Toxicity of Carbon, Silicon, and Metal-Based Nanoparticles to the Hemocytes of Three Marine Bivalves
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Nanoparticles
2.2. Hemocytes Preparation and Exposure
2.3. Flow Cytometry
2.4. Microscopy
2.5. Statistical Analysis
3. Results
3.1. Cytotoxicity
3.2. Membrane Polarization Changes
3.3. Visual Observation
4. Discussion
4.1. Toxicity of Carbon Nanotubes and Nanofibers on Bivalve Molluscs
4.2. Toxicity of Silicon Nanotubes on Bivalve Molluscs
4.3. Toxicity of Metal-Based Nanoparticles on Bivalve Molluscs
4.3.1. Metal Sulfide Nanocrystals
4.3.2. Titanium Dioxide Nanoparticles
4.3.3. Gold Nanoparticles
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
NPs | C. grayanus1 | M. modiolus2 | A. boucardi3 | ||||||
---|---|---|---|---|---|---|---|---|---|
2 h | 4 h | 6 h | 2 h | 4 h | 6 h | 2 h | 4 h | 6 h | |
CNT-1 | n/a | n/a | n/a | 864.6 | 512.2 (366.1–670.9) | 241.5 (132.9–382.5) | n/a | n/a | n/a |
CNT-2 | n/a | n/a | n/a | 471.1 | 447.3 (319.5–672.6) | 284.7 (136.7–459.9) | n/a | n/a | 752.6 |
CNF-1 | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
CNF-2 | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
SNT-1 | n/a | n/a | n/a | n/a | n/a | 606.8 (387.3–853.8) | n/a | n/a | n/a |
SNT-2 | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
CdS | 616.7 | 620.8 | 637.9 | 827.3 | 530.3 (388.4–837.6) | 212.4 (136.3–300.0) | 752.6 (706.8–800.8) | 662.9 (507.7–1233) | 538.2 (383.9–824.2) |
ZnS | 275.5 (157.0–409.2) | 277.4 (90.4–552.2) | 143.4 (58.0–266.9) | 268.6 (232.3–305.8) | 283.5 (218.9–349.0) | 251.2 (178.1–321.7) | n/a | 157.8 (83.6–270.4) | 147.9 (123.8–172.0) |
Au-NPs | n/a | n/a | n/a | n/a | 591.8 | 560.5 (528.3–591.9) | n/a | 766.8 | 597.1 (482.4–758.7) |
TiO2 | 343.6 (234.3–518.0) | 368.1 (306.9–433.9) | 338.8 (210.5–476.5) | 333.6 (253.0–448.5) | 354.0 (317.6–394.7) | 376.6 (297.4–455.1) | n/a | n/a | n/a |
Appendix B
References
- Bakand, S.; Hayes, A. Toxicological considerations, toxicity assessment, and risk management of inhaled nanoparticles. Int. J. Mol. Sci. 2016, 17, 929. [Google Scholar] [CrossRef] [PubMed]
- Guinée, J.B.; Heijungs, R.; Vijver, M.G.; Peijnenburg, W.J. Setting the stage for debating the roles of risk assessment and life-cycle assessment of engineered nanomaterials. Nat. Nanotechnol. 2017, 12, 727. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.L.; Izquierdo, M.; Querol, X.; Lieberman, R.N.; Saikia, B.K.; Silva, L.F. Nanoparticles from construction wastes: A problem to health and the environment. J. Clean. Prod. 2019, 219, 236–243. [Google Scholar] [CrossRef]
- Donaldson, K.; Stone, V.; Tran, C.L.; Kreyling, W.; Borm, P.J.A. Nanotoxicology. Occup. Environ. Med. 2004, 61, 727–728. [Google Scholar] [CrossRef] [PubMed]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.V.; Laux, P.; Luch, A.; Sudrik, C.; Wiehr, S.; Wild, A.M.; Santomauro, G.; Bill, J.; Sitti, M. Review of emerging concepts in nanotoxicology: Opportunities and challenges for safer nanomaterial design. Toxicol. Mech. Methods 2019, 29, 378–387. [Google Scholar] [CrossRef] [Green Version]
- Pikula, K.; Zakharenko, A.; Chaika, V.; Kirichenko, K.; Tsatsakis, A.; Golokhvast, K. Risk assessments in nanotoxicology: Bioinformatics and computational approaches. Curr. Opin. Toxl. 2020, 19, 1–6. [Google Scholar] [CrossRef]
