Heat Stress Increases In Vitro Hindgut Fermentation of Distinct Substrates in Iberian Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Treatments, and Diets
2.2. Substrates and In Vitro Incubations
2.3. Analysis of Samples
2.3.1. Short-Chain Fatty Acid Analysis
2.3.2. Ammonia and Methane Analysis
2.4. Statistical Analysis
3. Results
3.1. Differences in Substrate In Vitro Fermentation
3.2. Effect of Heat Stress on In Vitro Fermentation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Renaudeau, D.; Collin, A.; Yahav, S.; de Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef] [Green Version]
- Baumgard, L.H.; Rhoads, R.P. Effects of heat stress on postabsorptive metabolism and energetics. Annu. Rev. Anim. Biosci. 2013, 1, 311–337. [Google Scholar] [CrossRef] [Green Version]
- Lambert, G.P. Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. J. Anim. Sci 2009, 87, E101–E108. [Google Scholar] [CrossRef] [Green Version]
- Ingram, D.L.; Legge, K.F. Influence of deep body temperatures and skin temperatures on peripheral blood flow in pig. J. Physiol. Lond. 1971, 215, 693–707. [Google Scholar] [CrossRef] [Green Version]
- Renaudeau, D.; Leclercq-Smekens, M.; Herin, M. Differences in skin characteristics in European (Large White) and Caribbean (Creole) growing pigs with reference to thermoregulation. Anim. Res. 2006, 55, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Le Sciellour, M.; Zemb, O.; Hochu, I.; Riquet, J.; Gilbert, H.; Giorgi, M.; Billon, Y.; Gourdine, J.L.; Renaudeau, D. Effect of chronic and acute heat challenges on fecal microbiota composition, production, and thermoregulation traits in growing pigs. J. Anim. Sci. 2019, 97, 3845–3858. [Google Scholar] [CrossRef]
- Xiong, Y.; Yi, H.; Wu, Q.; Jiang, Z.; Wang, L. Effects of acute heat stress on intestinal microbiota in grow-finishing pigs, and associations with feed intake and serum profile. J. Appl. Microbiol. 2019, 128, 840–852. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Guo, H.; Zheng, W.; Xue, Y.; Zhao, R.; Yao, W. Heat stress affects fecal microbial and metabolic alterations of primiparous sows during late gestation. J. Anim. Sci. Biotechnol. 2019, 10, 84. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Holmes, E.; Kinross, J.; Burcelin, R.; Gibson, G.; Jia, W.; Pettersson, S. Host-gut microbiota metabolic interactions. Science 2012, 336, 1262–1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Backhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef] [Green Version]
- Rymer, C.; Huntington, J.A.; Williams, B.A.; Givens, D.I. In vitro cumulative gas production techniques: History, methodological considerations and challenges. Anim. Feed Sci. Techol. 2005, 123, 9–30. [Google Scholar] [CrossRef]
- Williams, B.A.; Bosch, M.W.; Boer, H.; Verstegen, M.W.A.; Tamminga, S. An in vitro batch culture method to assess potential fermentability of feed ingredients for monogastric diets. Anim. Feed Sci. Technol. 2005, 123, 445–462. [Google Scholar] [CrossRef]
- Bindelle, J.; Pieper, R.; Montoya, C.A.; Van Kessel, A.G.; Leterme, P. Nonstarch polysaccharide-degrading enzymes alter the microbial community and the fermentation patterns of barley cultivars and wheat products in an in vitro model of the porcine gastrointestinal tract. Fems Microbiol. Ecol. 2011, 76, 553–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jha, R.; Woyengo, T.A.; Li, J.; Bedford, M.R.; Vasanthan, T.; Zijlstra, R.T. Enzymes enhance degradation of the fiber-starch-protein matrix of distillers dried grains with solubles as revealed by a porcine in vitro fermentation model and microscopy. J. Anim. Sci. 2015, 93, 1039–1051. [Google Scholar] [CrossRef] [PubMed]
