatments targeting olive fly in the soil for sustainable crop production. Front. Plant Sci. 2018, 9, 1312. [Google Scholar] [CrossRef] [Green Version]
- Sookar, P.; Bhagwant, S.; Ouna, E.A. Isolation of entomopathogenic fungi from the soil and their pathogenicity to two fruit fly species (Diptera: Tephritidae). J. Appl. Entomol. 2008, 132, 778–788. [Google Scholar] [CrossRef]
- Sookar, P.; Bhagwant, S.; Allymamod, M.N. Effect of Metarhizium anisopliae on the fertility and fecundity of two species of fruit flies and horizontal transmission of mycotic infection. J. Insect Sci. 2014, 14, 100. [Google Scholar] [CrossRef] [PubMed]
- Gul, H.T.; Freed, S.; Akmal, M.; Malik, M.N. Vulnerability of different life stages of Bactrocera zonata (Tephritidae: Diptera) against entomogenous fungi. Pak. J. Zool. 2015, 47, 307–317. [Google Scholar]
- Purwar, J.P. Bioefficacy of entomopathogenic fungi against fruit fly Bactrocera dorsalis (Hendel) infesting pear in Uttarkhand. Ann. Plant Protect. Sci. 2013, 21, 233–236. [Google Scholar]
- Abdellah, A.M.; Hassan, A.E.M.; Eisa, A.A.; Adam, Y.S.; Dafallah, A.B. Efficacy of a Sudanese strain of entomopathogenic fungus, Metarhizium anisopliae Met. sorokin on puparia of Bactrocera dorsalis Hendel, under laboratory conditions. In Sustainable Management of Invasive Pests in Africa. Sustainability in Plant and Crop Protection; Niassy, S., Ekesi, S., Migiro, L., Otieno, W., Eds.; Springer: Cham, Switzerland, 2020; Volume 14. [Google Scholar]
- Castillo, M.; Moya, P.; Hernandez, E.; Primo-Yufera, E. Susceptibility of Ceratitis capitata Wiedemann (Diptera: Tephritidae) to entomopathogenic fungi and their extracts. Biol. Control. 2000, 19, 274–282. [Google Scholar] [CrossRef] [Green Version]
- Beris, E.I.; Papachristos, D.P.; Fytrou, A.; Antonatos, S.A.; Kontodimas, D.C. Pathogenicity of three entomopathogenic fungi on pupae and adults of the Mediterranean fruit fly, Ceratitis capitate (Diptera: Tephritidae). J. Pest Sci. 2013, 86, 275–284. [Google Scholar] [CrossRef]
- Klein, M.G.; Lacey, L.A. An attractant trap for autodissemination of entomopathogenic fungi into populations of the Japanese beetle Popillia japonica (Coleoptera: Scarabaeidae). Biocont. Sci. Technol. 1999, 9, 151–158. [Google Scholar] [CrossRef]
- Furlong, M.J.; Pell, J.K. Horizontal transmission of entomopathogenic fungi by the diamondback moth. Biol. Control. 2001, 22, 288–299. [Google Scholar] [CrossRef]
- Zhang, R.; Jang, E.B.; Hec, S.; Chen, J. Lethal and sublethal effects of cyantraniliprole on Bactrocera dorsalis (Hendel) (Diptera:Tephritidae). Pest Manag. Sci. 2015, 71, 250–256. [Google Scholar] [CrossRef]
- Usman, M.; Wakil, W.; Shapiro-Ilan, D.I. Entomopathogenic nematodes as biological control agent against Bactrocera zonata and Bactrocera dorsalis (Diptera: Tephritidae). Biol. Control 2021, 104706. [Google Scholar] [CrossRef]