- Turan, N.B.; Erkan, H.S.; Engin, G.O.; Bilgili, M.S. Nanoparticles in the aquatic environment: Usage, properties, transformation and toxicity—A review. Process Saf. Environ. Prot. 2019, 130, 238–249. [Google Scholar] [CrossRef]
- Giese, B.; Klaessig, F.; Park, B.; Kaegi, R.; Steinfeldt, M.; Wigger, H.; von Gleich, A.; Gottschalk, F. Risks, release and concentrations of engineered nanomaterial in the environment. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Gottschalk, F.; Sun, T.; Nowack, B. Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environ. Pollut. 2013, 181, 287–300. [Google Scholar] [CrossRef]
- Bundschuh, M.; Filser, J.; Lüderwald, S.; McKee, M.S.; Metreveli, G.; Schaumann, G.E.; Schulz, R.; Wagner, S. Nanoparticles in the environment: Where do we come from, where do we go to? Environ. Sci. Eur. 2018, 30, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keller, A.A.; McFerran, S.; Lazareva, A.; Suh, S. Global life cycle releases of engineered nanomaterials. J. Nanopart. Res. 2013, 15, 1692. [Google Scholar] [CrossRef]
- Singh, A.K. Engineered Nanoparticles: Structure, Properties and Mechanisms of Toxicity; Academic Press: London, UK, 2015; pp. 296–506. [Google Scholar]
- Shvedova, A.A.; Kagan, V.E.; Fadeel, B. Close encounters of the small kind: Adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 63–88. [Google Scholar] [CrossRef] [PubMed]
- Lead, J.R.; Batley, G.E.; Alvarez, P.J.J.; Croteau, M.N.; Handy, R.D.; McLaughlin, M.J.; Judy, J.D.; Schirmer, K. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects: An updated review. Environ. Toxicol. Chem. 2018, 37, 2029–2063. [Google Scholar] [CrossRef]
- Biswas, J.K.; Sarkar, D. Nanopollution in the aquatic environment and ecotoxicity: No nano issue! Curr. Pollut. Rep. 2019, 5, 4–7. [Google Scholar] [CrossRef]
- Tyagi, N.; Kumar, A. Understanding effect of interaction of nanoparticles and antibiotics on bacteria survival under aquatic conditions: Knowns and unknowns. Environ. Res. 2020, 181, 108945. [Google Scholar] [CrossRef]
- Maksimova, Y.G. Microorganisms and carbon nanotubes: Interaction and Applications (Review). Appl. Biochem. Microbiol. 2019, 55, 1–12. [Google Scholar] [CrossRef]
- Vimbela, G.V.; Ngo, S.M.; Fraze, C.; Yang, L.; Stout, D.A. Antibacterial properties and toxicity from metallic nanomaterials. Int. J. Nanomed. 2017, 12, 3941–3965. [Google Scholar] [CrossRef] [Green Version]
- Deniel, M.; Errien, N.; Daniel, P.; Caruso, A.; Lagarde, F. Current methods to monitor microalgae-nanoparticle interaction and associated effects. Aquat. Toxicol. 2019, 217, 105311. [Google Scholar] [CrossRef]
- Wang, F.; Guan, W.; Xu, L.; Ding, Z.Y.; Ma, H.L.; Ma, A.Z.; Terry, N. Effects of nanoparticles on algae: Adsorption, distribution, ecotoxicity and fate. Appl. Sci-Basel 2019, 9, 1534. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.L.; Xin, H.J.; Yang, F.; Long, X. A historical review and bibliometric analysis of nanoparticles toxicity on algae. J. Nanopart. Res. 2018, 20, 92. [Google Scholar] [CrossRef]
