Milk Products from Minor Dairy Species: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Technological Properties of Milk
2.1. General Aspects
2.2. Equine Milk
2.3. Camel Milk
2.4. Yak and Other Milks
3. Dairy Products
3.1. Equine Fresh and Fermented Milk
3.2. Equine Cheese
3.3. Camel Fresh and Fermented Milk
3.4. Camel Cheese
3.5. Yak and Other Species Products
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAOSTAT. Live Animal. Livestock Primary. Livestock Processed. Available online: http://www.fao.org/faostat/en/#data (accessed on 31 June 2020).
- Pazzola, M. Coagulation traits of sheep and goat milk. Animals 2019, 9, 540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikonen, T.; Ahlfors, K.; Kempe, R.; Ojala, M.; Ruottinen, O. Genetic parameters for the milk coagulation properties and prevalence of non-coagulating milk in Finnish dairy cows. J. Dairy Sci. 1999, 82, 205–214. [Google Scholar] [CrossRef]
- Ikonen, T.; Morri, S.; Tyriseva, A.M.; Ruottinen, O.; Ojala, M. Genetic and phenotypic correlations between milk coagulation properties, milk production traits, somatic cell count, casein content, and pH of milk. J. Dairy Sci. 2004, 87, 458–467. [Google Scholar] [CrossRef]
- Bittante, G.; Penasa, M.; Cecchinato, A. Invited review: Genetics and modeling of milk coagulation properties. J. Dairy Sci. 2012, 95, 6843–6870. [Google Scholar] [CrossRef]
- Emmons, D.B.; Modler, H.W. Invited review: A commentary on predictive cheese yield formulas. J Dairy Sci. 2010, 93, 5517–5537. [Google Scholar] [CrossRef]
- Cipolat-Gotet, C.; Cecchinato, A.; De Marchi, M.; Bittante, G. Factors affecting variation of different measures of cheese yield and milk nutrient recovery from an individual model cheese-manufacturing process. J. Dairy Sci. 2013, 96, 7952–7965. [Google Scholar] [CrossRef] [Green Version]
- Franceschi, P.; Malacarne, M.; Faccia, M.; Rossoni, A.; Santus, E.; Formaggioni, P.; Summer, A. New insights in cheese yield capacity of the milk of Italian Brown and Italian Friesian cattle in the production of high-moisture mozzarella. Food Technol. Biotechnol. 2020, 58, 91–97. [Google Scholar] [CrossRef]
- Amalfitano, N.; Cipolat-Gotet, C.; Cecchinato, A.; Malacarne, M.; Summer, A.; Bittante, G. Milk protein fractions strongly affect the patterns of coagulation, curd firming, and syneresis. J. Dairy Sci. 2019, 102, 2903–2917. [Google Scholar] [CrossRef] [Green Version]
- Summer, A.; Lora, I.; Formaggioni, P.; Gottardo, F. Impact of heat stress on milk and meat production. Anim. Front. 2019, 1, 39–46. [Google Scholar] [CrossRef]
- Logan, A.; Day, L.; Pin, A.; Auldist, M.; Leis, A.; Puvanenthiran, A.; Augustin, M.A. Interactive effects of milk fat globule and casein micelle size on the renneting properties of milk. Food Bioprocess Tech. 2014, 7, 3175–3185. [Google Scholar] [CrossRef]
- Oberg, C.J.; McMahon, D.J.; Merrill, R.; McManus, W.R. Changes in microstructure of part-skim Mozzarella cheese during manufacture. Food Struct. 1993, 12, 251–258. [Google Scholar]
- Miraglia, N.; Salimei, E.; Fantuz, F. Equine milk production and valorization of marginal areas—A review. Animals 2020, 10, 353. [Google Scholar] [CrossRef] [Green Version]