- Wakil, W.; Ghazanfar, M.U.; Riasat, T.; Kwon, Y.J.; Qayyum, M.A.; Yasin, M. Occurrence and diversity of entomopathogenic fungi in cultivated and uncultivated soils in Pakistan. Entomol. Res. 2013, 43, 70–78. [Google Scholar] [CrossRef]
- Wakil, W.; Ghazanfar, M.U.; Yasin, M. Naturally occurring entomopathogenic fungi infecting stored grain insect species in Punjab, Pakistan. J. Insect Sci. 2014, 14, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Inglis, G.D.; Enkerli, J.; Goettel, M.S. Laboratory Techniques used for Entomopathogenic Fungi: Hypocreales. In Manual of Techniques in Invertebrate Pathology; Lacey, L.A., Ed.; Academic Press: London, UK, 2012; pp. 189–253. [Google Scholar]
- Garrido-Jurado, I.; Ruano, F.; Campos, M.; Quesada-Moraga, E. Effects of soil treatments with entomopathogenic fungi on soil dwelling non-target arthropods at a commercial olive orchard. Biol. Control. 2011, 59, 239–244. [Google Scholar] [CrossRef]
- Minitab. MINITAB Release 14 for Windows; Minitab Inc.: State College, PA, USA, 2003. [Google Scholar]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometry; Freeman: New York, NY, USA, 1995. [Google Scholar]
- Mahmoud, M.F. Susceptibility of peach fruit fly, Bactrocera zonata (Saunders), (Diptera: Tephritidae) to three entomopathogenic fungi. Egypt. J. Biol. Pest Control. 2009, 19, 169–175. [Google Scholar]
- Hussein, M.A.; Khaled, A.S.; Ibrahim, A.A.; Soliman, N.A.; Attia, S.H. Evaluation of entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae on peach fruit fly, Bactrocera zonata (Saunders) (Diptera: Tephritidae). Egypt. Acad. J. Biol. Sci. 2018, 10, 59–68. [Google Scholar]
- Marri, D.; Gomez, D.A.M.A.; Wilson, D.D.; Billah, M.; Yeboah, S.; Osae, M. Evaluation of the efficacy of a commercial formulation of Beauveria bassiana for the control of the invasive fruit fly Bactrocera dorsalis (Diptera: Tephritidae). Biopestic. Int. 2018, 12, 9–18. [Google Scholar]
- Lezama-Gutiérrez, R.; la Luz, A.T.D.; Molina-Ochoa, J.; Rebolledo-Dominguez, O.; Pescador, A.R.; López-Edwards, M.; Aluja, M. Virulence of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) on Anastrepha ludens (Diptera: Tephritidae): Laboratory and field trials. J. Econ. Entomol. 2000, 93, 1080–1084. [Google Scholar] [CrossRef] [PubMed]
- Imoulan, A.; Elmeziane, A. Pathogenicity of Beauveria bassiana isolated from Moroccan Argan forests soil against larvae of Ceratitis capitata (Diptera: Tephritidae) in laboratory conditions. World J. Microbiol. Biotechnol. 2014, 30, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.L.; St. Leger, R.J. Insect immunity to entomopathogenic fungi. Adv. Genet. 2016, 94, 251–285. [Google Scholar] [PubMed]
