Pre-Slaughter Sources of Fresh Meat Quality Variation: The Case of Heavy Pigs Intended for Protected Designation of Origin Products
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Experimental Design and Data Collection
2.2.1. Pre-Slaughter Parameters Checklists and Scores/Indexes Calculation
- On departure (from the farm) checklist. The parameters assessed were: loading duration, path from the pen to the truck (length, width, design, flooring, presence of internal and external corridors, ramps, loading facilities), time taken to move the pigs, handling (tools used and mode of use), irregular behaviors during handling (pigs slipping, falling, overlapping). The integration of observations made according to this checklist resulted in an ‘on-departure score’, whose values could range from the lowest theoretical value of −30.5 points (pts) for the minimum possible welfare level to the highest theoretical value of 15.5 pts for the maximum possible welfare level.
- Transport checklist. The parameters assessed were: distance and duration of the journey, space allowance per pig, presence and number of drinkers, cooling systems, other characteristics of the lorry (possibility to inspect animals and take care of them, internal illumination, floor type and condition, presence or absence of bedding). The integration of the observations made according to this checklist resulted in a ‘transport score’ whose values could range from the lowest theoretical value of −18.0 pts for the minimum possible welfare level to the highest value of 9.5 pts for the maximum possible welfare level.
- Slaughter checklist. The parameters assessed were: unloading duration, path from the truck to the lairage pen and from the lairage pen to the stunning area (flooring, passages, presence of one-way gates), handling (tools used and mode of use), irregular behaviors during handling (pigs slipping, falling, overlapping), lairage pens characteristics (stocking density, ventilation, illumination, thermal insulation, conditions of floors and surfaces, type of pens, presence of mobile partitions, drinkers, cooling systems), stunning area characteristics (partitions, gates, devices, stunning method, stun-to-stick interval, procedures for the use and to check the efficiency of the stunning system, emergency stunning procedures, training of the personnel involved). The integration of the observations made according to this checklist resulted in a ‘slaughter score’, which could range from the lowest theoretical value of −41.5 pts for the minimum possible welfare level to the highest theoretical value of 50.5 pts for the maximum possible welfare level.
- TSWI: The Transport and Slaughter Welfare Index summarizes the welfare experienced by the animals during the entire pre-slaughter period (from when they are taken from their pen at the farm until when they are slaughtered). The TSWI integrated the three previously calculated scores and its theoretical values could range from a minimum of −90.0 pts for the lowest possible welfare level to a maximum of 75.5 for the highest possible welfare level.
2.2.2. Blood Sampling and Analysis
2.2.3. Meat Sampling and Meat Quality Assessment
2.3. Statistical Analysis
3. Results and Discussion
3.1. Clusters Based on Meat Parameters
3.2. Differences in Transport Variables, Blood Parameters, and Sensory Meat Quality between Clusters
3.3. Results of the Neural Network Model to Identify Possible Thresholds for Meat Quality Variation in the Pre-Slaughtering Variables
4. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chulayo, A.Y.; Tada, O.; Muchenje, V. Research on pre-slaughter stress and meat quality: A review of challenges faced under practical conditions. Appl. Anim. Husb. Rural Dev. 2012, 5, 1–6. [Google Scholar]
- Rioja-Lang, F.C.; Brown, J.A.; Brockhoff, E.J.; Faucitano, L. A Review of Swine Transportation Research on Priority Welfare Issues: A Canadian Perspective. Front. Vet. Sci. 2019, 6, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Consortium for Parma Ham. Prosciutto di Parma (Parma Ham) Protected Designation of Origin. 1992. Available online: https://www.prosciuttodiparma.com/wp-content/uploads/2019/07/Parma_Ham_Specifications_Disciplinare_Consolidato_Nov_13.pdf (accessed on 10 December 2020).