- Fantuz, F.; Salimei, E.; Papademas, P. Macro- and micronutrients in non-cow milk and products and their impact on human health. In Non-Bovine Milk and Milk Products, 1st ed.; Tsakalidou, E., Papadimitriou, K., Eds.; Elsevier Academic Press: London, UK, 2016; pp. 209–261. [Google Scholar]
- Uniacke-Lowe, T.; Huppertz, T.; Fox, P.F. Equine milk proteins: Chemistry, structure and nutritional significance. Int. Dairy J. 2010, 20, 609–629. [Google Scholar] [CrossRef]
- Fantuz, F.; Ferraro, S.; Todini, L.; Piloni, R.; Mariani, P.; Salimei, E. Donkey milk concentration of calcium, phosphorus, potassium, sodium and magnesium. Int. Dairy J. 2012, 24, 143–145. [Google Scholar] [CrossRef]
- Malacarne, M.; Martuzzi, F.; Summer, A.; Mariani, P. Protein and fat composition of mare’s milk: Some nutritional remarks with reference to human and cow’s milk. Int. Dairy J. 2002, 12, 869–877. [Google Scholar] [CrossRef]
- Malacarne, M.; Criscione, A.; Franceschi, P.; Tumino, S.; Bordonaro, S.; Di Frangia, F.; Marletta, D.; Summer, A. Distribution of Ca, P and Mg and casein micelle mineralisation in donkey milk from the second to ninth month of lactation. Int. Dairy J. 2017, 66, 1–5. [Google Scholar] [CrossRef]
- Potočnik, K.; Gantner, V.; Kuterovac, K.; Cividini, A. Mare’s milk: Composition and protein fraction in comparison with different milk species. Mljekarstvo 2011, 61, 107–113. [Google Scholar]
- Tidona, F.; Criscione, A.; Devold, T.G.; Bordonaro, S.; Marletta, D.; Vegarud, G.E. Protein composition and micelle size of donkey milk with different protein patterns: Effects on digestibility. Int. Dairy J. 2014, 35, 57–62. [Google Scholar] [CrossRef]
- Cosenza, G.; Mauriello, R.; Garro, G.; Auzino, B.; Iannaccone, M.; Costanzo, A.; Chianese, L.; Pauciullo, A. Casein composition and differential translational efficiency of casein transcripts in donkey’s milk. J. Dairy Res. 2019, 86, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, J.; Jagannathan, V.; Drogenmuller, C.; Rieder, S.; Leeb, T.; Thaller, G.; Tetens, J. Variability of the equine casein genes. J. Dairy Sci. 2016, 99, 5486–5497. [Google Scholar] [CrossRef]
- Vincenzetti, S.; Ariani, A.; Polidori, P. Casein characteristics in equid and human milk. In Caseins; Mendoza, L., Ed.; Nova Science Publisher: New York, NY, USA, 2016; pp. 62–66. [Google Scholar]
- Chianese, L.; Calabrese, M.G.; Ferranti, P.; Mauriello, R.; Garro, G.; De Simone, C.; Quarto, M.; Addeo, F.; Cosenza, G.; Ramunno, L. Proteomyc characterization of donkey milk “caseome”. J. Chromat. A 2010, 1217, 4834–4840. [Google Scholar] [CrossRef] [PubMed]
- Licitra, R.; Chessa, S.; Salari, F.; Gattolin, S.; Bulgari, O.; Altomonte, I.; Martini, M. Milk protein polymorphism in Amiata donkey. Livest. Sci. 2019, 230, 103845. [Google Scholar] [CrossRef]
- Luo, J.; Shuyu, J.; Wang, P.; Ren, F.; Wang, F.; Chen, S.; Guo, H. Thermal instability and characteristics of donkey casein micelles. Food Res. Int. 2019, 119, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Uniacke Lowe, T. Studies on Equine Milk and Comparative Studies on Equine and Bovine Milk Systems. Ph.D. Thesis, University College Cork, Cork, Ireland, 2011. [Google Scholar]
- Pochet, S.; Duboz, G.; Faurie, F.; Buchin, F.; Roustel, S. Aptitude à la Coagulation Enzymatique du Lait de Jument. Presented at 36 Journée de la Recherche Equine, Paris, FRA, 2010-03-04. Available online: https://prodinra.inra.fr/record/40247 (accessed on 27 June 2020).