- Morales, J.; Pérez, J.F.; Martín-Orúe, S.M.; Fondevila, M.; Gasa, J. Large bowel fermentation of maize or sorghum-acorn diets fed as a different source of carbohydrates to Landrace and Iberian pigs. Br J Nutr. 2002, 88, 489–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beuvink, J.M.W.; Spoelstra, S.F. Interactions between substrate, fermentation end-products, buffering systems and gas-production upon fermentation of different carbohydrates by mixed rumen microorganisms in vitro. Appl. Microbiol. Biotechnol. 1992, 37, 505–509. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas-production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Song, R.; Foster, D.N.; Shurson, G.C. Effects of feeding diets containing bacitracin methylene disalicylate to heat-stressed finishing pigs. J. Anim. Sci. 2011, 89, 1830–1843. [Google Scholar] [CrossRef]
- Goering, H.K.; Van Soest, P.J. Forage fiber analyses: Apparatus, reagents, procedures, and some applications. In Agriculture Handbook; Agricultural Research Service, U.S. Dept. of Agriculture: Washintong, DC, USA, 1970; Volume 379. [Google Scholar]
- Saro, C.; Mateo, J.; Andres, S.; Mateos, I.; Jose Ranilla, M.; Lopez, S.; Martin, A.; Javier Giraldez, F. Replacing soybean meal with urea in diets for heavy fattening lambs: Effects on growth, metabolic profile and meat quality. Animals 2019, 9, 974. [Google Scholar] [CrossRef] [Green Version]
- Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Martinez, M.E.; Ranilla, M.J.; Tejido, M.L.; Saro, C.; Carro, M.D. The effect of the diet fed to donor sheep on in vitro methane production and ruminal fermentation of diets of variable composition. Anim. Feed Sci. Technol. 2010, 158, 126–135. [Google Scholar] [CrossRef]
- Krishnamoorthy, U.; Rymer, C.; Robinson, P.H. The in vitro gas production technique: Limitations and opportunities. Anim. Feed Sci. Technol. 2005, 123–124, 1–7. [Google Scholar] [CrossRef]
- Argenzio, R.A.; Southworth, M. Sites of organic-acid production and absorption in gastrointestinal-tract of pig. Am. J. Physiol. 1975, 228, 454–460. [Google Scholar] [CrossRef] [PubMed]
- McBurney, M.I.; Sauer, W.C. Fiber and large bowel energy absorption: Validation of the integrated ileostomy-fermentation model using pigs. J. Nutr. 1993, 123, 721–727. [Google Scholar] [CrossRef]
- Regmi, P.R.; Metzler-Zebeli, B.U.; Gaenzle, M.G.; van Kempen, T.A.T.G.; Zijlstra, R.T. Starch with high amylose content and low in vitro digestibility increases intestinal nutrient flow and microbial fermentation and selectively promotes bifidobacteria in pigs. J. Nutr. 2011, 141, 1273–1280. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.A.; Bosch, M.W.; Awati, A.; Konstantinov, S.R.; Smidt, H.; Akkermans, A.D.L.; Verstegen, M.W.A.; Tamminga, S. In vitro assessment of gastrointestinal tract (GIT) fermentation in pigs: Fermentable substrates and microbial activity. Anim. Res. 2005, 54, 191–201. [Google Scholar] [CrossRef]
- Bauer, E.; Williams, B.A.; Voigt, C.; Mosenthin, R.; Verstegen, M.W.A. Microbial activities of faeces from unweaned and adult pigs, in relation to selected fermentable carbohydrates. Anim. Sci. 2001, 73, 313–322. [Google Scholar] [CrossRef]
- Bauer, E.; Williams, B.A.; Bosch, M.W.; Voigt, C.; Mosenthin, R.; Verstegen, M.W.A. Differences in microbial activity of digesta from three sections of the porcine large intestine according to in vitro fermentation of carbohydrate-rich substrates. J. Sci. Food Agric. 2004, 84, 2097–2104. [Google Scholar] [CrossRef]
