The Genomic Variation in the Aosta Cattle Breeds Raised in an Extensive Alpine Farming System
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Sampling and Genotyping
2.3. Aosta Breeds Diversity Performed by PCA, FST and ADMIXTURE
2.4. FST Analysis at Marker Level
2.5. Runs of Homozygosity Detection
2.6. Gene Functional Analysis
2.7. Inbreeding Coefficients
3. Results
3.1. Aosta Breeds’ Diversity
3.2. FST at Marker Level, Gene Annotation and Gene Functional Analyses
3.3. Runs of Homozygosity Detection
3.4. Inbreeding Coefficients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture; FAO: Rome, Italy, 2015. [Google Scholar]
- Gandini, G.; Villa, E. Analysis of the cultural value of local livestock breeds: A methodology. J. Anim. Breed. Genet. 2003, 120, 1–11. [Google Scholar] [CrossRef]
- Associazione Nazionale Allevatori Bovini di Razza Valdostana—A.N.A.Bo.Ra.Va. Available online: www.anaborava.it (accessed on 11 December 2020).
- Pagnacco, G.; Gandini, G.C.; Bagnato, A.; Miglior, F.; Caroli, A. Genetic gain and conservation in a small alpine cattle breed. J. Anim. Breed. Genet. 1989, 106, 351–357. [Google Scholar] [CrossRef]
- Sartori, C.; Manser, M.B.; Mantovani, R. Relationship Between Number and Intensity of Fighting: Evidence from Cow Fighting Tournaments in Valdostana Cattle. Ital. J. Anim. Sci. 2014, 13, 3286. [Google Scholar] [CrossRef]
- Sartori, C.; Mantovani, R. Genetics of fighting ability in cattle using data from the traditional battle contest of the Valdostana breed. J. Anim. Sci. 2010, 88, 3206–3213. [Google Scholar] [CrossRef] [PubMed]
- Sartori, C.; Guzzo, N.; Mantovani, R. Genetic correlations of fighting ability with somatic cells and longevity in cattle. Animal 2020, 14, 13–21. [Google Scholar] [CrossRef]
- Broman, K.W.; Weber, J.L. Long homozygous chromosomal segments in reference families from the centre d’Etude du polymorphisme humain. Am. J. Hum. Genet. 1999, 65, 1493–1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McQuillan, R.; Leutenegger, A.-L.; Abdel-Rahman, R.; Franklin, C.S.; Pericic, M.; Barac-Lauc, L.; Smolej-Narancic, N.; Janicijevic, B.; Polasek, O.; Tenesa, A.; et al. Runs of homozygosity in European populations. Am. J. Hum. Genet. 2008, 83, 359–372. [Google Scholar] [CrossRef] [Green Version]
- Sölkner, J.; Ferencakovic, M.; Gredler, B.; Curik, I. Genomic metrics of individual autozygosity, applied to a cattle population. In Proceedings of the 61st Annual Meeting of the European Association of Animal Production, Heraklion, Greece, 23–27 August 2010; Wageningen Academic Publishers: Wageningen, The Netherlands. [Google Scholar]
- Ferencăković, M.; Sölkner, J.; Curik, I. Estimating autozygosity from high-throughput information: Effects of SNP density and genotyping errors. Genet. Sel. Evol. 2013, 45, 42. [Google Scholar] [CrossRef] [Green Version]
- Goszczynski, D.; Molina, A.; Terán, E.; Morales-Durand, H.; Ross, P.; Cheng, H.; Giovambattista, G.; Demyda-Peyrás, S. Runs of homozygosity in a selected cattle population with extremely inbred bulls: Descriptive and functional analyses revealed highly variable patterns. PLoS ONE 2018, 13, e0200069. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, M.; Eriksson, S.; Mikko, S.; Strandberg, E.; Stålhammar, H.; Groenen, M.A.M.; Crooijmans, R.P.M.A.; Andersson, G.; Johansson, A.M. Genomic relatedness and diversity of Swedish native cattle breeds. Genet. Sel. Evol. 2019, 51, 56. [Google Scholar] [CrossRef] [Green Version]
- Curik, I.; Ferencakovic, M.; Solkner, J. Inbreeding and runs of homozygosity: A possible solution to an old problem. Livest. Sci. 2014, 166, 26–34. [Google Scholar] [CrossRef]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mdladla, K.; Dzomba, E.; Huson, H.; Muchadeyi, F. Population genomic structure and linkage disequilibrium analysis of South African goat breeds using genome-wide SNP data. Anim. Genet. 2016, 47, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Dixit, S.P.; Singh, S.; Ganguly, I.; Bhatia, A.K.; Sharma, A.; Kumar, N.A.; Dang, A.K.; Jayakumar, S. Genome-Wide Runs of Homozygosity Revealed Selection Signatures in Bos indicus. Front. Genet. 2020, 11, 92. [Google Scholar] [CrossRef] [Green Version]
- Bos Taurus: Annotation Release 105. Available online: https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Bos_taurus/105/ (accessed on 11 December 2020).