- Wu, F.; Vierck, K.R.; DeRouchey, J.M.; O’Quinn, T.G.; Tokach, M.D.; Goodband, R.D.; Dritz, S.S.; Woodworth, J.C. A review of heavy weight market pigs: Status of knowledge and future needs assessment. Transl. Anim. Sci. 2017, 1, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertol, T.M.; Oliveira, E.A.; Coldebella, A.; Kawski, V.L.; Scandolera, A.J.; Warpechowski, M.B. Meat quality and cut yield of pigs slaughtered over 100 kg live weight. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 2015, 67, 1166–1174. [Google Scholar] [CrossRef] [Green Version]
- Barducci, R.S.; Zhou, Z.Y.; Wormsbecher, L.; Roehrig, C.; Tulpan, D.; Bohrer, B.M. The relationship of pork carcass weight and leanness parameters in the Ontario commercial pork industry. Transl. Anim. Sci. 2020, 4, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Price, H.E.; Lerner, A.B.; Rice, E.A.; Lowell, J.E.; Harsh, B.N.; Barkley, K.E.; Honegger, L.T.; Richardson, E.; Woodworth, J.C.; Tokach, M.D. Characterizing ham and loin quality as hot carcass weight increases to an average of 119 kilograms. Meat Muscle Biol. 2019, 3. [Google Scholar] [CrossRef] [Green Version]
- Latorre, M.A.; García-Belenguer, E.; Ariño, L. The effects of sex and slaughter weight on growth performance and carcass traits of pigs intended for dry-cured ham from Teruel (Spain)1. J. Anim. Sci. 2008, 86, 1933–1942. [Google Scholar] [CrossRef] [Green Version]
- Latorre, M.A.; Lázaro, R.; Valencia, D.G.; Medel, P.; Mateos, G.G. The effects of gender and slaughter weight on the growth performance, carcass traits, and meat quality characteristics of heavy pigs1. J. Anim. Sci. 2004, 82, 526–533. [Google Scholar] [CrossRef]
- Gallo, L.; Dalla Bona, M.; Cecchinato, A.; Schiavon, S. Effect of growth rate on live performance, carcass and green thigh traits of finishing Italian heavy pigs. Ital. J. Anim. Sci. 2017, 16, 652–658. [Google Scholar] [CrossRef]
- Čandek-Potokar, M.; Škrlep, M. Factors in pig production that impact the quality of dry-cured ham: A review. Animal 2012, 6, 327–338. [Google Scholar] [CrossRef]
- Nannoni, E.; Liuzzo, G.; Serraino, A.; Giacometti, F.; Martelli, G.; Sardi, L.; Vitali, M.; Romagnoli, L.; Moscardini, E.; Ostanello, F. Evaluation of pre-slaughter losses of Italian heavy pigs. Anim. Prod. Sci. 2017, 57, 2072–2081. [Google Scholar] [CrossRef]
- Vitali, A.; Lana, E.; Amadori, M.; Bernabucci, U.; Nardone, A.; Lacetera, N. Analysis of factors associated with mortality of heavy slaughter pigs during transport and lairage1. J. Anim. Sci. 2014, 92, 5134–5141. [Google Scholar] [CrossRef] [PubMed]
- Sardi, L.; Gastaldo, A.; Borciani, M.; Bertolini, A.; Musi, V.; Martelli, G.; Cavallini, D.; Rubini, G.; Nannoni, E. Identification of possible pre-slaughter indicators to predict stress and meat quality: A study on heavy pigs. Animals 2020, 10, 945. [Google Scholar] [CrossRef] [PubMed]
- EU Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Off. J. Eur. Union 2010, L276, 33–79.
- EC Council Directive 2008/120/EC of 18 December 2008 laying down minimum standards for the protection of pigs. Off. J. Eur. Union 2008, L47, 5–13.
- EC Council Regulation (EC) No 1/2005 of 22 December 2004 on the protection of animals during transport and related operations and amending Directives 64/432/EEC and 93/119/EC and Regulation (EC) No 1255/97. Off. J. Eur. Union 2005, L3, 1–44.