- Callaghan, N.I.; MacCormack, T.J. Ecophysiological perspectives on engineered nanomaterial toxicity in fish and crustaceans. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2017, 193, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Zhou, Y.; Wang, C.J.; Li, S.G.; Wang, X.K. Toxic effects and molecular mechanism of different types of silver nanoparticles to the aquatic crustacean daphnia magna. Environ. Sci. Technol. 2017, 51, 12868–12878. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Bortvedt, A.; Harper, B.J.; Crandon, L.E.; Harper, S.L. Uptake and toxicity of CuO nanoparticles to Daphnia magna varies between indirect dietary and direct waterborne exposures. Aquat. Toxicol. 2017, 190, 78–86. [Google Scholar] [CrossRef]
- Gambardella, C.; Ferrando, S.; Gatti, A.M.; Cataldi, E.; Ramoino, P.; Aluigi, M.G.; Faimali, M.; Diaspro, A.; Falugi, C. Review: Morphofunctional and biochemical markers of stress in sea urchin life stages exposed to engineered nanoparticles. Environ. Toxicol. 2016, 31, 1552–1562. [Google Scholar] [CrossRef]
- Gambardella, C.; Morgana, S.; Di Bari, G.; Ramoino, P.; Bramini, M.; Diaspro, A.; Falugi, C.; Faimali, M. Multidisciplinary screening of toxicity induced by silica nanoparticles during sea urchin development. Chemosphere 2015, 139, 486–495. [Google Scholar] [CrossRef]
- Grassi, G.; Landi, C.; Della Torre, C.; Bergami, E.; Bini, L.; Corsi, I. Proteomic profile of the hard corona of charged polystyrene nanoparticles exposed to sea urchin Paracentrotus lividus coelomic fluid highlights potential drivers of toxicity. Environ. Sci. Nano 2019, 6, 2937–2947. [Google Scholar] [CrossRef]
- Canesi, L.; Ciacci, C.; Fabbri, R.; Marcomini, A.; Pojana, G.; Gallo, G. Bivalve molluscs as a unique target group for nanoparticle toxicity. Mar. Environ. Res. 2012, 76, 16–21. [Google Scholar] [CrossRef]
- De Marchi, L.; Coppola, F.; Soares, A.; Pretti, C.; Monserrat, J.M.; della Torre, C.; Freitas, R. Engineered nanomaterials: From their properties and applications, to their toxicity towards marine bivalves in a changing environment. Environ. Res. 2019, 178, 108683. [Google Scholar] [CrossRef]
- Samadder, A.; Tarafdar, D.; Das, R.; Khuda-Bukhsh, A.R.; Abraham, S.K. Efficacy of nanoencapsulated pelargonidin in ameliorating pesticide toxicity in fish and L6 cells: Modulation of oxidative stress and signalling cascade. Sci. Total Environ. 2019, 671, 466–473. [Google Scholar] [CrossRef]
- Kalman, J.; Merino, C.; Fernandez-Cruz, M.L.; Navas, J.M. Usefulness of fish cell lines for the initial characterization of toxicity and cellular fate of graphene-related materials (carbon nanofibers and graphene oxide). Chemosphere 2019, 218, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Klingelfus, T.; Disner, G.R.; Voigt, C.L.; Alle, L.F.; Cestari, M.M.; Leme, D.M. Nanomaterials induce DNA-protein crosslink and DNA oxidation: A mechanistic study with RTG-2 fish cell line and Comet assay modifications. Chemosphere 2019, 215, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.-J.; Carboni, R.; Quercio, M.J., Jr.; Yan, B.; Miranda, O.R.; Anderton, D.L.; Arcaro, K.F.; Rotello, V.M.; Vachet, R.W. Surface properties dictate uptake, distribution, excretion, and toxicity of nanoparticles in fish. Small 2010, 6, 2261–2265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cazenave, J.; Ale, A.; Bacchetta, C.; Rossi, A.S. Nanoparticles toxicity in fish models. Curr. Pharm. Des. 2019, 25, 3927–3942. [Google Scholar] [CrossRef] [PubMed]