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef] [Green Version]
- Nicolazzi, E.L.; Picciolini, M.; Strozzi, F.; Schnabel, R.D.; Lawley, C.; Pirani, A.; Brew, F.; Stella, A. SNPchiMp: A database to disentangle the SNPchip jungle in bovine livestock. BMC Genomics 2014, 15, 123. [Google Scholar] [CrossRef] [Green Version]
- Ensembl Variant Effect Predictor (VEP). Available online: https://www.ensembl.org/info/docs/tools/vep/index.html (accessed on 11 December 2020).
- DAVID Online Database. Available online: http://david.abcc.ncifcrf.gov/summary.jsp (accessed on 11 December 2020).
- Animal Genome QTL Database—Cattle. Available online: https://www.animalgenome.org/cgi-bin/QTLdb/BT/index (accessed on 11 December 2020).
- Golgden Helix Software Homepage. Available online: https://doc.goldenhelix.com/SVS/latest/svs_index.html (accessed on 11 December 2020).
- Del Bo, L.; Polli, M.; Longeri, M.; Ceriotti, G.; Looft, C.; Barre-Dirie, A.; Dolf, G.; Zanotti, M. Genetic diversity among some cattle breeds in the Alpine area. J. Anim. Breed. Genet. 2001, 118, 317–325. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, Z.; Khan, M.J.; Gao, J.; Loor, J.J. Clock Circadian Regulator (CLOCK) Gene Network Expression Patterns in Bovine Adipose, Liver, and Mammary Gland at 3 Time Points During the Transition From Pregnancy Into Lactation. J. Dairy Sci. 2015, 98, 4601–4612. [Google Scholar] [CrossRef]
- Seabury, C.M.; Oldeschulte, D.L.; Saatchi, M.; Beever, J.E.; Decker, J.E.; Halley, Y.A.; Bhattarai, E.K.; Molaei, M.; Freetly, H.C.; Hansen, S.L.; et al. Genome-wide Association Study for Feed Efficiency and Growth Traits in U.S. Beef Cattle. BMC Genomics 2017, 18, 386. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, M.; Baldi, F.; Alexandre, P.; Santana, M.; Ventura, R.; Bueno, R.; Bonin, M.; Rezende, F.; Coutinho, L.; Eler, J.; et al. Genomic regions and genes associated with carcass quality in Nelore cattle. Genet. Mol. Res. 2019, 18, GMR18226. [Google Scholar] [CrossRef]
- Alshawi, A.; Essa, A.; Al-Bayatti, S.; Hanotte, O. Genome Analysis Reveals Genetic Admixture and Signature of Selection for Productivity and Environmental Traits in Iraqi Cattle. Front. Genet. 2019, 10, 609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontanesi, L.; Tazzoli, M.; Russo, V.; Beever, J. Genetic heterogeneity at the bovine KIT gene in cattle breeds carrying different putative alleles at the spotting locus. Anim. Genet. 