- Chang, O.K.; Humbert, G.; Gaillard, J.L.; Lee, B.O. Characterization of equine milk and cheesemaking. Kor. J. Food Sci. Anim. Res. 2006, 26, 368–374. [Google Scholar]
- Ebrahimnejad, H.; Hekmatynia, F.; Mansouri, S. A comparison study on the cow and mare milk-clotting activity of Withania coagulans. Iranian J. Vet. Sci. Technol. 2019, 2, 19. [Google Scholar]
- Uniacke-Lowe, T.; Chevalier, F.; Hem, S.; Fox, P.F.; Mulvihill, D.M. Proteomic comparison of equine and bovine milks on renneting. J. Agric. Food Chem. 2013, 61, 2839–2850. [Google Scholar] [CrossRef]
- Egito, A.S.; Girardet, J.M.; Miclo, L.; Mollè, D.; Humbert, G.; Gaillard, J.L. Susceptibility of equine k- and b-caseins to hydrolysis by chymosin. Int. Dairy J. 2001, 11, 885–893. [Google Scholar] [CrossRef]
- Iannella, G. Donkey cheese made through pure camel chymosin. Afr. J. Food Sci. 2015, 9, 421–425. [Google Scholar]
- Faccia, M.; Gambacorta, G.; Martemucci, G.; Natrella, G.; D’Alessandro, A.G. Technological attempts at producing cheese from donkey milk. J. Dairy Res. 2018, 85, 327–330. [Google Scholar] [CrossRef]
- Faccia, M.; Gambacorta, G.; Martemucci, G.; Difonzo, G.; D’Alessandro, A.G. Chemical-sensory traits of fresh cheese made by enzymatic coagulation of donkey milk. Foods 2020, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, P.N.S. Optimization of clotting donkey milk using an aspartic protease from Cynara Cardunculus flowers. J. Adv. Dairy Res. 2017, 5, 190. [Google Scholar] [CrossRef]
- Pecka, E.; Dobrzański, Z.; Zachwieja, A.; Szulc, T.; Czyż, K. Studies of composition and major protein level in milk and colostrum of mares. Anim. Sci. J. 2012, 83, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Malinowski, E. Somatic cells of milk. Med. Weter. 2001, 57, 13–17. [Google Scholar]
- Markiewicz-Kęszycka, M.; Czyżak-Runowska, G.; Wójtowski, J.; Jóźwik, A.; Pankiewicz, R.; Łęska, B.; Krzyżewski, J.; Strzałkowska, N.; Marchewkae, J.; Bagnicka, E. Influence of stage of lactation and year season on composition of mares’ colostrum and milk and method and time of storage on vitamin C content in mares’ milk. J. Sci. Food Agric. 2015, 95, 2279–2286. [Google Scholar] [CrossRef]
- Kaić, A.; Luštrek, B.; Simčič, M.; Potočnik, K. Milk quantity, composition and hygiene traits of routinely machine milked Lipizzan mares. Slov. Vet. Res. 2019, 56, 115–123. [Google Scholar]
- Costa, G.V.; Bondan, C.; Alves, L.P.; Rechsteiner, S.F. Composition of milk and mammary gland health in Criollo breed mares during lactation. Arq. Bras. Med. Vet. Zoot. 2019, 71, 1348–1354. [Google Scholar] [CrossRef] [Green Version]
- Čagalj, M.; Brezovečki, A.; Mikulec, N.; Antunac, N. Composition and properties of mare’s milk of Croatian Coldblood horse breed. Mljekarstvo 2014, 64, 3–11. [Google Scholar]
- Stuparu, A.; Oroian, T.; Ilea, D. Research on mare milk quality upon three breeds reared in Romania: Lipitan, Semigreu Romanesc and Furioso North Star. Anim. Biol. Anim. Husb. 2017, 9, 1–8. [Google Scholar]
- Caroprese, M.; Albenzio, M.; Marino, R.; Muscio, A.; Zezza, T.; Sevi, A. Behavior, milk yield, and milk composition of machine-and hand-milked Murgese mares. J. Dairy Sci. 2007, 90, 2773–2777. [Google Scholar] [CrossRef] [Green Version]