- EC Council Regulation (EC) No 1099/2009 of 24 September 2009 on the protection of animals at the time of killing. Off. J. Eur. Union 2009, L303, 1–30.
- Barbari, M.; Gastaldo, A.; Rossi, P. Farm Welfare Index for assessment of wellbeing in swine farms. In Proceedings of the International Conference: “Innovation Technology to Empower Safety, Health and Welfare in Agriculture and Agro-food Systems”, Ragusa, Italy, 15–17 September 2008; pp. 1–7. [Google Scholar]
- Siegel, P.B.; Honaker, C.F. General principles of stress and well-being. In Livestock Handling and Transport, 4th ed.; Grandin, T., Ed.; CABI: Wallingford, UK, 2014; pp. 14–22. ISBN 9781780643212. [Google Scholar]
- Broom, D.M. Welfare of transported animals: Factors influencing welfare and welfare assessment. In Livestock Handling and Transport, 4th ed.; Grandin, T., Ed.; CABI: Wallingford, UK, 2014; pp. 23–38. ISBN 9781780643212. [Google Scholar]
- Anderson, D.B. Relationship of blood lactate and meat quality in market hogs. In Proceedings of the Reciprocal Meat Conference, Lubbock, TX, USA, 17–20 June 2010. [Google Scholar]
- Adenkola, A.Y.; Ayo, J.O. Physiological and behavioural responses of livestock to road transportation stress: A review. Afr. J. Biotechnol. 2010, 9, 4845–4856. [Google Scholar]
- Kanda, K.; Sugama, K.; Sakuma, J.; Kawakami, Y.; Suzuki, K. Evaluation of serum leaking enzymes and investigation into new biomarkers for exercise-induced muscle damage. Exerc. Immunol. Rev. 2014, 20, 39–54. [Google Scholar]
- Addis, P.B.; Nelson, D.A.; Ma, R.T.-I.; Burroughs, J.R. Blood Enzymes in Relation to Porcine Muscle Properties. J. Anim. Sci. 1974, 38, 279–286. [Google Scholar] [CrossRef]
- Bacci, M.L.; Nannoni, E.; Govoni, N.; Scorrano, F.; Zannoni, A.; Forni, M.; Martelli, G.; Sardi, L. Hair cortisol determination in sows in two consecutive reproductive cycles. Reprod. Biol. 2014, 14, 218–223. [Google Scholar] [CrossRef] [PubMed]
- CIE (Commission Internationale de l’Eclairage). Colorimetry; Pubbl. n. 15; CIE: Wien, Austria, 1976; p. 78. [Google Scholar]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Della Casa, G.; Bochicchio, D.; Faeti, V.; Marchetto, G.; Poletti, E.; Rossi, A.; Garavaldi, A.; Panciroli, A.; Brogna, N. Use of pure glycerol in fattening heavy pigs. Meat Sci. 2009, 81, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K. Drip loss in pork: Influencing factors and relation to further meat quality traits. J. Anim. Breed. Genet. 2007, 124, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Feiner, G. (Ed.) 4—Definitions of terms used in meat science and technology. In Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2006; pp. 46–71. ISBN 978-1-84569-050-2. [Google Scholar]
- Kim, Y.H.B.; Warner, R.D.; Rosenvold, K. Influence of high pre-rigor temperature and fast pH fall on muscle proteins and meat quality: A review. Anim. Prod. Sci. 2014, 54, 375–395. [Google Scholar] [CrossRef] [Green Version]