- Chen, J.; Xie, C.; Tian, L.; Wu, X.; Han, J. Participation of the p38 pathway in Drosophila host defense against pathogenic bacteria and fungi. Proc. Natl. Acad. Sci. USA 2010, 107, 20774–20779. [Google Scholar] [CrossRef] [Green Version]
- Levitin, A.; Whiteway, M. Drosophila innate immunity and response to fungal infections. Cell. Microbiol. 2008, 10, 1021–1026. [Google Scholar] [CrossRef]
- Hajek, A.E.; St. Leger, R.J. Interactions between fungal pathogens and insect hosts. Annu. Rev. Entomol. 1994, 39, 293–322. [Google Scholar] [CrossRef]
- Ekesi, S.; Maniania, N.K.; Lux, S.A. Mortality in three African tephritid fruit fly puparia and adults caused by the entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana. Biocont. Sci. Technol. 2002, 12, 7–17. [Google Scholar] [CrossRef]
- Poprawski, T.J.; Robert, P.H.; Majchrowicz, I.; Bovin, G. Susceptibility of Delia antiqua (Diptera: Anthomyiidae) to eleven isolates of entomopathogenic hyphomycetes. Environ. Entomol. 1985, 14, 557–561. [Google Scholar] [CrossRef]
- Goble, T.A.; Dames, J.F.; Hill, M.P.; Moore, S.D. Investigation of native isolates of entomopathogenic fungi for the biological control of three citrus pests. Biocont. Sci. Technol. 2011, 21, 193–1211. [Google Scholar] [CrossRef]
- Thomas, M.B.; Wood, S.N.; Lomer, C.J. Biological control of locusts and grasshoppers using a fungal pathogen: The importance of secondary cycling. Proc. R. Soc. Lond. 1995, 259, 265–270. [Google Scholar]
- Wood, S.N.; Thomas, M.B. Space, time and persistence of virulent pathogens. Proc. R. Soc. Lond. 1996, 263, 673–680. [Google Scholar]
- Shimazu, M. Potential of the cerambycid-parasitic type of Beauveria brongniartii (Deuteromycotina: Hyphomycetes) for microbial control of Monochamus alternatus Hope (Coleoptera: Cerambycidae). Appl. Entomol. Zool. 1994, 29, 127–130. [Google Scholar] [CrossRef] [Green Version]
- Scholte, E.J.; Knols, B.G.J.; Takken, W. Autodissemination of the entomopathogenic fungus Metarhizium anisopliae amongst adult of the malaria vector Anopheles gambiae. Malar. J. 2004, 3, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaaya, G.P.; Okech, M.A. Horizontal transmission of mycotic infection in adult tsetse, Glossina morsitans. Entomophaga 1990, 35, 589–600. [Google Scholar] [CrossRef]
- Quesada-Moraga, E.; Santos-Quiros, R.; Valverde-Garcıa, P.; Santiago-Alvarez, C. Virulence, horizontal transmission and sublethal Reproductive effects of Metarhizium anisopliae (Anamorphic fungi) on the German cockroach (Blattodea: Blattellidae). J. Invertebr. Pathol. 2004, 87, 51–58. [Google Scholar] [CrossRef]
- Yee, W.L.; Lacey, L.A. Mortality of different stages of Rhagoletis indifferens (Diptera: Tephritidae) exposed to the entomopathogenic fungus Metarhizium anisopliae. J. Entomol. Sci. 2005, 40, 167–177. [Google Scholar] [CrossRef]