- Markiewicz-Kęszycka, M.; Wójtowski, J.; Kuczyńska, B.; Puppel, K.; Czyżak-Runowska, G.; Bagnicka, E.; Strzałkowska, N.; Jóźwik, A.; Krzyżewski, J. Chemical composition and whey protein fraction of late lactation mares’ milk. Int. Dairy J. 2013, 31, 62–64. [Google Scholar] [CrossRef]
- Lustrek, B.; Simcic, M.; Kaic, A.; Potocnik, K. Report on mare’s milk analysis. ICAR Tech. Ser. 2017, 21, 137–140. [Google Scholar]
- Pilla, R.; Daprà, V.; Zecconi, A.; Piccinini, R. Hygienic and health characteristics of donkey milk during a follow-up study. J. Dairy Res. 2010, 77, 392. [Google Scholar] [CrossRef] [PubMed]
- Sarno, E.; Santoro, A.M.L.; Di Palo, R.; Costanzo, N. Microbiological quality of raw donkey milk from Campania Region. Ital. J. Anim. Sci. 2012, 11, e49. [Google Scholar] [CrossRef] [Green Version]
- Beghelli, D.; Roscini, A.; Valiani, A.; Vincenzetti, S.; Cavallucci, C.; Polidori, P. Somatic (CSS) and differential cell count (DCC) during a lactation period in ass’ milk. Ital. J. Anim. Sci. 2009, 8 (Suppl. 2), 691–693. [Google Scholar] [CrossRef]
- Mottola, A.; Alberghini, L.; Giaccone, V.; Marchetti, P.; Tantillo, G.; Di Pinto, A. Microbiological safety and quality of Italian donkey milk. J. Food Saf. 2018, 38, e12444. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhao, L.; Jiang, L.; Dong, M.L.; Ren, F.Z. The antimicrobial activity of donkey milk and its microflora changes during storage. Food Control 2008, 19, 1191–1195. [Google Scholar] [CrossRef]
- Verraes, C.; Claeys, W.; Cardoen, S.; Daube, G.; De Zutter, L.; Imberechts, H.; Dierick, K.; Herman, L. A review of the microbiological hazards of raw milk from animal species other than cows. Int. Dairy J. 2014, 39, 121–130. [Google Scholar] [CrossRef]
- Conte, F.; Panebianco, A. Potential hazards associated with raw donkey milk consumption: A review. Int. J. Food Sci. 2019, 2019, 5782974. [Google Scholar] [CrossRef] [Green Version]
- Danków, R.; Wójtowski, J.; Pikul, J.; Niznikowski, R.; Cais-Sokolińska, D. Effect of lactation on the hygiene quality and some milk physicochemical traits of the Wielkopolska mares (Conference Paper). Arch. Tierz. 2006, 49, 201–206. [Google Scholar]
- Martini, M.; Salari, F.; Altomonte, I.; Ragona, G.; Piazza, A.; Gori, R.; Casati, D.; Brajon, G. Effects of pasteurization and storage conditions on donkey milk nutritional and hygienic characteristics. J. Dairy Res. 2018, 85, 445–448. [Google Scholar] [CrossRef]
- Colavita, G.; Amadoro, C.; Rossi, F.; Fantuz, F.; Salimei, E. Hygienic characteristics and microbiological hazard identification in horse and donkey raw milk. Vet. Ital. 2016, 52, 21–29. [Google Scholar] [PubMed]
- Nagy, P.; Faye, B.; Marko, O.; Thomas, S.; Wernery, U.; Juhasz, J. Microbiological quality and somatic cell count in bulk milk of Camelus dromedaries: Descriptive statistics, correlations, and factors of variation. J. Dairy Sci. 2013, 96, 5625–5640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, F.; Hussain, R.; Qayyum, A.; Gul, S.T.; Iqbal, Z.; Hassan, M.F. Milk somatic cell counts and some hemato-biochemical changes in sub-clinical mastitic dromedary she-camels (Camelus dromedarius). Pak. Vet. J. 2016, 36, 405–408. [Google Scholar]