- Bindelle, J.; Buldgen, A.; Boudry, C.; Leterme, P. Effect of inoculum and pepsin-pancreatin hydrolysis on fibre fermentation mecasured by the gas production technique in pigs. Anim. Feed Sci. Technol. 2007, 132, 111–122. [Google Scholar] [CrossRef]
- Suarez-Belloch, J.; Doti, S.; Rodriguez-Romero, N.; Guada, J.A.; Fondevila, M.; Latorre, M.A. Hindgut fermentation in pigs induced by diets with different sources or starch. Span. J. Agric. Res. 2013, 11, 780–789. [Google Scholar] [CrossRef] [Green Version]
- Pastorelli, G.; Faustini, M.; Attard, E. In vitro fermentation of feed ingredients by fresh or frozen pig fecal inocula. Anim. Sci. J. 2014, 85, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.M.D.; McMullin, P.; Handel, I.; Hastie, P.M. The effect of freezing on the fermentative activity of equine faecal inocula for use in an in vitro gas production technique. Anim. Feed Sci. Technol. 2012, 178, 175–182. [Google Scholar] [CrossRef]
- Stanco, G.; Di Meo, C.; Piccolo, G.; Nizza, A. Effect of storage duration on frozen inoculum to be used for the in vitro gas production technique in rabbit. Ital. J. Anim. Sci. 2003, 2, 265–270. [Google Scholar] [CrossRef]
- Keys, J.E.; Debarthe, J.V. Cellulose and hemicellulose digestibility in stomach, small-intestine and large-intestine of swine. J. Anim. Sci. 1974, 39, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Rerat, A.; Fiszlewicz, M.; Giusi, A.; Vaugelade, P. Influence of meal frequency on postprandial variations in the production and absorption of volatile fatty-acids in the digestive-tract of conscious pigs. J. Anim. Sci. 1987, 64, 448–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macfarlane, S.; Macfarlane, G.T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 2003, 62, 67–72. [Google Scholar] [CrossRef]
- Salvador, V.; Cherbut, C.; Barry, J.L.; Bertrand, D.; Bonnet, C.; Delortlaval, J. Sugar composition of dietary fiber and short-chain fatty-acid production during in-vitro fermentation by human bacteria. Br. J. Nutr. 1993, 70, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Jonathan, M.C.; van den Borne, J.J.G.C.; van Wiechen, P.; da Silva, C.S.; Schols, H.A.; Gruppen, H. In vitro fermentation of 12 dietary fibres by faecal inoculum from pigs and humans. Food Chem. 2012, 133, 889–897. [Google Scholar] [CrossRef]
- Davidson, M.H.; McDonald, A. Fiber: Forms and functions. Nutr. Res. 1998, 18, 617–624. [Google Scholar] [CrossRef]
- McBurney, M.I.; Horvath, P.J.; Jeraci, J.L.; Van Soest, P.J. Effect of in vitro fermentation using human fecal inoculum on the water-holding capacity of dietary fiber. Br. J. Nutr. 1985, 53, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Freire, J.P.B.; Guerreiro, A.J.G.; Cunha, L.F.; Aumaitre, A. Effect of dietary fibre source on total tract digestibility, caecum volatile fatty acids and digestive transit time in the weaned piglet. Anim. Feed Sci. Technol. 2000, 87, 71–83. [Google Scholar] [CrossRef]
- Knudsen, K.E.B. The nutritional significance of “dietary fibre” analysis. Anim. Feed Sci. Technol. 2001, 90, 3–20. [Google Scholar] [CrossRef]
- Wenk, C. The role of dietary fibre in the digestive physiology of the pig. Anim. Feed Sci. Technol. 2001, 90, 21–33. [Google Scholar] [CrossRef]
- Salminen, S.; Bouley, C.; Boutron-Ruault, M.C.; Cummings, J.H.; Franck, A.; Gibson, G.R.; Isolauri, E.; Moreau, M.C.; Roberfroid, M.; Rowland, I. Functional food science and gastrointestinal physiology and function. Br. J. Nutr. 1998, 80, S147–S171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rink, F.; Bauer, E.; Eklund, M.; Mosenthin, R. Effect of different carbohydrates on in vitro fermentation activity and bacterial numbers of porcine inocula under osmotic stress conditions. Arch. Anim. Nutr. 2011, 65, 445–459. [Google Scholar] [CrossRef]