- Tornberg, E. Biophysical aspects of meat tenderness. Meat Sci. 1996, 43, 175–191. [Google Scholar] [CrossRef]
- Čobanović, N.; Stajković, S.; Blagojević, B.; Betić, N.; Dimitrijević, M.; Vasilev, D.; Karabasil, N. The effects of season on health, welfare, and carcass and meat quality of slaughter pigs. Int. J. Biometeorol. 2020. [Google Scholar] [CrossRef]
- Warner, R.D.; Kauffman, R.G.; Greaser, M.L. Muscle protein changes post mortem in relation to pork quality traits. Meat Sci. 1997, 45, 339–352. [Google Scholar] [CrossRef]
- Virgili, R.; Degni, M.; Schivazappa, C.; Faeti, V.; Poletti, E.; Marchetto, G.; Pacchioli, M.T.; Mordenti, A. Effect of age at slaughter on carcass traits and meat quality of Italian heavy pigs. J. Anim. Sci. 2003, 81, 2448–2456. [Google Scholar] [CrossRef] [Green Version]
- Warriss, P.D.; Brown, S.N.; Bevis, E.A.; Kestin, S.C. The influence of pre-slaughter transport and lairage on meat quality in pigs of two genotypes. Anim. Sci. 1990, 50, 165–172. [Google Scholar] [CrossRef]
- Pérez, M.P.; Palacio, J.; Santolaria, M.P.; Aceña, M.C.; Chacón, G.; Gascón, M.; Calvo, J.H.; Zaragoza, P.; Beltran, J.A.; García-Belenguer, S. Effect of transport time on welfare and meat quality in pigs. Meat Sci. 2002, 61, 425–433. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef] [PubMed]
- Dalla Costa, O.A.; Faucitano, L.; Coldebella, A.; Ludke, J.V.; Peloso, J.V.; dalla Roza, D.; Paranhos da Costa, M.J.R. Effects of the season of the year, truck type and location on truck on skin bruises and meat quality in pigs. Livest. Sci. 2007, 107, 29–36. [Google Scholar] [CrossRef]
- Correa, J.A.; Torrey, S.; Devillers, N.; Laforest, J.P.; Gonyou, H.W.; Faucitano, L. Effects of different moving devices at loading on stress response and meat quality in pigs. J. Anim. Sci. 2010, 88, 4086–4093. [Google Scholar] [CrossRef]
- Goumon, S.; Faucitano, L. Influence of loading handling and facilities on the subsequent response to pre-slaughter stress in pigs. Livest. Sci. 2017, 200, 6–13. [Google Scholar] [CrossRef]
- Sommavilla, R.; Faucitano, L.; Gonyou, H.; Seddon, Y.; Bergeron, R.; Widowski, T.; Crowe, T.; Connor, L.; Scheeren, B.M.; Goumon, S.; et al. Season, Transport Duration and Trailer Compartment Effects on Blood Stress Indicators in Pigs: Relationship to Environmental, Behavioral and Other Physiological Factors, and Pork Quality Traits. Animals 2017, 7, 8. [Google Scholar] [CrossRef]
- Rocha, L.M.; Dionne, A.; Saucier, L.; Nannoni, E.; Faucitano, L. Hand-held lactate analyzer as a tool for the real-time measurement of physical fatigue before slaughter and pork quality prediction. Animal 2015, 9, 707–714. [Google Scholar] [CrossRef] [Green Version]