- Hamed, H.; Gargouri, A.; Hachana, Y.; El Feki, A. Comparison between somatic cell and leukocyte variations throughout lactation in camel (Camelus dromedarius) and cow’s milk. Small Rumin. Res. 2010, 94, 53–57. [Google Scholar] [CrossRef]
- Fahmy, B.G.A.; Mohamed, M.M. Interrelationships between somatic cell count and biochemical changes in Egyptian camel milk. SCVMJ 2010, XV, 45–72. [Google Scholar]
- Kotb, S.; Sayed, M.; Abdel-Rady, A. Sanitary conditions of lactating dromedary she-camel environment with special reference to milk quality and subclinical mastitis monitoring. Emir. J. Food Agric. 2010, 22, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Abusheliabi, A.; Al-Holy, M.A.; Al-Rumaithi, H.; Al-Khaldi, S.; Al-Nabulsi, A.A.; Holley, R.A.; Ayyash, M. Growth inhibition of foodborne pathogens in camel milk: Staphylococcus aureus, Listeria monocytogenes, Salmonella spp. and E. coli O157:H7. Czech J. Food Sci. 2017, 35, 311–320. [Google Scholar]
- El-Ziney, M.G.; Al-Turki, A.I. Microbiological quality and safety assessment of camel milk (Camelus dromedaries) in Saudi arabia (Qassim region). Appl. Ecol. Environ. Res. 2007, 5, 115–122. [Google Scholar] [CrossRef]
- Tsegmed, U.; Normanno, G.; Pringle, M.; Krpvacek, K. Occurrence of enterotoxic Staphylococcus aureus in raw milkfrom yaks and cattle in Mongolia. J. Food Prot. 2007, 70, 1726–1729. [Google Scholar] [CrossRef]
- Faye, B. The Camel today: Assets and potentials. Anthropozoologica 2014, 49, 2. [Google Scholar] [CrossRef] [Green Version]
- El Zeini, H.M. Microstructure, rheological and geometrical properties of fat globules of milk from different animal species. Pol. J. Food Nutr. Sci. 2006, 15, 147–153. [Google Scholar]
- Ramet, J.P. The Technology of Making Cheese from Camel Milk (Camelus dromedarius); Animal Production and Health Paper No. 113; FAO: Rome, Italy, 2001. [Google Scholar]
- Al Haj, O.A.; Al Kanhal, H.A. Compositional, technological and nutritional aspects of dromedary camel milk. Int. Dairy J. 2010, 20, 811–821. [Google Scholar] [CrossRef]
- Wangoh, J.; Farah, Z.; Puhan, Z. Extraction of camel rennet and its comparison with calf rennet extract. Milchwissenschaft 1993, 48, 322–325. [Google Scholar]
- Bornaz, S.; Sahli, A.; Attalah, A.; Attia, H. Physicochemical characteristics and renneting properties of camels’ milk: A comparison with goats’, ewes’ and cows’ milks. Int. J. Dairy Technol. 2009, 62, 505–513. [Google Scholar] [CrossRef]
- Konuspayeva, G.; Faye, B.; Loiseau, G. The composition of camel milk: A meta-analysis of the literature data. J. Food Compos. Anal. 2009, 22, 95–101. [Google Scholar] [CrossRef]
- Hailu, Y.; Hansen, E.B.; Seifu, E.; Eshetu, M.; Ipsen, R. Factors influencing the gelation and rennetability of camel milk using camel chymosin. Int. Dairy J. 2016, 60, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Qaader, Z.; Huma, N.; Sameen, A.; Iqbal, T. Camel milk cheese: Optimization of processing conditions. J. Camelid Sci. 2015, 8, 18–25. [Google Scholar]
- Alexandraki, V.; Kazou, M.; Angelopoulou, A.; Arena, M.P.; Capozzi, V.; Russo, P.; Fiocco, D.; Spano, G.; Papadimitriou, K.; Tsakalidou, E. The Microbiota of Non-cow Milk and Products. In Non-Bovine Milk and Milk Products, 1st ed.; Tsakalidou, E., Papadimitriou, K., Eds.; Elsevier Academic Press: London, UK, 2016; pp. 139–143. [Google Scholar]