Fungi Isolate | Host/Substrate | Geographical Origin (Pakistan) |
---|---|---|
Metarhizium anisoplae | - | - |
WG-02 | Soil (forests) | Changa Manga |
WG-03 | Tribolium castaneum | Murree |
WG-04 | Soil (vegetables) | Chichawatni |
WG-05 | Rhyzopertha dominica | Khanewal |
WG-06 | Soil (forests) | Lal Sohanra |
WG-07 | Soil (forests) | Bahawalpur |
WG-08 | Sitophilus oryzae | Lodhran |
WG-09 | Tribolium castaneum | Basti Maluk |
WG-10 | Soil (crop fields) | Rawalpindi |
Beauveria bassiana | - | - |
WG-11 | Soil (crop fields) | Lal Sohanra |
WG-12 | Soil (forests) | Chichawatni |
WG-14 | Soil (vegetables) | Sheikhupura |
WG-15 | Soil (forests) | Faisalabad |
WG-16 | Tribolium castaneum | Sargodha |
WG-17 | Callosobruchus maculatus | Gujranwala |
WG-18 | Soil (forests) | Rawalpindi |
WG-19 | Soil (vegetable) | Sargodha |
WG-20 | Tribolium castaneum | Gujranwala |
WG-21 | Soil (fruits) | Lahore |
WG-22 | Tribolium castaneum | Gujranwala |
WG-24 | Soil (forests) | Jhelum |
Isolate | B. zonata | B. dorsalis | ||
---|---|---|---|---|
Larvae | Adults | Larvae | Adults | |
WG-02 | 75.2 ± 2.4 bc | 87.2 ± 2.1 bc | 69.3 ± 2.7 bc | 80.1 ± 1.7 bc |
WG-03 | 2.5 ± 1.1 o | 5.9 ± 2.1 p | 1.7 ± 1.1 no | 4.3 ± 0.9 n |
WG-04 | 12.9 ± 1.2 lmn | 22.4 ± 1.6 mn | 9.4 ± 0.9 lmn | 18.2 ± 1.9 jkl |
WG-05 | 16.3 ± 1.0 lm | 28.5 ± 1.2 lm | 12.8 ± 1.7 lm | 23.3 ± 1.3 ijk |
WG-06 | 21.4 ± 2.0 jkl | 35.4 ± 1.2 kl | 17.2 ± 1.2 jkl | 31.9 ± 2.0 hi |
WG-07 | 70.2 ± 2.2 cd | 81.2 ± 2.7 cd | 63.3 ± 2.2 cd | 77.6 ± 2.5 bc |
WG-08 | 25.7 ± 1.5 jk | 42.3 ± 1.8 jk | 22.3 ± 1.8 jk | 36.2 ± 1.8 h |
WG-09 | 6.8 ± 1.1 no | 14.6 ± 1.4 nop | 5.1 ± 0.1 mno | 11.2 ± 0.9 lmn |
WG-10 | 45.4 ± 2.2 gh | 59.6 ± 1.9 gh | 39.3 ± 1.8 gh | 55.3 ± 2.1 ef |
WG-11 | 38.5 ± 1.4 hi | 54.3 ± 2.1 hi | 34.3 ± 1.4 hi | 47.5 ± 1.1 fg |
WG-12 | 57.4 ± 3.1 ef | 70.9 ± 2.5 ef | 52.9 ± 3.3 ef | 64.7 ± 2.3 de |
WG-14 | 19.7 ± 1.7 kl | 30.2 ± 1.9 lm | 13.7 ± 1.8 klm | 25.9 ± 2.1 ij |
WG-15 | 15.4 ± 1.4 lmn | 26.8 ± 1.7 lm | 9.4 ± 1.5 lmn | 21.5 ± 1.9 jk |
WG-16 | 3.4 ± 1.1 o | 10.3 ± 1.3 op | 2.5 ± 1.1 no | 8.6 ± 1.11 mn |
WG-17 | 8.6 ± 1.1 mno | 17.2 ± 1.6 no | 6.9 ± 1.2 mno | 14.7 ± 1.7 klm |
WG-18 | 88.2 ± 2.7 a | 100.00 ± 0.00 a | 80.4 ± 1.8 a | 92.3 ± 2.14 a |
WG-19 | 2.5 ± 1.1 o | 9.4 ± 1.5 op | 0.0 ± 0.00 o | 7.8 ± 1.2 mn |
WG-20 | 49.6 ± 2.0 fg | 65.7 ± 2.4 fg | 45.2 ± 1.6 fg | 59.6 ± 2.9 e |
WG-21 | 81.2 ± 1.7 ab | 93.1 ± 1.7 ab | 76.2 ± 2.3 ab | 87.2 ± 2.4 ab |
WG-22 | 64.1 ± 1.9 de | 76.0 ± 2.2 de | 58.2 ± 2.3 de | 71.6 ± 2.8 cd |
WG-24 | 30.00 ± 1.8 ij | 48.4 ± 1.9 ij | 25.7 ± 1.9 ij | 41.4 ± 2.1 gh |
Fly Species | Isolate | LC50 (95% Fiducial Limits) | Slope | Intercept | Chi Square (df = 2) | p |
---|---|---|---|---|---|---|
B. zonata | WG-21 | 2.5 × 106 (1.2 × 106–5.0 × 106) | 0.17 ± 0.02 | −7.15 | 0.29 | 0.862 |