2010, 41, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Fu, X.; Yang, G.; Du, M. Enhancing intramuscular fat development via targeting fibro-adipogenic progenitor cells in meat animals. Animal 2020, 14, 312–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plusquellec, P.; Bouissou, M.-F. Behavioural characteristics of two dairy breeds of cows selected (Hérens) or not (Brune des Alpes) for fighting and dominance ability. Appl. Anim. Behav. Sci. 2001, 72, 1–21. [Google Scholar] [CrossRef]
- Sartori, C.; Mazza, S.; Guzzo, N.; Mantovani, R. Evolution of increased competitiveness in cows trades off with reduced milk yield, fertility and more masculine morphology. Evolution 2015, 69, 2235–2245. [Google Scholar] [CrossRef]
- Vezzani, V. Razza d’Hérens o razza valdostana? Riv. Zootec. 1929, 5, 177–183. [Google Scholar]
- Cánovas, A.; Reverter, A.; DeAtley, K.L.; Ashley, R.L.; Colgrave, M.L.; Fortes, M.R.S.; Islas-Trejo, A.; Lehnert, S.; Porto-Neto, L.; Rincón, G.; et al. Multi-tissue omics analyses reveal molecular regulatory networks for puberty in composite beef cattle. PLoS ONE 2014, 9, e102551. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.; Wilkinson, M.F. Homeobox Genes and the Male Reproductive System BT. In The Epididymis: From Molecules to Clinical Practice: A Comprehensive Survey of the Efferent Ducts, the Epididymis and the Vas Deferens; Robaire, B., Hinton, B.T., Eds.; Springer US: Boston, MA, USA, 2002; pp. 269–283. ISBN 978-1-4615-0679-9. [Google Scholar]
- Svingen, T.; Tonissen, K.F. Hox transcription factors and their elusive mammalian gene targets. Heredity 2006, 97, 88–96. [Google Scholar] [CrossRef]
- Du, H.; Taylor, H.S. The Role of Hox Genes in Female Reproductive Tract Development, Adult Function, and Fertility. Cold Spring Harb. Perspect. Med. 2015, 6, a023002. [Google Scholar] [CrossRef] [Green Version]
- Pfister, P.; Kaufmann, T.; Fellay, E.; Hirsbrunner, G. Reproductive performance in Herens cows from 2003 to 2007. Schweiz. Arch. Tierheilkd. 2011, 153, 7–13. [Google Scholar] [CrossRef]
- Gutiérrez-Gil, B.; Arranz, J.J.; Wiener, P. An interpretive review of selective sweep studies in Bos taurus cattle populations: Identification of unique and shared selection signals across breeds. Front. Genet. 2015, 6, 167. [Google Scholar]