- Cummings, J.H.; Englyst, H.N. Fermentation in the human large-intestine and the available substrates. Am. J. Clin. Nutr. 1987, 45, 1243–1255. [Google Scholar] [CrossRef] [PubMed]
- Roediger, W.E.W. Short chain fatty-acids as metabolic regulators of ion absorption in the colon. Acta Vet. Scand. Suppl. 1989, 86, 116–125. [Google Scholar]
- Jha, R.; Berrocoso, J.D. Review: Dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal 2015, 9, 1441–1452. [Google Scholar] [CrossRef] [Green Version]
- Roediger, W.E.W. Role of anaerobic-bacteria in the metabolic welfare of the colonic mucosa in man. Gut 1980, 21, 793–798. [Google Scholar] [CrossRef] [Green Version]
- Jha, R.; Fouhse, J.M.; Tiwari, U.P.; Li, L.; Willing, B.P. Dietary fiber and intestinal health of monogastric animals. Front. Vet. Sci. 2019, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Metzler, B.; Bauer, E.; Mosenthin, R. Microflora management in the gastrointestinal tract of piglets. Asian-Aust. J. Anim. Sci. 2005, 18, 1353–1362. [Google Scholar] [CrossRef]
- Pierce, K.M.; Sweeney, T.; Brophy, P.O.; Callan, J.J.; Fitzpatrick, E.; McCarthy, P.; O’Doherty, J.V. The effect of lactose and inulin on intestinal morphology, selected microbial populations and volatile fatty acid concentrations in the gastro-intestinal tract of the weanling pig. Anim. Sci. 2006, 82, 311–318. [Google Scholar] [CrossRef]
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef] [PubMed]
- Swanson, K.S.; Grieshop, C.M.; Flickinger, E.A.; Bauer, L.L.; Healy, H.P.; Dawson, K.A.; Merchen, N.R.; Fahey, G.C. Supplemental fructooligosaccharides and mannanoligosaccharides influence immune function, ileal and total tract nutrient digestibilities, microbial populations and concentrations of protein catabolites in the large bowel of dogs. J. Nutr. 2002, 132, 980–989. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.H.; Macfarlane, G.T. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 1991, 70, 443–459. [Google Scholar] [CrossRef] [PubMed]
- Visek, W.J. Diet and cell-growth modulation by ammonia. Am. J. Clin. Nutr. 1978, 31, 216–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bindelle, J.; Buldgen, A.; Lambotte, D.; Wavreille, J.; Letermen, P. Effect of pig faecal donor and of pig diet composition on in vitro fermentation of sugar beet pulp. Anim. Feed Sci. Technol. 2007, 132, 212–226. [Google Scholar] [CrossRef]
- Sappok, M.; Pellikaan, W.F.; Verstegen, M.W.A.; Bosch, G.; Sundrum, A.; Hendriks, W.H. Large intestinal fermentation capacity of fattening pigs on organic farms as measured in vitro using contrasting substrates. J. Sci. Food Agric. 2013, 93, 2402–2409. [Google Scholar] [CrossRef]
- McBurney, M.I.; Thompson, L.U. Effect of human fecal inoculum on in vitro fermentation variables. Br. J. Nutr. 1987, 58, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Mortensen, P.B.; Rasmussen, H.S.; Holtug, K. Short-chain fatty acid production from mono- and disaccharides in a fecal incubation system: Implications for colonic fermentation of dietary fiber in humans. J. Nutr. 1988, 118, 321–325. [Google Scholar] [CrossRef]
- Titgemeyer, E.C.; Bourquin, L.D.; Fahey, G.C.; Garleb, K.A. Fermentability of various fiber sources by human fecal bacteria in vitro. Am. J. Clin. Nutr. 1991, 53, 1418–1424. [Google Scholar] [CrossRef] [PubMed]
- McBurney, M.I.; Thompson, L.U. In vitro fermentabilities of purified fiber supplements. J. Food Sci. 1989, 54, 347–350. [Google Scholar] [CrossRef]