WG-18 | 1.0 × 106 (2.2 × 105–2.0 × 106) | 0.18 ± 0.02 | −7.07 | 0.44 | 0.799 | |
WG-07 | 1.2 × 106 (9.3 × 106–5.7 × 107) | 0.16 ± 0.02 | −7.44 | 0.061 | 0.97 | |
WG-02 | 6.1 × 106 (3.0 × 106–1.4 × 107) | 0.16 ± 0.02 | −7.21 | 0.20 | 0.90 | |
B. dorsalis | WG-21 | 9.2 × 106 (4.5 × 106–2.2 × 107) | 0.16 ± 0.02 | −7.41 | 0.15 | 0.92 |
WG-18 | 3.1 × 106 (1.6 × 106–6.4 × 106) | 0.17 ± 0.02 | −7.20 | 0.43 | 0.80 | |
WG-07 | 7.3 × 107 (2.8 × 107–3.4 × 108) | 0.15 ± 0.02 | −7.46 | 0.12 | 0.94 | |
WG-02 | 2.5 × 107 (1.1 × 107–7.8 × 107) | 0.15 ± 0.02 | −7.28 | 0.52 | 0.77 |
Isolate | Concentration | LT50 (95% Fiducial Limits) | Slope | Intercept | Chi Square (df = 2) | p |
---|---|---|---|---|---|---|
WG-21 | 105 | 12.5 (11.9–13.4) | 2.28 ± 0.20 | −11.96 | 0.95 | 0.96 |
106 | 11.4 (10.9–12.1) | 2.20 ± 0.18 | −12.71 | 2.52 | 0.77 | |
107 | 10.4 (9.9–11.1) | 1.94 ± 0.15 | −13.36 | 1.33 | 0.93 | |
108 | 8.6 (8.0–9.1) | 1.56 ± 0.10 | −14.38 | 25.95 | <0.01 | |
WG-18 | 105 | 11.0 (10.5–11.7) | 2.16 ± 0.17 | −12.89 | 5.75 | <0.01 |
106 | 9.8 (9.3–10.3) | 2.25 ± 0.16 | −13.74 | 5.52 | 0.35 | |
107 | 8.4 (8.0–8.9) | 1.75 ± 0.11 | −14.60 | 21.85 | <0.01 | |
108 | 7.0 (6.6–7.4) | 1.66 ± 0.10 | −14.97 | 36.01 | <0.01 | |
WG-07 | 105 | 14.7 (13.8–16.1) | 2.83 ± 0.32 | −9.65 | 1.04 | 0.95 |
106 | 13.7 (12.9–14.8) | 2.37 ± 0.23 | −11.08 | 1.60 | 0.90 | |
107 | 12.6 (11.9–13.5) | 2.23 ± 0.20 | −11.98 | 3.92 | 0.56 | |
108 | 11.7 (11.1–12.4) | 2.24 ± 0.18 | −12.64 | 3.97 | 0.55 | |
WG-02 | 105 | 14.9 (13.7–16.6) | 2.10 ± 0.22 | −10.62 | 8.67 | 0.12 |
106 | 13.7 (12.7–15.1) | 1.85 ± 0.18 | −11.45 | 9.03 | 0.10 | |
107 | 12.3 (11.5–13.3) | 1.88 ± 0.16 | −12.19 | 10.03 | 0.07 | |
108 | 10.6 (10.0–11.3) | 1.83 ± 0.14 | −13.22 | 10.64 | 0.59 |
Isolate | Concentration | LT50 (95% Fiducial Limits) | Slope | Intercept | Chi Square (df = 2) | p |
---|---|---|---|---|---|---|
WG-21 | 105 | 13.6 (12.7–14.8) | 2.11 ± 0.20 | −11.33 | 1.68 | 0.89 |
106 | 12.4 (11.7–13.3) | 2.24 ± 0.19 | −12.11 | 2.51 | 0.77 | |
107 | 11.4 (10.8–12.2) | 1.91 ± 0.17 | −12.92 | 3.66 | 0.59 | |
108 | 10.0 (9.4–10.7) | 1.71 ± 0.12 | −13.94 | 28.79 | <0.01 | |
WG-18 | 105 | 12.3 (11.6–13.2) | 2.19 ± 0.19 | −12.09 | 1.53 | 0.90 |
106 | 11.1 (10.6–11.7) | 2.21 ± 0.17 | −12.95 | 3.79 | 0.57 | |
107 | 9.7 (9.2–10.3) | 1.92 ± 0.14 | −13.75 | 2.03 | 0.84 | |
108 | 8.5 (8.0–9.1) | 1.63 ± 0.11 | −14.44 | 22.43 | <0.01 | |
WG-07 | 105 | 15.9 (14.6–18.0) | 2.30 ± 0.27 | −9.55 | 0.94 | 0.96 |
106 | 14.4 (13.4–15.8) | 2.28 ± 0.23 | −10.65 | 1.09 | 0.95 | |
107 | 13.7 (12.8–14.9) | 2.15 ± 0.21 | −11.27 | 2.25 | 0.81 | |
108 | 12.4 (11.7–13.2) | 2.25 ± 0.20 | −12.15 | 3.16 | 0.67 | |
WG-02 | 105 | 14.9 (13.8–16.6) | 2.24 ± 0.24 | −10.35 | 1.85 | 0.86 |
106 | 13.8 (12.9–15.0) | 2.19 ± 0.21 | −11.21 | 4.78 | 0.44 | |