- Charon, K.M.; Lipka, K.R. The effect of a coat colour-associated genes polymorphism on animal health—A review. Ann. Anim. Sci. 2015, 15, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Talenti, A.; Bertolini, F.; Williams, J.; Moaeen-ud-Din, M.; Frattini, S.; Coizet, B.; Pagnacco, G.; Reecy, J.; Rothschild, M.F.; Crepaldi, P.; et al. Genomic Analysis Suggests KITLG is Responsible for a Roan Pattern in two Pakistani Goat Breeds. J. Hered. 2017, 109, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Sartelet, A.; Tamma, N.; Coppieters, W.; Georges, M.; Charlier, C. Reverse genetic screen for loss-of-function mutations uncovers a frameshifting deletion in the melanophilin gene accountable for a distinctive coat color in Belgian Blue cattle. Anim. Genet. 2016, 47, 110–113. [Google Scholar] [CrossRef]
- Guo, J.; Tao, H.; Li, P.; Li, L.; Zhong, T.; Wang, L.; Ma, J.; Chen, X.; Song, T.; Zhang, H. Whole-genome sequencing reveals selection signatures associated with important traits in six goat breeds. Sci. Rep. 2018, 8, 10405. [Google Scholar] [CrossRef] [Green Version]
- Reverter, A.; Porto-Neto, L.R.; Fortes, M.R.S.; McCulloch, R.; Lyons, R.E.; Moore, S.; Nicol, D.; Henshall, J.; Lehnert, S.A. Genomic analyses of tropical beef cattle fertility based on genotyping pools of Brahman cows with unknown pedigree1. J. Anim. Sci. 2016, 94, 4096–4108. [Google Scholar] [CrossRef]
- De León, C.; Manrique, C.; Martínez, R.; Rocha, J.F. Genomic association study for adaptability traits in four Colombian cattle breeds. Genet. Mol. Res. 2019, 18, gmr18373. [Google Scholar] [CrossRef]
- Ryu, J.; Lee, C. Identification of contemporary selection signatures using composite log likelihood and their associations with marbling score in Korean cattle. Anim. Genet. 2014, 45, 765–770. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, L.; Prakapenka, D.; VanRaden, P.M.; Cole, J.B.; Da, Y. A large-scale genome-wide association study in US Holstein cattle. Front. Genet. 2019, 10, 412. [Google Scholar] [CrossRef]
- Vallée, A.; Daures, J.; van Arendonk, J.A.M.; Bovenhuis, H. Genome-wide association study for behavior, type traits, and muscular development in Charolais beef cattle. J. Anim. Sci. 2016, 94, 2307–2316. [Google Scholar] [CrossRef]
- Yuan, Z.R.; Xu, S.Z. Novel SNPs of the bovine CACNA2D1 gene and their association with carcass and meat quality traits. Mol. Biol. Rep. 2011, 38, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Stephens, D.N.; King, S.L.; Lambert, J.J.; Belelli, D.; Duka, T. GABAA receptor subtype involvement in addictive behaviour. Genes Brain Behav. 2017, 16, 149–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engin, E.; Liu, J.; Rudolph, U. α2-containing GABA(A) receptors: A target for the development of novel treatment strategies for CNS disorders. Pharmacol. Ther. 2012, 136, 142–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Breed | Tot. ROH | Min (n) | Max (n) | Mean (n) | Min Length | Max Length | Mean Length |