- Lajmanovich, R.C.; Peltzer, P.M.; Martinuzzi, C.S.; Attademo, A.M.; Colussi, C.L.; Bassó, A. Acute toxicity of colloidal silicon dioxide nanoparticles on amphibian larvae: Emerging environmental concern. Int. J. Environ. Res. 2018, 12, 269–278. [Google Scholar] [CrossRef]
- Mouchet, F.; Landois, P.; Puech, P.; Pinelli, E.; Flahaut, E.; Gauthier, L. Carbon nanotube ecotoxicity in amphibians: Assessment of multiwalled carbon nanotubes and comparison with double-walled carbon nanotubes. Nanomedicine 2010, 5, 963–974. [Google Scholar] [CrossRef]
- He, X.; Aker, W.G.; Leszczynski, J.; Hwang, H.-M. Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems. J. Food Drug Anal. 2014, 22, 128–146. [Google Scholar] [CrossRef]
- Santhiya, N.; Sanjeevi, S.B.; Gayathri, M.; Dhanalakshmi, M. Economic importance of marine molluscs. Res. Environ. Life Sci. 2013, 6, 129–132. [Google Scholar]
- Ramasamy, S. Biology and ecology of edible marine bivalve molluscs. In Biology and Ecology of Edible Marine Bivalve Molluscs; Santhanam, R., Ed.; Apple Academic Press: New York, USA, 2018; pp. 15–23. [Google Scholar]
- Burgos-Aceves, M.A.; Faggio, C. An approach to the study of the immunity functions of bivalve haemocytes: Physiology and molecular aspects. Fish Shellfish Immunol. 2017, 67, 513–517. [Google Scholar] [CrossRef]
- Aguirre-Rubí, J.R.; Ortiz-Zarragoitia, M.; Izagirre, U.; Etxebarria, N.; Espinoza, F.; Marigómez, I. Prospective biomonitor and sentinel bivalve species for pollution monitoring and ecosystem health disturbance assessment in mangrove–lined Nicaraguan coasts. Sci. Total Environ. 2019, 649, 186–200. [Google Scholar] [CrossRef]
- Rosa, M.; Ward, J.E.; Shumway, S.E. Selective capture and ingestion of particles by suspension-feeding bivalve molluscs: A review. J. Shellfish Res. 2018, 37, 727–746. [Google Scholar] [CrossRef]
- Canesi, L.; Gallo, G.; Gavioli, M.; Pruzzo, C. Bacteria-hemocyte interactions and phagocytosis in marine bivalves. Microsc. Res. Tech. 2002, 57, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Kulikova, V.A.; Kolotukhina, N.K.; Omelyanenko, V.A. Pelagic larvae of the bivalves of Ussuriysky Bay, Sea of Japan. Russ. J. Mar. Biol. 2013, 39, 440–446. [Google Scholar] [CrossRef]
- Belcheva, N.N.; Dovzhenko, N.V.; Istomina, A.A.; Zhukovskaya, A.F.; Kukla, S.P. The antioxidant system of the Gray’s mussel Crenomytilus grayanus (Dunker, 1853) and the Japanese scallop Mizuhopecten yessoensis (Jay, 1857) (Mollusca: Bivalvia). Russ. J. Mar. Biol. 2016, 42, 489–494. [Google Scholar] [CrossRef]
- Selin, N.I.; Vekhova, E.E. Effects of environmental factors on byssal thread formation in some members of the family Mytilidae from the Sea of Japan. Russ. J. Mar. Biol. 2004, 30, 306–313. [Google Scholar] [CrossRef]
- Dinesen, G.E.; Morton, B. Review of the functional morphology, biology and perturbation impacts on the boreal, habitat-forming horse mussel Modiolus modiolus (Bivalvia: Mytilidae: Modiolinae). Mar. Biol. Res. 2014, 10, 845–870. [Google Scholar] [CrossRef] [Green Version]
- Luk’yanova, O.N. Molecular biomarkers of energy metabolism in mussels under anthropogenic pollution of Peter the Great Bay, the Sea of Japan. Russ. J. Ecol. 2006, 37, 205–209. [Google Scholar] [CrossRef]