- Haley, C.; Dewey, C.E.; Widowski, T.; Friendship, R. Relationship between estimated finishing-pig space allowance and in-transit loss in a retrospective survey of 3 packing plants in Ontario in 2003. Can. J. Vet. Res. 2010, 74, 178–184. [Google Scholar]
- Warriss, P.D.; Brown, S.N. A survey of mortality in slaughter pigs during transport and lairage. Vet. Rec. 1994, 134, 513. [Google Scholar] [CrossRef]
- Mitchell, M.A.; Kettlewell, P.J.; Villarroell, M.; Farish, M.; Harper, E. Assessing potential thermal stress in pigs during transport in hot weather—Continuous physiological monitoring. J. Vet. Behav. 2010, 5, 61–62. [Google Scholar] [CrossRef]
- Villarroel, M.; Barreiro, P.; Kettlewell, P.; Farish, M.; Mitchell, M. Time derivatives in air temperature and enthalpy as non-invasive welfare indicators during long distance animal transport. Biosyst. Eng. 2011, 110, 253–260. [Google Scholar] [CrossRef]
- Mitchell, M.A.; Kettlewell, P.J. Engineering and design of vehicles for long distance road transport of livestock (ruminants, pigs and poultry). Vet. Ital. 2008, 44, 201–213. [Google Scholar] [PubMed]
Parameter, U.M. 3 | Cluster 1 (HQ 1) (N = 340 Pigs) | Cluster 2 (LQ 2) (N = 100 Pigs) | p-Value | ||
---|---|---|---|---|---|
Estimate | SE 4 | Estimate | SE 4 | - | |
pH 45 | 6.06 | 0.02 | 5.80 | 0.04 | <0.0001 |
pH 24 | 5.54 | 0.006 | 5.43 | 0.01 | <0.0001 |
L* | 46.6 | 0.5 | 53.0 | 0.9 | <0.0001 |
Drip Loss, % | 0.98 | 0.04 | 1.47 | 0.08 | <0.0001 |
Cooking loss, % | 25,8 | 0.6 | 28.1 | 1.0 | 0.0643 |
WBSF5, kg/cm2 | 4.0 | 0.1 | 3.4 | 0.2 | 0.0054 |
F-o-M 6 | 48.6 | 0.2 | 48.3 | 0.4 | 0.3413 |
a* | 3.9 | 0.2 | 4.7 | 0.3 | 0.0491 |
b* | 4.6 | 0.2 | 5.9 | 0.3 | 0.0002 |
Hue 7 | 0.89 | 0.01 | 0.91 | 0.02 | 0.382 |
Chroma 8 | 6.2 | 0.2 | 7.7 | 0.4 | 0.0016 |
Number of Shipments | HQ 1 | LQ 2 | |||
---|---|---|---|---|---|
34 | 10 | ||||
Variable | Estimate | SE 3 | Estimate | SE | p-Value |
Loading duration, min | 47.7 | 3.7 | 43.9 | 6.9 | 0.6469 |
Pigs loaded per hour, n | 170 | 11 | 170 | 20 | 0.9870 |
Irregular behaviors (slipping, falling, overlapping) at loading, % | 17.3 | 1.9 | 21.0 | 3.4 | 0.3362 |
Waiting time at the farm (before departure), min | 14.3 | 0.8 | 11.5 | 1.5 | 0.1173 |
Journey duration, min | 33.8 | 3.1 | 48.6 | 5.7 | 0.0277 |
Ambient temperature, °C | 15.3 | 1.4 | 21.9 | 2.6 | 0.0291 |
Distance traveled, km | 23.3 | 1.8 | 36.1 | 3.3 | 0.0014 |
Average vehicle speed during transport, km/h | 72.0 | 2.8 | 77.7 | 5.2 | 0.3433 |
Waiting time at the slaughterhouse (before unloading), min | 20.4 | 2.5 | 24.2 | 4.7 | 0.4796 |
Total journey duration (from loading to unloading), min | 133.4 | 5.6 | 143.7 | 10.4 | 0.3906 |
Total waiting time on the truck (farm + slaughterhouse), min | 34.7 | 2.8 | 35.7 | 5.2 | 0.8672 |
Unloading duration, min | 17.4 | 0.9 | 15.5 | 1.6 | 0.3209 |
Pigs unloaded per hour, n | 427 | 22 | 452 | 40 | 0.5919 |
Irregular behaviors (slipping, falling, overlapping) at unloading, % | 4.82 | 0.58 | 7.77 | 1.06 | 0.0192 |