---|---|---|---|---|---|---|---|
CAS | 14,921 | 4 | 86 | 50 | 1,000,152 | 39,512,804 | 2,872,455 |
VBP | 6875 | 10 | 78 | 45 | 1,002,352 | 55,392,599 | 2,931,795 |
VRP | 14,604 | 4 | 90 | 53 | 1,000,089 | 71,168,012 | 3,149,324 |
Chr | Start | End | Length | Genes |
---|---|---|---|---|
9801 | 94,343,951 | 94,422,954 | 79,003 | SPATA16 |
4 | 33,711,848 | 35,755,375 | 2,043,527 | GRM3, SEMA3D |
4 | 37,970,282 | 40,696,202 | 2,725,920 | CACNA2D1, HGF, SEMA3C, CD36, GNAT3 |
4 | 45,618,675 | 47,116,336 | 1,497,661 | LHFPL3, KMT2E, SRPK2, PUS7, RINT1, EFCAB10, ATXN7L1, CDHR3, MIR2284B |
4 | 67,374,218 | 68,976,979 | 1,602,761 | CREB5, JAZF1, TAX1BP1, HIBADH, EVX1, HOXA13, HOXA11, HOXA10, MIR196B, HOXA9, HOXA7, HOXA6, HOXA5, HOXA3, HOXA4, HOXA2, HOXA1 |
5 | 13,970,721 | 15,271,475 | 1,300,754 | SLC6A15, TSPAN19, LRRIQ1, ALX1 |
5 | 17,066,241 | 19,211,885 | 5,241,164 | C5H12orf50, C5H12orf29, CEP290, TMTC3, KITLG, |
5 | 64,842,324 | 66,224,046 | 1,381,722 | ANO4, MIR2434, SLC5A8, UTP20, ARL1, SPIC, MYBPC1, CHPT1, SYCP3, GNPTAB, DRAM1, WASHC3, NUP37, PARPBP, PMCH, IGF1 |
6 | 34,018,647 | 35,004,065 | 985,418 | MMRN1, SNCA |
6 | 76,546,983 | 81,022,352 | 4,475,369 | ADGRL3, TECRL |
6 | 90,365,492 | 91,722,935 | 1,357,443 | THAP6, DAPH, CDKL2, G3BP2, USO1, PPEF2, NAAA, SDAD1, CXCL9, ART3, CXCL10, CXCL11, NUP54, SCARB2, FAM47E, STBD1, CCDC158, SHROOM3 |
7 | 76,951,29 | 9,853,485 | 2,158,356 | CYP4F2, PGLYRP2, RASAL3, WIZ, AKAP8L, AKAP8, BRD4, EPHX3, NOTCH3, ILVBL, SYDE1, OR1I1, CASP14, CCDC105, SLC1A6, OR7C2, OR7A5, OR7A17 |
7 | 49,571,781 | 52,828,781 | 3,257,000 | NME5, BRD8, KIF20A, CDC23, GFRA3, CDC25C, SLBP2, FAM53C, MIR2459, KDM3B, REEP2, EGR1, ETF1, HSPA9, CTNNA1, LRRTM2, SIL1, SNHG4, MATR3, PAIP2, SLC23A1, MZB1, PROB1, SPATA24, DNAJC18, ECSCR, SMIM33, TMEM173, UBE2D2, CXXC5, PSD2, NRG2, PURA, IGIP, CYSTM1, PFDN1, HBEGF, SLC4A9, NKHD1, EIF4EBP3, SRA1, APBB3, SLC35A4, CD14, TMCO6, NDUFA2, IK, WDR55, DND1, HARS, HARS2, ZMAT2, PCDHA13, PCDHA3, PCDHB1, PCDHB8, PCDHB14, PCDHB11, SLC25A2, TAF7, PCDHGA2, PCDHGB4, PCDHGA8, PCDHGC3, DIAPH1, HDAC3, RELL2, FCHSD1, ARAP3 |
14 | 52,337,429 | 52,854,862 | 517,433 | - |
19 | 26,858,526 | 28,789,212 | 1,930,686 | ASGR2, ASGR1, DLG4, ACADVL, MIR324, DVL2, PHF23, GABARAP, CTDNEP1, ELP5, CLDN7, SLC2A4, YBX2, EIF5A, GPS2, NEURL4, ACAP1, KCTD11, TMEM95, TNK1, PLSCR3, TMEM256, NLGN2, SPEM1, SPEM2, TMEM102, FGF11, CHRNB1, ZBTB4, SLC35G6, POLR2A, TNFSF12, TNFSF13, SENP3, EIF4A1, CD68, MPDU1, SOX15, FXR2, SAT2, SHBG, ATP1B2, TP53, WRAP53, EFNB3, DNAH2, KDM6B, TMEM88, NAA38, CYB5D1, CHD3, RNF227, KCNAB3, TRAPPC1, CNTROB, GUCY2D, ALOX15B, ALOX12B, ALOXE3, HES7, PER1, VAMP2, TMEM107, BORCS6, AURKB, CTC1, PFAS, RANGRF, SLC25A35, ARHGEF15, ODF4, KRBA2, RPL26, NDEL1, RNF222, MYH10, CCDC42, MFSD6L, PIK3R6, PIK3R5, MIR2284AA-3, NTN1, STX8 |