- Podgurskaya, O.V.; Kavun, V.Y. Assessment of the adaptation capabilities of the bivalves Modiolus modiolus (Linnaeus, 1758) and Crenomytilus grayanus (Dunker, 1853) under increased levels of heavy metals in the environment. Russ. J. Mar. Biol. 2012, 38, 188–196. [Google Scholar] [CrossRef]
- Galysheva, Y.A. Subtidal macrobenthos communities of Vostok Bay (Sea of Japan) under conditions of anthropogenic impact. Russ. J. Mar. Biol. 2004, 30, 363–370. [Google Scholar] [CrossRef]
- Parrino, V.; Costa, G.; Cannavà, C.; Fazio, E.; Bonsignore, M.; Concetta, S.; Piccione, G.; Fazio, F. Flow cytometry and micro-Raman spectroscopy: Identification of hemocyte populations in the mussel Mytilus galloprovincialis (Bivalvia: Mytilidae) from Faro Lake and Tyrrhenian Sea (Sicily, Italy). Fish Shellfish Immunol. 2019, 87, 1–8. [Google Scholar] [CrossRef]
- Barjhoux, I.; Rioult, D.; Geffard, A.; Palos Ladeiro, M. A new protocol for the simultaneous flow cytometric analysis of cytotoxicity and immunotoxicity on zebra mussel (Dreissena polymorpha) hemocytes. Fish Shellfish Immunol. 2020, 98, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.N.; Readman, J.A.; Readman, J.W.; Lowe, D.M.; Frickers, P.E.; Beesley, A. Lysosomal cytotoxicity of carbon nanoparticles in cells of the molluscan immune system: An in vitro study. Nanotoxicology 2009, 3, 40–45. [Google Scholar] [CrossRef]
- Katsumiti, A.; Arostegui, I.; Oron, M.; Gilliland, D.; Valsami-Jones, E.; Cajaraville, M.P. Cytotoxicity of Au, ZnO and SiO2 NPs using in vitro assays with mussel hemocytes and gill cells: Relevance of size, shape and additives. Nanotoxicology 2016, 10, 185–193. [Google Scholar] [PubMed]
- Katsumiti, A.; Gilliland, D.; Arostegui, I.; Cajaraville, M.P. Cytotoxicity and cellular mechanisms involved in the toxicity of CdS quantum dots in hemocytes and gill cells of the mussel Mytilus galloprovincialis. Aquat. Toxicol. 2014, 153, 39–52. [Google Scholar] [CrossRef]
- Kuznetsov, V.L.; Elumeeva, K.V.; Ishchenko, A.V.; Beylina, N.Y.; Stepashkin, A.A.; Moseenkov, S.I.; Plyasova, L.M.; Molina, I.Y.; Romanenko, A.I.; Anikeeva, O.B.; et al. Multi-walled carbon nanotubes with ppm level of impurities. Phys. Status Solidi B 2010, 247, 2695–2699. [Google Scholar] [CrossRef]
- Pikula, K.S.; Zakharenko, A.M.; Chaika, V.V.; Vedyagin, A.A.; Orlova, T.Y.; Mishakov, I.V.; Kuznetsov, V.L.; Park, S.; Renieri, E.A.; Kahru, A.; et al. Effects of carbon and silicon nanotubes and carbon nanofibers on marine microalgae Heterosigma akashiwo. Environ. Res. 2018, 166, 473–480. [Google Scholar] [CrossRef]
- Han, S.C.; Park, S.E. Synthesis and characterization of silica nanotube by glycyldodecylamide as a template. Bull. Korean Chem. Soc. 2010, 31, 3519–3520. [Google Scholar] [CrossRef] [Green Version]
- Mintcheva, N.; Gicheva, G.; Panayotova, M.; Wunderlich, W.; Kuchmizhak, A.A.; Kulinich, S.A. Preparation and photocatalytic properties of CdS and ZnS nanomaterials derived from metal xanthate. Materials 2019, 12, 3313. [Google Scholar] [CrossRef] [Green Version]
- Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 2006, 110, 15700–15707. [Google Scholar] [CrossRef]
- Anisimova, A.A. Flow cytometric and light microscopic identification of hemocyte subpopulations in Modiolus kurilensis (Bernard, 1983) (Bivalvia: Mytilidae). Russ. J. Mar. Biol. 2012, 38, 406–415. [Google Scholar] [CrossRef]