- Nyman, M.; Schweizer, T.F.; Tyren, S.; Reimann, S.; Asp, N.G. Fermentation of vegetable fiber in the intestinal-tract of rats and effects on fecal bulking and bile-acid excretion. J. Nutr. 1990, 120, 459–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodlad, J.S.; Mathers, J.C. Digestion by pigs of nonstarch polysaccharides in wheat and raw peas (Pisum sativum) fed in mixed diets. Br. J. Nutr. 1991, 65, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Jha, R.; Bindelle, J.; Van Kessel, A.; Leterme, P. In vitro fibre fermentation of feed ingredients with varying fermentable carbohydrate and protein levels and protein synthesis by colonic bacteria isolated from pigs. Anim. Feed Sci. Technol. 2011, 165, 191–200. [Google Scholar] [CrossRef]
- Jha, R.; Zijlstra, R.T. Physico-chemical properties of purified fiber affect their in vitro fermentation characteristics and are linked to in vivo characteristics in pigs. Can. J. Anim. Sci. 2018, 98, 394–398. [Google Scholar] [CrossRef] [Green Version]
- Quiniou, N.; Noblet, J. Influence of high ambient temperatures on performance of multiparous lactating sows. J. Anim. Sci. 1999, 77, 2124–2134. [Google Scholar] [CrossRef]
- Yang, H.; Xiang, Y.; Robinson, K.; Wang, J.J.; Zhang, G.L.; Zhao, J.C.; Xiao, Y.P. Gut microbiota is a major contributor to adiposity in pigs. Front. Microbiol. 2018, 9, 3045. [Google Scholar] [CrossRef]
- Bouhnik, Y.; Raskine, L.; Simoneau, G.; Vicaut, E.; Neut, C.; Flourie, B.; Brouns, F.; Bornet, F.R. The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: A double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. Am. J. Clin. Nutr. 2004, 80, 1658–1664. [Google Scholar] [CrossRef] [Green Version]
- Dierick, N.A.; Vervaeke, I.J.; Demeyer, D.I.; Decuypere, J.A. Approach to the energetic importance of fibre digestion in pigs.I. Importance of fermentation in the overall energy supply. Anim. Feed Sci. Technol. 1989, 23, 141–167. [Google Scholar] [CrossRef]
- Varel, V.H.; Yen, J.T. Microbial perspective on fiber utilization by swine. J. Anim. Sci. 1997, 75, 2715–2722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knudsen, K.E.B.; Serena, A.; Canibe, N.; Juntunen, K.S. New insight into butyrate metabolism. Proc. Nutr. Soc. 2003, 62, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Ventanas, S.; Ventanas, J.; Ruiz, J.; Estevez, M. Iberian pigs for the development of high-quality cured products. Recent Res. Devel. Agric. Food Chem. 2005, 6, 27–53. [Google Scholar]
Ingredients | |
Barley grain | 700 |
Corn | 143.7 |
Soybean meal | 127 |
Calcium phosphate | 9.3 |
Calcium carbonate | 6.2 |
Sodium chloride | 3.0 |
Vitamins and minerals | 3.0 |
L-Lysine (50%) | 5.0 |
L-Threonine (50%) | 2.1 |
Methionine hydroxy-analog (75%) | 0.7 |
Chemical Analysis | |
Dry matter | 899 |
Ash | 49.0 |
Crude protein | 141.1 |
Crude fiber | 41.0 |
Ether extract | 19.0 |
Calcium | 6.8 |
Phosphorous | 6.3 |
Sodium | 1.6 |
Lysine | 9.0 |
Methionine | 2.4 |
Gross energy (MJ/kg) | 16.6 |
Treatment | p-Value | ||||||
---|---|---|---|---|---|---|---|
SCFA Production | Subs | TN | HS | SEM 1 | Subs | Trt | Subs × Trt |
Total SCFA | Mix of starches | 1546 A | 1809 A* | 15.4 | 0.001 | 0.001 | 0.001 |
Pectin | 1789 B | 2011 B* | |||||
Inulin | 1211 C | 1410 C* | |||||
Cellulose | 118 D | 166 D | |||||
Acetate | Mix of starches | 788 A | 947 A* | 12.2 | 0.001 | 0.001 | 0.001 |
Pectin | 1442 B | 1603 B* | |||||
Inulin | 741 A | 765 C | |||||
Cellulose | 62.0 C | 84.0 D | |||||
Propionate | Mix of starches | 438 A | 509 A* | 7.9 | 0.001 | 0.001 | 0.001 |
Pectin | 151 B | 221 B* | |||||