Total irregular behaviors (slipping, falling, overlapping), % | 22.1 | 2.1 | 28.8 | 3.8 | 0.1243 |
Lairage duration (from unloading to stunning), min | 576 | 89 | 528 | 164 | 0.7986 |
Transport + lairage duration, min | 710 | 90 | 672 | 165 | 0.8423 |
Stable (unmixed) groups, odds ratio | 0.59 | 0.39 | 0.70 | 0.39 | 0.5183 |
On-departure (at farm) score, pts | 1.66 | 0.29 | 2.05 | 0.55 | 0.5391 |
Transport score, pts | 3.10 | 0.28 | 3.90 | 0.51 | 0.1798 |
Slaughter score, pts | 27.97 | 0.39 | 28.45 | 0.73 | 0.5645 |
TSWI 4 (farm + transport + slaughter), pts | 32.73 | 0.59 | 34.40 | 1.09 | 0.1875 |
Number of Samples | HQ 1 | LQ 2 | |||
---|---|---|---|---|---|
340 | 100 | ||||
Variable | Estimate | SE 3 | Estimate | SE | p-Value |
log Cortisol, ng/mL | 1.033 [10.79] | 0.030 | 1.040 [10.96] | 0.054 | 0.9176 |
log CK 4, U/L | 3.291 [1954] | 0.01 4 | 3.263 [1832] | 0.026 | 0.3623 |
log Aldolase, U/L | 1.647 [44.36] | 0.027 | 1.618 [41.50] | 0.049 | 0.605 |
Color score | 4.72 | 0.06 | 4.45 | 0.09 | 0.0126 |
Marbling score | 4.96 | 0.11 | 4.89 | 0.17 | 0.7300 |
Initial tenderness | 5.52 | 0.11 | 5.27 | 0.18 | 0.2676 |
Chewing tenderness | 5.07 | 0.11 | 4.80 | 0.18 | 0.2282 |
Juiciness | 3.88 | 0.13 | 3.76 | 0.21 | 0.6127 |
Final residue | 2.90 | 0.05 | 3.16 | 0.07 | 0.0076 |
Chewiness | 5.43 | 0.09 | 5.31 | 0.14 | 0.4788 |
Aroma intensity | 5.38 | 0.12 | 5.27 | 0.18 | 0.5929 |
Buttery aroma | 2.81 | 0.06 | 3.08 | 0.10 | 0.0318 |
Off-flavors | 2.28 | 0.05 | 2.31 | 0.08 | 0.7858 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sardi, L.; Gastaldo, A.; Borciani, M.; Bertolini, A.; Musi, V.; Garavaldi, A.; Martelli, G.; Cavallini, D.; Nannoni, E. Pre-Slaughter Sources of Fresh Meat Quality Variation: The Case of Heavy Pigs Intended for Protected Designation of Origin Products. Animals 2020, 10, 2386. https://doi.org/10.3390/ani10122386
Sardi L, Gastaldo A, Borciani M, Bertolini A, Musi V, Garavaldi A, Martelli G, Cavallini D, Nannoni E. Pre-Slaughter Sources of Fresh Meat Quality Variation: The Case of Heavy Pigs Intended for Protected Designation of Origin Products. Animals. 2020; 10(12):2386. https://doi.org/10.3390/ani10122386
Chicago/Turabian StyleSardi, Luca, Alessandro Gastaldo, Marzia Borciani, Andrea Bertolini, Valeria Musi, Anna Garavaldi, Giovanna Martelli, Damiano Cavallini, and Eleonora Nannoni. 2020. "Pre-Slaughter Sources of Fresh Meat Quality Variation: The Case of Heavy Pigs Intended for Protected Designation of Origin Products" Animals 10, no. 12: 2386. https://doi.org/10.3390/ani10122386
APA StyleSardi, L., Gastaldo, A., Borciani, M., Bertolini, A., Musi, V., Garavaldi, A., Martelli, G., Cavallini, D., & Nannoni, E. (2020). Pre-Slaughter Sources of Fresh Meat Quality Variation: The Case of Heavy Pigs Intended for Protected Designation of Origin Products. Animals, 10(12), 2386. https://doi.org/10.3390/ani10122386