19 | 33,207,693 | 34,981,210 | 1,773,517 | TRPV2, UBB, CENPV, PIGL, NCOR1, TTC19, ZSWIM7, ADORA2B, SPECC1, AKAP10, ULK2, ALDH3A1, SLC47A2, ALDH3A2, SLC47A1, RNF112, MFAP4, MAPK7, B9D1, EPN2, GRAP, SLC5A10, FAM83G, PRPSAP2, SHMT1, SMCR8, TOP3A, MIEF2, FLII, LLGL1, ALKBH5, MYO15A, DRG2, GID4, ATPAF2, DRC3, TOM1L2, SREBF1, MIR33B, RAI1, PEMT, RASD1, MED9, NT5M, COPS3, FLCN, PLD6, MPRIP |
23 | 26,021 | 1,616,849 | 1,590,828 | KHDRBS2 |
28 | 23,475,117 | 25,022,068 | 1,546,951 | LRRTM3, DNAJC12, SIRT1, HERC4, MYPN, ATOH7, PBLD, HNRNPH3, RUFY2, DNA2, SLC25A16, TET1 |
Chr | Start | End | Length | Genes |
---|---|---|---|---|
1 | 31,843,014 | 32,866,434 | 1,023,420 | CADM2 |
1 | 63,602,126 | 66,515,809 | 2,913,683 | IGSF11, C1H3orf30, UPK1B, B4GALT4, ARHGAP31, TMEM39A, POGLUT1, TIMMDC1, CD80, ADPRH, PLA1A, POPDC2, COX17, MAATS1, NR1I2, GSK3B, MIR6529B, MIR6529A, GPR156, LRRC58, FSTL1, NDUFB4, HGD, RABL3, GTF2E1, STXBP5L, POLQ, ARGFX, FBXO40, HCLS1, GOLGB1, IQCB1, EAF2, SLC15A2, ILDR1 |
2 | 60,571,566 | 64,263,556 | 3,691,990 | CXCR4, DARS, MCM6, LCT, UBXN4, R3HDM1, MIR128-1, ZRANB3, RAB3GAP1, MAP3K19, CCNT2, ACMSD, TMEM163, MGAT5 |
3 | 96,013,420 | 96,080,539 | 67,119 | ELAVL4 |
4 | 33,711,848 | 36,320,534 | 2,608,686 | GRM3, SEMA3D, SEMA3A |
5 | 13,838,215 | 15,271,475 | 1,433,260 | SLC6A15, TSPAN19, LRRIQ1, ALX1 |
5 | 17,157,155 | 18,735,088 | 1,577,933 | C5H12orf50, C5H12orf29, CEP290, TMTC3, KITLG, |
6 | 64,151,594 | 71,501,595 | 7,350,001 | GABRG1, GABRA2, COX7B2, GABRA4, GABRB1, COMMD8, ATP10D, CORIN, NFXL1, CNGA1, NIPAL1, TXK, TEC, SLAIN2, SLC10A4, ZAR1, FRYL, OCIAD1, OCIAD2, CWH43, DCUN1D4, LRRC66, SGCB, SPATA18, USP46, DANCR, MIR4449, RASL11B, SCFD2, FIP1L1, LNX1, CHIC2, GSX2, PDGFRA, KIT, KDR, SRD5A3, TMEM165, CLOCK, PDCL2, NMU, EXOC1L, EXOC1, CEP135 |
6 | 75,035,526 | 80,484,712 | 5,449,186 | ADGRL3, TECRL |
7 | 7,513,855 | 8,905,045 | 1,391,190 | CYP4F2, PGLYRP2, RASAL3, WIZ, AKAP8L, AKAP8, BRD4, EPHX3, NOTCH3, ILVBL, SYDE1, OR1I1, CASP14, CCDC105, SLC1A6, OR7C2, OR7A5 |
8 | 3,8571,728 | 39,680,225 | 1,108,497 | IL33, RANBP6, KIAA2026, MLANA, ERMP1, RIC1, PDCD1LG2, CD274, PLGRKT, INSL6, JAK2, RCL1 |
8 | 86,700,245 | 86,837,166 | 136,921 | - |