Inulin | 285 C | 512 A* | |||||
Cellulose | 23.0 D | 35.0 C | |||||
Butyrate | Mix of starches | 303 A | 343 A* | 4.4 | 0.001 | 0.366 | 0.001 |
Pectin | 185 B | 174 B | |||||
Inulin | 177 B | 119 C* | |||||
Cellulose | 20.0 C | 28.0 D* | |||||
Isoacids 2 | Mix of starches | 6.1 A | 8.6 AB | 0.37 | 0.001 | 0.015 | 0.434 |
Pectin | 8.1 B | 11.4 BC | |||||
Inulin | 4.2 A | 4.7 A | |||||
Cellulose | 11.6 C | 15.4 C* | |||||
Valerate | Mix of starches | 2.2 A | 1.9 A | 0.14 | 0.039 | 0.001 | 0.001 |
Pectin | 3.6 B | 1.5 A* | |||||
Inulin | 3.3 B | 1.2 B* | |||||
Cellulose | 1.8 A | 3.6 C* |
Treatment | p-Value | ||||||
---|---|---|---|---|---|---|---|
Variable | Subs | TN | HS | SEM 1 | Subs | Trt | Subs × Trt |
Acetate/Propionate | Mix of starches | 3.6 A | 2.4 A* | 0.25 | 0.001 | 0.001 | 0.001 |
Pectin | 15.6 B | 9.2 B* | |||||
Inulin | 3.1 A | 2.1 A* | |||||
Cellulose | 3.9 A | 3.5 C | |||||
Molar proportions | |||||||
Acetate | Mix of starches | 51.0 A | 52.2 AB | 0.51 | 0.001 | 0.097 | 0.029 |
Pectin | 81.0 B | 80.2 C | |||||
Inulin | 61.0 C | 55.7 A | |||||
Cellulose | 54.3 D | 50.5 B | |||||
Propionate | Mix of starches | 25.2 A | 26.4 A | 0.35 | 0.001 | 0.001 | 0.001 |
Pectin | 8.1 B | 10.7 B* | |||||
Inulin | 23.3 A | 33.8 C* | |||||
Cellulose | 17.0 C | 18.0 D | |||||
Butyrate | Mix of starches | 22.4 A | 20.8 A | 0.38 | 0.001 | 0.012 | 0.030 |
Pectin | 10.2 B | 8.5 B* | |||||
Inulin | 14.9 C | 9.6 B* | |||||
Cellulose | 17.2 D | 16.8 C | |||||
Isoacids 2 | Mix of starches | 0.41 A | 0.48 A | 0.15 | 0.001 | 0.021 | 0.004 |
Pectin | 0.45 A | 0.56 A | |||||
Inulin | 0.39 A | 0.31 A | |||||
Cellulose | 10.1 B | 10.4 B | |||||
Valerate | Mix of starches | 0.14 A | 0.10 A* | 0.06 | 0.001 | 0.365 | 0.009 |
Pectin | 0.19 A | 0.08 A* | |||||
Inulin | 0.24 A | 0.60 B* | |||||
Cellulose | 1.16 B | 1.02 C |
Treatment | p-Value | ||||||
---|---|---|---|---|---|---|---|
Variable | Subs | TN | HS | SEM 1 | Subs | Trt | Subs × Trt |
Gas production | Mix of starches | 3079 A | 3338 A* | 13.5 | 0.001 | 0.001 | 0.002 |
Pectin | 3000 AB | 3296 A* | |||||
Inulin | 2912 B | 3001 B* | |||||
Cellulose | 584 C | 707 C* | |||||
CH4 production | Mix of starches | 402 A | 412 A | 5.5 | 0.001 | 0.319 | 0.045 |
Pectin | 426 A | 457 A | |||||
Inulin | 402 A | 404 A | |||||
Cellulose | 293 B | 236 B* | |||||
Ammonia | Mix of starches | 121 A | 128 A | 1.1 | 0.001 | 0.001 | 0.040 |
Pectin | 145 B | 171 B* | |||||
Inulin | 124 A | 144 C* | |||||
Cellulose | 230 C | 252 D* |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pardo, Z.; Mateos, I.; Campos, R.; Francisco, A.; Lachica, M.; Ranilla, M.J.; Fernández-Fígares, I. Heat Stress Increases In Vitro Hindgut Fermentation of Distinct Substrates in Iberian Pigs. Animals 2020, 10, 2173. https://doi.org/10.3390/ani10112173
Pardo Z, Mateos I, Campos R, Francisco A, Lachica M, Ranilla MJ, Fernández-Fígares I. Heat Stress Increases In Vitro Hindgut Fermentation of Distinct Substrates in Iberian Pigs. Animals. 2020; 10(11):2173. https://doi.org/10.3390/ani10112173
Chicago/Turabian StylePardo, Zaira, Iván Mateos, Rómulo Campos, Andrea Francisco, Manuel Lachica, María José Ranilla, and Ignacio Fernández-Fígares. 2020. "Heat Stress Increases In Vitro Hindgut Fermentation of Distinct Substrates in Iberian Pigs" Animals 10, no. 11: 2173. https://doi.org/10.3390/ani10112173
APA StylePardo, Z., Mateos, I., Campos, R., Francisco, A., Lachica, M., Ranilla, M. J., & Fernández-Fígares, I. (2020). Heat Stress Increases In Vitro Hindgut Fermentation of Distinct Substrates in Iberian Pigs. Animals, 10(11), 2173. https://doi.org/10.3390/ani10112173