- Ostrander, G.K. Techniques in Aquatic Toxicology; CRC Press: Boca Raton, FL, USA, 2005; Volume 2. [Google Scholar]
- Suzuki, T.; Fujikura, K.; Higashiyama, T.; Takata, K. DNA staining for fluorescence and laser confocal microscopy. J. Histochem. Cytochem. 1997, 45, 49–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowley, L.C.; Scott, A.P.; Marfell, B.J.; Boughaba, J.A.; Chojnowski, G.; Waterhouse, N.J. Measuring cell death by propidium iodide uptake and flow cytometry. Cold Spring Harb. Protoc. 2016, 2016, pdb–prot087163. [Google Scholar] [CrossRef] [PubMed]
- Sabnis, R.W.; Deligeorgiev, T.G.; Jachak, M.N.; Dalvi, T.S. DiOC6(3): A useful dye for staining the endoplasmic reticulum. Biotech. Histochem. 1997, 72, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Grégori, G.; Denis, M.; Lefèvre, D.; Beker, B. A flow cytometric approach to assess phytoplankton respiration. In Advanced Flow Cytometry: Applications in Biological Research; Springer Netherlands: Dordrecht, The Netherlands, 2003; pp. 99–106. [Google Scholar]
- Anisimova, A.A.; Lukyanova, O.N.; Chaika, V.V.; Kalitnik, A.A.; Danilenko, S.A.; Kuznetsov, V.L.; Golokhvast, K.S. Short-Time Effect of Multi-Walled Carbon Nanotubes on Some Histological and Biochemical Parameters in Marine Bivalves Crenomytilus grayanus (Dunker, 1853) and Swiftopecten swifti (Bernardi, 1858). Nano Hybrids 2017, 13, 225–231. [Google Scholar] [CrossRef]
- Anisimova, A.; Chaika, V.; Kuznetsov, V.; Golokhvast, K. Study of the influence of multiwalled carbon nanotubes (12–14 nm) on the main target tissues of the bivalve Modiolus modiolus. Nanotechnol. Russ. 2015, 10, 278–287. [Google Scholar] [CrossRef]
- Smolka, W.; Panek, A.; Gubernat, M.; Szczypta-Fraczek, A.; Jelen, P.; Paluszkiewicz, C.; Markowski, J.; Blazewicz, M. Structure and Biological Properties of Surface-Engineered Carbon Nanofibers. J. Nanomater. 2019, 2019, 4146190. [Google Scholar] [CrossRef]
- Rivera-Briso, A.L.; Aachmann, F.L.; Moreno-Manzano, V.; Serrano-Aroca, Á. Graphene oxide nanosheets versus carbon nanofibers: Enhancement of physical and biological properties of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) films for biomedical applications. Int. J. Biol. Macromol. 2020, 143, 1000–1008. [Google Scholar] [CrossRef]
- Barrick, A.; Manier, N.; Lonchambon, P.; Flahaut, E.; Jradd, N.; Mouneyrac, C.; Chatel, A. Investigating a transcriptomic approach on marine mussel hemocytes exposed to carbon nanofibers: An in vitro/in vivo comparison. Aquat. Toxicol. 2019, 207, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.; Bankier, C.; Al-Shaeri, M.; Hartl, M.G. Neutral red cytotoxicity assays for assessing in vivo carbon nanotube ecotoxicity in mussels—Comparing microscope and microplate methods. Mar. Pollut. Bull. 2015, 101, 903–907. [Google Scholar] [CrossRef]
- Pikula, K.; Chaika, V.; Zakharenko, A.; Markina, Z.; Vedyagin, A.; Kuznetsov, V.; Gusev, A.; Park, S.; Golokhvast, K. Comparison of the level and mechanisms of toxicity of carbon nanotubes, carbon nanofibers, and silicon nanotubes in bioassay with four marine microalgae. Nanomaterials 2020, 10, 485. [Google Scholar] [CrossRef] [Green Version]
- Canesi, L.; Ciacci, C.; Betti, M.; Fabbri, R.; Canonico, B.; Fantinati, A.; Marcornini, A.; Pojana, G. Immunotoxicity of carbon black nanoparticles to blue mussel hemocytes. Environ. Int. 2008, 34, 1114–1119. [Google Scholar] [CrossRef] [PubMed]