13 | 53,727,128 | 54,052,028 | 324,900 | MYT1, NPBWR2, OPRL1, LKAAEAR1, RGS19, TCEA2, SOX18, C13H20orf204, PRPF6, SAMD10, ZNF512B, UCKL1, MIR1388, DNAJC5, TPD52L2, ABHD16B, ZBTB46 |
19 | 27,455,006 | 28,468,488 | 1,013,482 | DNAH2, KDM6B, TMEM88, NAA38, CYB5D1, CHD3, RNF227, KCNAB3, TRAPPC1, CNTROB, GUCY2D, ALOX15B, ALOX12B, ALOXE3, HES7, PER1, VAMP2, TMEM107, BORCS6, AURKB, CTC1, PFAS, RANGRF, SLC25A35, ARHGEF15, ODF4, KRBA2, RPL26, NDEL1, RNF222, MYH10, CCDC42, MFSD6L, PIK3R6, PIK3R5, MIR2284AA-3, NTN1 |
20 | 36,530,066 | 37,722,404 | 1,192,338 | GDNF, WDR70, NUP155, MIR2360, CPLANE1, NIPBL, SLC1A3 |
23 | 26,021 | 1,674,058 | 1,648,037 | KHDRBS2 |
28 | 23,475,117 | 24,940,953 | 1,465,836 | LRRTM3, DNAJC12, SIRT1, HERC4, MYPN, ATOH7, PBLD, HNRNPH3, RUFY2, DNA2, SLC25A16, TET1 |
Chr | Start | End | Length | Genes |
---|---|---|---|---|
2 | 58,568,475 | 62,445,218 | 3,876,743 | SPOPL, HNMT, THSD7B, CXCR4, DARS, MCM6, LCT, UBXN4, R3HDM1, MIR128-1, ZRANB3, RAB3GAP1, MAP3K19, CCNT2, ACMSD |
2 | 70,949,947 | 72,719,297 | 1,769,350 | STEAP3, C2H2orf76, DBI, TMEM37, SCTR, CFAP221, TMEM177, PTPN4, EPB41L5, TMEM185B, RALB, INHBB, GLI2 |
4 | 38,505,994 | 40,696,202 | 2,190,208 | CACNA2D1, HGF, SEMA3C, CD36, GNAT3 |
5 | 15,165,042 | 19,853,714 | 4,688,672 | RASSF9, NTS, MGAT4C, C5H12orf50, C5H12orf29, CEP290, TMTC3, KITLG, DUSP6, POC1B, GALNT4, ATP2B1 |
5 | 27,596,480 | 29,299,759 | 1,703,279 | KRT81, KRT7, C5H12orf80, KRT80, ATG101, NR4A1, GRASP, ACVR1B, ACVRL1, ANKRD33, FIGNL2, SCN8A, SLC4A8, GALNT6, CELA1, BIN2, SMAGP, DAZAP2, POU6F1, TFCP2, CSRNP2, LETMD1, SLC11A2, HIGD1C, METTL7A, TMPRSS12, ATF1, DIP2B |
6 | 60,191,863 | 71,910,070 | 11,718,207 | BEND4, SHISA3, ATP8A1, GRXCR1, KCTD8, YIPF7, GUF1, GNPDA2, GABRG1, GABRA2, COX7B2, GABRA4, GABRB1, COMMD8, ATP10D, CORIN, NFXL1, CNGA1, NIPAL1, TXK, TEC, SLAIN2, SLC10A4, ZAR1, FRYL, OCIAD1, OCIAD2, CWH43, DCUN1D4, LRRC66, SGCB, SPATA18, USP46, DANCR, MIR4449, RASL11B, SCFD2, FIP1L1, LNX1, CHIC2, GSX2, PDGFRA, KIT, KDR, SRD5A3, TMEM165, CLOCK, PDCL2, NMU, EXOC1L, EXOC1, CEP135, KIAA1211, AASDH, PPAT, PAICS, SRP72, ARL9, THEGL |
6 | 75,082,684 | 76,679,327 | 1,596,643 | - |
8 | 84,984,551 | 88,740,000 | 3,755,449 | PHF2, BARX1, PTPDC1, LOC112447831, MIRLET7A-1, MIRLET7F-1, MIRLET7D, ZNF169, SPTLC1, ROR2, NFIL3, AUH, SYK, DIRAS2, GADD45G, SEMA4D |
11 | 59,219,240 | 60,949,119 | 1,729,879 | C11H2orf74, AHSA2, USP34, XPO1, FAM161A, CCT4, COMMD1, B3GNT2 |
15 | 15,878,790 | 16,444,199 | 565,409 | PIWIL4, FUT4, C15H11orf97, CWF19L2, GUCY1A2 |
23 | 26,021 | 1,674,058 | 1,648,037 | KHDRBS2 |