- Silanikove, N.; Leitner, G.; Merin, U. Influence of animal health, breed, and diet on non-cow milk composition. In Non-Bovine Milk and Milk Products, 1st ed.; Tsakalidou, E., Papadimitriou, K., Eds.; Elsevier Academic Press: London, UK, 2016; pp. 61–79. [Google Scholar]
- Zhang, Y.; Li, Y.; Wang, P.; Liang, Q.; Zhang, Y.; Ren, F. The factors influencing rennet-induced coagulation properties of yak milk: The importance of micellar calcium during gelation. LWT 2019, 111, 500–505. [Google Scholar] [CrossRef]
- Li, H.; Ma, Y.; Li, Q.; Wang, J.; Cheng, J.; Xue, J.; Shi, J. The chemical composition and nitrogen distribution of Chinese yak (Maiwa) milk. Int. J. Mol. Sci. 2011, 12, 4885–4895. [Google Scholar] [CrossRef]
- Sun, W.C.; Formaggioni, P.; Franceschi, P.; Luo, Y.; Sandri, S.; Malacarne, M.; Mariani, P.; Kong, Q.; Summer, A. Physico-chemical properties, gross composition and nitrogen fractions of milk from Chinese Qinghai plateau yak (Bos grunniens) reared in two different altimetric zones. Milchwissenschaft 2012, 67, 389–391. [Google Scholar]
- Ji, X.; Li, X.; Ma, Y.; Li, D. Differences in proteomic profiles of milk fat globule membrane in yak and cow milk. Food Chem. 2017, 221, 1822–1827. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Y.; Wang, P.; Tian, Y.; Liang, Q.; Ren, F. Rennet-induced coagulation properties of yak casein micelles: A comparison with cow casein micelles. Food Res. Int. 2017, 102, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Liu, H.; Wen, P.; Zhang, H.; Guo, H.; Ren, F. Short communication. The composition, size and hydration of yak casein micelles. Int. Dairy J. 2013, 31, 107–110. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, M.; Cai, D.; Hao, Y.; Zhao, X.; Zhu, Y.; Zhu, H.; Yang, Z. Composition, coagulation characteristics, and cheese making capacity of yak milk. J. Dairy Sci. 2020, 103, 1276–1288. [Google Scholar] [CrossRef]
- Zhang, Y.; Ju, Y.; Song, X.; Zhang, W.; Liang, Q. Free fatty acids profiles of hard yak cheese and changes during ripening. In Cheese Production, Consumption & Health Benefits; Henriques, H.F., Pereira, J.D., Eds.; Nova Science Publishers Inc.: New York, NY, USA, 2017; pp. 179–204. [Google Scholar]
- Li, X.; Ding, X.Z.; Wan, Y.L.; Liu, Y.M.; Du, G.Z. Comparative proteomic changes of differentially expressed whey proteins in clinical mastitis and healthy yak cows. Gen. Mol. Res. 2014, 13, 6593–6601. [Google Scholar] [CrossRef]
- Wu, X.H.; Luo, Z.; Yu, L.; Ren, F.Z.; Han, B.Z.; Nouta, M.J.R. Survey on composition and microbiota of fresh and fermented yak milk at different Tibetan altitudes. Dairy Sci. Technol. 2009, 89, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, S.; Lodh, C.; Rahaman, H.; Bhattacharya, D.; Bera, A.K.; Ahmed, F.A.; Mahanti, A.; Samanta, I.; Mondal, D.K.; Bandyopadhyay, S.; et al. Characterization of shiga toxin producing (STEC) and enteropathogenic Escherichia coli (EPEC) in raw yak (Poephagus grunniens) milk and milk products. Res. Vet. Sci. 2012, 93, 604–610. [Google Scholar] [CrossRef]
- Faye, B.; Konuspayeva, G. The sustainability challenge to the dairy sector–The growing importance of non-cattle milk production worldwide. Int. Dairy J. 2012, 24, 50–56. [Google Scholar] [CrossRef]