107 | 12.4 (11.7–13.2) | 2.23 ± 0.19 | −12.15 | 4.07 | 0.53 | |
108 | 11.4 (10.7–12.1) | 1.93 ± 0.15 | −12.97 | 4.59 | 0.46 |
Insect Species | Isolate | LC50 (95% Fiducial Limits) | Slope | Intercept | Chi Square (df = 2) | p |
---|---|---|---|---|---|---|
B. zonata | WG-21 | 1.5× 105 (3.3× 102–8.5× 105) | 0.11 ± 0.02 | −3.04 | 1.20 | 0.54 |
WG-18 | 1.8× 105 (2.2× 103–6.0× 105) | 0.18 ± 0.02 | −4.36 | 0.34 | 0.84 | |
WG-07 | 4.6× 105 (2.3× 106–6.9× 107) | 0.08 ± 0.02 | −3.30 | 0.05 | 0.97 | |
WG-02 | 9.5× 105 (4.1× 103–4.0× 106) | 0.10 ± 0.02 | −3.30 | 1.34 | 0.51 | |
B. dorsalis | WG-21 | 6.6× 105 (3.1× 103–2.8× 105) | 0.10 ± 0.02 | −3.41 | 0.47 | 0.78 |
WG-18 | 1.7× 105 (6.6× 102–4.8× 105) | 0.12 ± 0.02 | −3.34 | 0.33 | 0.84 | |
WG-07 | 1.8× 106 (9.5× 106–2.5× 109) | 0.07 ± 0.02 | −3.34 | 0.29 | 0.86 | |
WG-02 | 2.3× 105 (1.15× 105–9.12× 105) | 0.09 ± 0.02 | −3.26 | 0.01 | 0.99 |
Fly Species | Treatments | Mortality | Mycosis | ||
---|---|---|---|---|---|
1 × 107 | 1 × 108 | 1 × 107 | 1 × 108 | ||
B. zonata | WG-21 | 58.2 ± 3.0 Ab | 67.5 ± 3.6 Aa | 28.3 ± 2.5 Aa | 29.2 ± 3.0 Aab |
WG-18 | 70.1 ± 3.1 Aa | 76.8 ± 3.9 Aa | 34.2 ± 2.0 Aa | 37.2 ± 1.6 Aa | |
WG-07 | 36.0 ± 2.2 Bc | 43.6 ± 1.4 Ab | 13.3 ± 1.6 Ab | 16.6 ± 2.1 Ac | |
WG-02 | 45.4 ± 2.0 Bc | 54.8 ± 2.1 Ab | 19.2 ± 2.0 Ab | 21.7 ± 1.1 Abc | |
F3, 23 | 32.7 | 24.1 | 20.4 | 14.3 | |
p | <0.01 | <0.01 | <0.01 | <0.01 | |
B. dorsalis | WG-21 | 52.7 ± 2.8 Bb | 63.6 ± 4.0 Aab | 25.0 ± 2.6 Ab | 30.8 ± 2.4 Aa |
WG-18 | 67.4 ± 3.4 Aa | 71.5 ± 4.0 Aa | 33.34.01 Aa | 36.7 ± 2.5 Aa | |
WG-07 | 30.2 ± 2.1 Bd | 38.7 ± 2.7 Ac | 9.2 ± 0.8 Bc | 14.2 ± 2.0 Ab | |
WG-02 | 40.6 ± 1.8 Bc | 54.3 ± 3.1 Ab | 17.5 ± 1.7 Bb | 25.0 ± 1.3 Aa | |
F3, 23 | 38.2 | 16.1 | 33.3 | 10.6 | |
p | <0.01 | <0.01 | <0.01 | <0.01 |
Fly Species | Isolate | Fecundity/Female | Fertility (%) | Adult Longevity (Days) | Larval Duration (Days) | Larval Survival (%) | Pupal Duration (Days) | Adult Emergence (%) |
---|---|---|---|---|---|---|---|---|
B. zonata | WG-21 | 307.7 ± 5.2 d | 54.0 ± 3.1 bc | 16.3 ± 0.8 d | 11.9 ± 0.7 ab | 62.7 ± 3.3 cd | 12.6 ± 0.8 ab | 43.8 ± 3.1 c |
WG-18 | 275.2 ± 4.4 e | 42.3 ± 2.7 c | 11.1 ± 0.6 e | 12.7 ± 0.6 a | 51.3 ± 2.1 d | 13.5 ± 0.4 a | 34.6 ± 2.5 c | |
WG-07 | 363.8 ± 4.2 b | 69.7 ± 3.1 ab | 27.3 ± 1.1 b | 9.5 ± 0.3 c | 76.0 ± 2.8 ab | 10.6 ± 0.4 bc | 63.4 ± 2.9 b | |
WG-02 | 341.9 ± 5.9 c | 61.3 ± 2.9 bc | 22.0 ± 0.9 c | 10.3 ± 0.3 bc | 70.3 ± 3.8 bc | 11.7 ± 0.5 abc | 55.4 ± 2.0 b | |
Control | 387.3 ± 4.9 a | 80.7 ± 1.8 a | 32.1 ± 1.4 a | 8.8 ± 0.4 c | 83.7 ± 1.7 a | 9.5 ± 0.4 c | 75.1 ± 2.6 a | |
B. dorsalis | WG-21 | 326.1 ± 3.8 d | 58.0 ± 3.4 cd | 18.3 ± 0.9 c | 12.2 ± 0.8 ab | 66.66 ± 3.37 cd | 12.7 ± 0.9 ab | 45.2 ± 3.7 c |