QTL General Classification | QTL Specific Classification | Count of QTL | ||
---|---|---|---|---|
CAS | VBP | VRP | ||
Exterior Traits | Behavioral | 0 | 3 | 2 |
Coat texture | 0 | 7 | 0 | |
Conformation | 16 | 25 | 19 | |
Limb traits | 11 | 24 | 18 | |
Pigmentation | 16 | 55 | 43 | |
Udder traits | 20 | 38 | 33 | |
Health Traits | Disease | 10 | 13 | 15 |
General health parameters | 1 | 0 | 0 | |
Mastitis | 12 | 15 | 11 | |
Parasite/pest resistance | 1 | 1 | 0 | |
Meat and Carcass Traits | Anatomy | 13 | 20 | 18 |
Chemistry | 3 | 8 | 5 | |
Fatness | 2 | 6 | 3 | |
Fatty acid content | 0 | 2 | 1 | |
Sensory characteristics | 3 | 1 | 1 | |
Milk Traits | Milk composition—fat | 73 | 55 | 49 |
Milk composition—other | 3 | 10 | 22 | |
Milk composition—protein | 1646 | 1916 | 1216 | |
Milk processing trait | 54 | 35 | 11 | |
Milk yield | 19 | 18 | 6 | |
Production Traits | Feed intake | 4 | 8 | 3 |
Growth | 73 | 92 | 146 | |
Life history traits | 10 | 15 | 12 | |
Lifetime production | 49 | 54 | 13 | |
Reproduction Traits | Fertility | 54 | 41 | 42 |
General reproduction parameters | 8 | 11 | 5 | |
Semen quality | 1 | 2 | 1 |
Breed | F | FROH | ||||||
---|---|---|---|---|---|---|---|---|
Obs Hom 1 | Exp Hom 2 | Min | Max | Mean | Min | Max | Mean | |
CAS | 56,657.4 | 56,741.8 | −0.096 | 0.104 | −0.003 | 0.002 | 0.153 | 0.058 |
VBP | 56,562.7 | 56,823.4 | −0.089 | 0.105 | −0.010 | 0.008 | 0.162 | 0.053 |
VRP | 56,943.6 | 57,025.9 | −0.096 | 0.153 | −0.003 | 0.003 | 0.224 | 0.067 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strillacci, M.G.; Vevey, M.; Blanchet, V.; Mantovani, R.; Sartori, C.; Bagnato, A. The Genomic Variation in the Aosta Cattle Breeds Raised in an Extensive Alpine Farming System. Animals 2020, 10, 2385. https://doi.org/10.3390/ani10122385
Strillacci MG, Vevey M, Blanchet V, Mantovani R, Sartori C, Bagnato A. The Genomic Variation in the Aosta Cattle Breeds Raised in an Extensive Alpine Farming System. Animals. 2020; 10(12):2385. https://doi.org/10.3390/ani10122385
Chicago/Turabian StyleStrillacci, Maria Giuseppina, Mario Vevey, Veruska Blanchet, Roberto Mantovani, Cristina Sartori, and Alessandro Bagnato. 2020. "The Genomic Variation in the Aosta Cattle Breeds Raised in an Extensive Alpine Farming System" Animals 10, no. 12: 2385. https://doi.org/10.3390/ani10122385
APA StyleStrillacci, M. G., Vevey, M., Blanchet, V., Mantovani, R., Sartori, C., & Bagnato, A. (2020). The Genomic Variation in the Aosta Cattle Breeds Raised in an Extensive Alpine Farming System. Animals, 10(12), 2385. https://doi.org/10.3390/ani10122385