- Fubini, B.; Ghiazza, M.; Fenoglio, I. Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 2010, 4, 347–363. [Google Scholar] [CrossRef] [PubMed]
- Perl, A.; Gergely, P., Jr.; Nagy, G.; Koncz, A.; Banki, K. Mitochondrial hyperpolarization: A checkpoint of T-cell life, death and autoimmunity. Trends Immunol. 2004, 25, 360–367. [Google Scholar] [CrossRef] [Green Version]
- Berghe, T.V.; Vanlangenakker, N.; Parthoens, E.; Deckers, W.; Devos, M.; Festjens, N.; Guerin, C.; Brunk, U.; Declercq, W.; Vandenabeele, P. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ. 2010, 17, 922–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoshino, A.; Hanada, S.; Yamamoto, K. Toxicity of nanocrystal quantum dots: The relevance of surface modifications. Arch. Toxicol. 2011, 85, 707. [Google Scholar] [CrossRef]
- Silva, B.F.; Andreani, T.; Gavina, A.; Vieira, M.N.; Pereira, C.M.; Rocha-Santos, T.; Pereira, R. Toxicological impact of cadmium-based quantum dots towards aquatic biota: Effect of natural sunlight exposure. Aquat. Toxicol. 2016, 176, 197–207. [Google Scholar] [CrossRef]
- Pikula, K.; Mintcheva, N.; Kulinich, S.A.; Zakharenko, A.; Markina, Z.; Chaika, V.; Orlova, T.; Mezhuev, Y.; Kokkinakis, E.; Tsatsakis, A.; et al. Aquatic toxicity and mode of action of CdS and ZnS nanoparticles in four microalgae species. Environ. Res. 2020, 186, 109513. [Google Scholar] [CrossRef]
- Lee, G.-J.; Wu, J.J. Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—A review. Powder Technol. 2017, 318, 8–22. [Google Scholar] [CrossRef]
- Benjamin, M.M. Water Chemistry; Waveland Press: Long Grove, IL, USA, 2014; pp. 215–291. [Google Scholar]
- Wang, B.; Zhang, Y.; Mao, Z.; Yu, D.; Gao, C. Toxicity of ZnO nanoparticles to macrophages due to cell uptake and intracellular release of zinc ions. J. Nanosci. Nanotechnol. 2014, 14, 5688–5696. [Google Scholar] [CrossRef] [Green Version]
- Pikula, K.S.; Zakharenko, A.M.; Aruoja, V.; Golokhvast, K.S.; Tsatsakis, A.M. Oxidative stress and its biomarkers in microalgal ecotoxicology. Curr. Opin. Toxl. 2019, 13, 8–15. [Google Scholar] [CrossRef]
- Donaghy, L.; Hong, H.-K.; Jauzein, C.; Choi, K.-S. The known and unknown sources of reactive oxygen and nitrogen species in haemocytes of marine bivalve molluscs. Fish Shellfish Immunol. 2015, 42, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Bishop, G.M.; Dringen, R.; Robinson, S.R. Zinc stimulates the production of toxic reactive oxygen species (ROS) and inhibits glutathione reductase in astrocytes. Free Radic. Biol. Med. 2007, 42, 1222–1230. [Google Scholar] [CrossRef] [PubMed]
- Haider, A.J.; AL–Anbari, R.H.; Kadhim, G.R.; Salame, C.T. Exploring potential environmental applications of TiO2 nanoparticles. Energy Procedia 2017, 119, 332–345. [Google Scholar] [CrossRef]
- Waghmode, M.S.; Gunjal, A.B.; Mulla, J.A.; Patil, N.N.; Nawani, N.N. Studies on the titanium dioxide nanoparticles: Biosynthesis, applications and remediation. SN Appl. Sci. 2019, 1, 310. [Google Scholar] [CrossRef] [Green Version]