WG-18 | 294.6 ± 5.3 e | 49.3 ± 3.4 d | 14.1 ± 0.9 c | 13.5 ± 0.4 a | 57.00 ± 2.90 d | 13.9 ± 0.4 a | 41.8 ± 2.6 c | |
WG-07 | 385.1 ± 4.3 b | 74.3 ± 3.3 ab | 31.6 ± 1.7 a | 9.6 ± 0.4 c | 81.33 ± 2.10 ab | 10.8 ± 0.4 bc | 67.3 ± 4.1 b | |
WG-02 | 364.0 ± 5.9 c | 67.7 ± 4.1 bc | 24.2 ± 1.3 b | 10.1 ± 0.3 bc | 74.00 ± 2.47 bc | 12.00 ± 0.6 ab | 59.7 ± 1.9 b | |
Control | 405.7 ± 4.6 a | 82.3 ± 2.3 a | 35.3 ± 1.5 a | 9.4 ± 0.3 c | 85.33 ± 1.76 a | 9.2 ± 0.1 c | 80.6 ± 3.2 a |
Isolate | Pairs | B. zonata | B. dorsalis | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | |||||||
Male | Female | Mortality | Mycosis | Mortality | Mycosis | Morality | Mycosis | Mortality | Mycosis | |
WG-21 | Inoculated | Inoculated | 94.2 ± 2.0 Aa | 89.2 ± 3.0 ABa | 90.0 ± 3.4 Aa | 83.3 ± 3.8 ABa | 90.8 ± 3.0 Aa | 88.0 ± 2.6 ABa | 87.5 ± 3.4 Aa | 83.3 ± 3.8 ABa |
Inoculated | Non-inoculated | 89.2 ± 4.2 ABa | 80.8 ± 3.7 Ba | 83.3 ± 3.1 Aa | 59.2 ± 3.3 Ab | 86.7 ± 4.4 ABa | 80.0 ± 5.0 ABa | 75.8 ± 3.3 ABa | 59.2 ± 3.3 Ab | |
Non-inoculated | Inoculated | 75.8 ± 3.3 Ab | 49.2 ± 3.5 ABb | 87.5 ± 3.4 Aa | 75.8 ± 2.7 ABa | 67.5 ± 4.6 ABb | 45.8 ± 3.0 Ab | 84.2 ± 3.5 Aa | 75.8 ± 2.7 ABa | |
Non-inoculated | Non-inoculated | 5.8 ± 1.5 Ac | - | 3.3 ± 1.1 Ab | - | 5.8 ± 1.5 Ac | - | 5.0 ± 1.3 Ab | - | |
- | 37.3 | - | 14.1 | - | 39.5 | - | 14.1 | |||
- | <0.01 | - | <0.01 | - | <0.01 | - | <0.01 | |||
WG-18 | Inoculated | Inoculated | 98.3 ± 1.1 Aa | 97.5 ± 1.1 Aa | 96.7 ± 1.7 Aa | 93.3 ± 2.5 Aa | 97.5 ± 1.1 Aa | 96.3 ± 1.1 Aa | 93.3 ± 2.5 Aa | 90.3 ± 2.5 Aa |
Inoculated | Non-inoculated | 95.0 ± 2.6 Aa | 94.2 ± 2.7 Aa | 87.5 ± 2.2 Ab | 66.6 ± 4.0 Ab | 94.2 ± 2.7 Aa | 93.3 ± 3.1 Aa | 81.7 ± 3.3 Ab | 66.7 ± 4.0 Ab | |
Non-inoculated | Inoculated | 72.5 ± 2.8 Ab | 58.3 ± 4.4 Ab | 93.3 ± 2.1 Aab | 86.7 ± 2.1 Aa | 75.8 ± 3.3 Ab | 49.2 ± 3.3 Ab | 90.0 ± 1.8 Aab | 86.7 ± 2.1 Aa | |
Non-inoculated | Non-inoculated | 7.5 ± 1.1 Ac | - | 4.2 ± 0.8 AC | 7.5 ± 1.1 Ac | 4.2 ± 0.8 Ac | - | |||
- | 50.4 | - | 21.7 | - | 103 | - | 21.7 | |||
- | <0.01 | - | <0.01 | - | <0.01 | - | <0.01 | |||
WG-07 | Inoculated | Inoculated | 82.5 ± 2.8 Ba | 67.5 ± 3.8 Ca | 76.7 ± 3.3 Ba | 60.0 ± 3.9 Ca | 77.5 ± 3.4 Ba | 69.2 ± 3.3 Ca | 73.3 ± 3.8 Ba | 60.0 ± 3.9 Ca |
Inoculated | Non-inoculated | 77.5 ± 2.8 Ba | 58.3 ± 3.3 Ca | 71.7 ± 2.5 Ba | 41.7 ± 1.7 Bb | 74.2 ± 3.0 Ba | 55.0 ± 2.6 Cb | 62.5 ± 3.8 Ba | 41.7 ± 1.7 Bb | |
Non-inoculated | Inoculated | 63.3 ± 3.8 Ab | 31.7 ± 2.1 Cb | 73.3 ± 4.2 Ba | 52.5 ± 2.1 Ca | 55.8 ± 3.5 Bb | 30.0 ± 2.9 Cc | 70.0 ± 3.4 Ba | 52.5 ± 2.1 Ca | |
Non-inoculated | Non-inoculated | 6.66 ± 1.1 Ac | - | 4.2 ± 0.8 Ab | - | 9.2 ± 1.5 Ac | - | 5.0 ± 1.3 Ab | - | |
- | 34.5 | - | 11.4 | - | 45.9 | - | 11.4 | |||
- | <0.01 | - | <0.01 | - | <0.01 | - | <0.01 | |||