- Clément, L.; Hurel, C.; Marmier, N. Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants—Effects of size and crystalline structure. Chemosphere 2013, 90, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Haynes, V.N.; Ward, J.E.; Russell, B.J.; Agrios, A.G. Photocatalytic effects of titanium dioxide nanoparticles on aquatic organisms—Current knowledge and suggestions for future research. Aquat. Toxicol. 2017, 185, 138–148. [Google Scholar] [CrossRef] [Green Version]
- Rocher, B.; Le Goff, J.; Peluhet, L.; Briand, M.; Manduzio, H.; Gallois, J.; Devier, M.H.; Geffard, O.; Gricourt, L.; Augagneur, S.; et al. Genotoxicant accumulation and cellular defence activation in bivalves chronically exposed to waterborne contaminants from the Seine River. Aquat. Toxicol. 2006, 79, 65–77. [Google Scholar] [CrossRef]
- Alex, S.; Tiwari, A. Functionalized Gold Nanoparticles: Synthesis, Properties and Applications—A Review. J. Nanosci. Nanotechnol. 2015, 15, 1869–1894. [Google Scholar] [CrossRef]
- Volland, M.; Hampel, M.; Martos-Sitcha, J.A.; Trombini, C.; Martínez-Rodríguez, G.; Blasco, J. Citrate gold nanoparticle exposure in the marine bivalve Ruditapes philippinarum: Uptake, elimination and oxidative stress response. Environ. Sci. Pollut. Res. 2015, 22, 17414–17424. [Google Scholar] [CrossRef]
- Tedesco, S.; Doyle, H.; Redmond, G.; Sheehan, D. Gold nanoparticles and oxidative stress in Mytilus edulis. Mar. Environ. Res. 2008, 66, 131–133. [Google Scholar] [CrossRef] [Green Version]
Sample | Diameter nm | Surface Area m2/g | Impurities % | Structural Features |
---|---|---|---|---|
CNT-1 | 18–20 | 130 | Al–0.9 | many particles with defect areas and opened ends of carbon nanotubes |
Co–0.3 | ||||
Fe–0.6 | ||||
CNT-2 | 18–20 | 150 | Ca–0.004 | ordered nanotube structure |
Cl–0.08 | ||||
Co–0.12 | ||||
Fe–0.2 | ||||
CNF-1 | 90–120 | 90–100 | Al2O3–0.4 | unordered structure, defect areas, the presence of amorphous carbon |
CNF-2 | 90–120 | 90–100 | Al2O3–0.4 | unordered structure, defect areas |
Ni–3.6 | ||||
SNT-1 | 3–4 | 685 | — | ordered nanotube structure |
SNT-2 | 40–45 | 395 | — | ordered nanotube structure |
CdS | 5–9 | n/a | — | cubic crystal phase |
ZnS | 2.6–5.6 | n/a | — | cubic crystal phase |
Au-NPs | 60-80 | n/a | — | spherical shape |
TiO2 | 32 | 45 | total metal–0.1 | anatase crystal structure |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pikula, K.; Chaika, V.; Zakharenko, A.; Savelyeva, A.; Kirsanova, I.; Anisimova, A.; Golokhvast, K. Toxicity of Carbon, Silicon, and Metal-Based Nanoparticles to the Hemocytes of Three Marine Bivalves. Animals 2020, 10, 827. https://doi.org/10.3390/ani10050827
Pikula K, Chaika V, Zakharenko A, Savelyeva A, Kirsanova I, Anisimova A, Golokhvast K. Toxicity of Carbon, Silicon, and Metal-Based Nanoparticles to the Hemocytes of Three Marine Bivalves. Animals. 2020; 10(5):827. https://doi.org/10.3390/ani10050827
Chicago/Turabian StylePikula, Konstantin, Vladimir Chaika, Alexander Zakharenko, Anastasia Savelyeva, Irina Kirsanova, Anna Anisimova, and Kirill Golokhvast. 2020. "Toxicity of Carbon, Silicon, and Metal-Based Nanoparticles to the Hemocytes of Three Marine Bivalves" Animals 10, no. 5: 827. https://doi.org/10.3390/ani10050827
APA StylePikula, K., Chaika, V., Zakharenko, A., Savelyeva, A., Kirsanova, I., Anisimova, A., & Golokhvast, K. (2020). Toxicity of Carbon, Silicon, and Metal-Based Nanoparticles to the Hemocytes of Three Marine Bivalves. Animals, 10(5), 827. https://doi.org/10.3390/ani10050827