WG-02 | Inoculated | Inoculated | 89.16 ± 4.0 ABa | 81.7 ± 4.4 BCa | 84.1 ± 4.0 ABa | 74.2 ± 3.7 Ba | 86.7 ± 4.4 ABa | 80.8 ± 4.4 BCa | 81.7 ± 3.3 ABa | 74.2 ± 3.7 Ba |
Inoculated | Non-inoculated | 84.16 ± 4.2 ABa | 75.0 ± 3.2 Ba | 76.7 ± 3.8 ABa | 54.2 ± 3.3 ABb | 83.3 ± 3.1 ABa | 70.8 ± 3.0 Ba | 74.2 ± 4.0 ABa | 54.2 ± 3.2 ABb | |
Non-inoculated | Inoculated | 69.16 ± 3.0 Ab | 40.0 ± 2.6 BCb | 81.7 ± 2.1 ABa | 67.5 ± 4.2 Bab | 64.2 ± 4.4 ABb | 37.5 ± 2.8 ABb | 78.3 ± 3.6 ABa | 67.5 ± 4.2 Bab | |
Non-inoculated | Non-inoculated | 7.50 ± 1.1 Ac | - | 5.8 ± 0.8 Ab | - | 5.0 ± 1.3 Ac | - | 4.2 ± 1.5 Ab | - | |
- | 41.6 | - | 7.30 | - | 42.9 | - | 7.30 | |||
- | <0.01 | - | <0.01 | - | <0.01 | - | <0.01 |
Treatment | Larvae | Pupae | ||
---|---|---|---|---|
B. zonata | B. dorsalis | B. zonata | B. dorsalis | |
WG-21 | 27.3 ± 4.2 bc | 32.0 ± 4.3 bc | 67.0 ± 4.2 bc | 71.3 ± 3.4 cd |
WG-18 | 21.7 ± 4.1 c | 25.3 ± 2.9 c | 58.7 ± 3.5 c | 64.0 ± 2.3 d |
WG-07 | 41.3 ± 4.6 b | 45.6 ± 2.8 b | 82.3 ± 3.5 a | 85.0 ± 2.6 ab |
WG-02 | 34.0 ± 2.5 bc | 37.3 ± 2.9 bc | 75.7 ± 2.4 ab | 78.3 ± 2.0 bc |
Control | 85.3 ± 2.2 a | 87.3 ± 2.2 a | 87.3 ± 2.3 a | 91.0 ± 2.5 a |
Treatment | B. zonata | B. dorsalis |
---|---|---|
WG-21 | 32.8 ± 1.2 c | 41.1 ± 1.5 c |
WG-18 | 25.9 ± 2.0 c | 34.3 ± 1.7 c |
WG-07 | 49.6 ± 2.0 b | 57.1 ± 2.2 b |
WG-02 | 44.7 ± 1.8 b | 53.7 ± 2.6 b |
Control | 78.5 ± 3.2 a | 83.1 ± 2.5 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usman, M.; Wakil, W.; Piñero, J.C.; Wu, S.; Toews, M.D.; Shapiro-Ilan, D.I. Evaluation of Locally Isolated Entomopathogenic Fungi against Multiple Life Stages of Bactrocera zonata and Bactrocera dorsalis (Diptera: Tephritidae): Laboratory and Field Study. Microorganisms 2021, 9, 1791. https://doi.org/10.3390/microorganisms9081791
Usman M, Wakil W, Piñero JC, Wu S, Toews MD, Shapiro-Ilan DI. Evaluation of Locally Isolated Entomopathogenic Fungi against Multiple Life Stages of Bactrocera zonata and Bactrocera dorsalis (Diptera: Tephritidae): Laboratory and Field Study. Microorganisms. 2021; 9(8):1791. https://doi.org/10.3390/microorganisms9081791
Chicago/Turabian StyleUsman, Muhammad, Waqas Wakil, Jaime C. Piñero, Shaohui Wu, Michael D. Toews, and David Ian Shapiro-Ilan. 2021. "Evaluation of Locally Isolated Entomopathogenic Fungi against Multiple Life Stages of Bactrocera zonata and Bactrocera dorsalis (Diptera: Tephritidae): Laboratory and Field Study" Microorganisms 9, no. 8: 1791. https://doi.org/10.3390/microorganisms9081791
APA StyleUsman, M., Wakil, W., Piñero, J. C., Wu, S., Toews, M. D., & Shapiro-Ilan, D. I. (2021). Evaluation of Locally Isolated Entomopathogenic Fungi against Multiple Life Stages of Bactrocera zonata and Bactrocera dorsalis (Diptera: Tephritidae): Laboratory and Field Study. Microorganisms, 9(8), 1791. https://doi.org/10.3390/microorganisms9081791