- Uniacke-Lowe, T.; Fox, P.F. Chymosin, pepsins and other aspartyl proteinases: Structures, functions, catalytic mechanism and milk-clotting properties. In Cheese: Chemistry, Physics and Microbiology, 4th ed.; McSweeney, P.L.H., Fox, P.F., Cotter, P.D., Everett, D.W., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 92–94. [Google Scholar]
- Larico, H.M.; Fernández, E.R.; Olarte, C.D.; Rodrigo, Y.V.; Machaca, P.T.; Sumari, R.M.; Chui, H.B.; Roque, B.H. Alpaca cheese: A new alternative. Rev. Investig. Vet. Perú 2018, 29, 848–857. [Google Scholar]
- Martini, M.; Altomonte, I.; da Silva Sant’ana, A.M.; Del Plavignano, G.; Salari, F. Gross, mineral and fatty acid composition of alpaca (Vicugna pacos) milk at 30 and 60 days of lactation. Small Rumin. Res. 2015, 132, 50–54. [Google Scholar] [CrossRef]
- Doreau, M.; Gaillard, J.L.; Chobert, J.M.; Léonil, J.; Egito, A.S.; Haertlé, T. Composition of mare and donkey milk fatty acids and proteins and consequences on milk utilization. In Proceedings of the 4th Congress Italian Society Ippologia (SIDI), Campobasso, Italy, 11–13 July 2002; pp. 51–71. [Google Scholar]
- Businco, L.; Giampietro, P.G.; Lucenti, P.; Lucaroni, F.; Pini, C.; Di Felice, G.; Iacovacci, P.; Curadi, C.; Orlandi, M. Allergenicity of mare’s milk in children with cow’s milk allergy. J. Allergy Clin. Immun. 2000, 105, 1031–1034. [Google Scholar] [CrossRef] [PubMed]
- Curadi, M.C.; Giampietro, P.G.; Lucenti, P.; Orlandi, M. Use of mare milk in pediatric allergology. In Proceedings of the XIV Congress of Associazione Scientifica di Produzione Animale (ASPA), Firenze, Italy, 12–15 June 2001; pp. 647–649. [Google Scholar]
- Iacono, G.; Carroccio, A.; Cavataio, F.; Montalto, G.; Soresi, M.; Balsamo, V. Use of ass’ milk in multiple food allergy. J. Pediatr. Gastroenterol. Nutr. 1992, 14, 177–181. [Google Scholar] [CrossRef] [PubMed]
- D’Auria, E.; Agostoni, C.; Giovannini, M.; Riva, E.; Zetterström, R.; Fortin, R.; Greppi, G.F.; Bonizzi, L.; Roncada, P. Proteomic evaluation of milk from different mammalian species as a substitute for breast milk. Acta Paediatr. 2005, 94, 1708–1713. [Google Scholar] [CrossRef] [PubMed]
- Vita, D.; Passalacqua, G.; Di Pasquale, G.; Caminiti, L.; Crisafulli, G.; Rulli, I.; Paino, G.B. Ass’s milk in children with atopic dermatitis and cow’s milk allergy: Crossover comparison with goat’s milk. Pediatr. Allergy Immunol. 2007, 18, 594–598. [Google Scholar] [CrossRef] [PubMed]
- Monti, G.; Viola, S.; Baro, C.; Cresi, F.; Tovo, P.A.; Moro, G.; Ferrero, M.P.; Conti, A.; Bertino, E. Tolerability of donkey’s milk in highly-problematic cow’s milk allergic children. J. Biol. Regul. Homeost. Agents 2012, 26, 75–82. [Google Scholar]
- D’Alessandro, A.G.; Martemucci, G. Lactation curve and effects of milking regimen on milk yield and quality, and udder health in Martina Franca jennies (Equus asinus). J. Anim. Sci. 2012, 90, 669–681. [Google Scholar] [CrossRef]
- Cunsolo, V.; Saletti, R.; Muccilli, V.; Gallina, S.; Di Francesco, A.; Foti, S. Proteins and bioactive peptides from donkey milk: The molecular basis for its reduced allergenic properties. Food Res. Int. 2017, 99, 41–57. [Google Scholar] [CrossRef]
- Giorgis, V.; Rolla, G.; Raie, A.; Geuna, M.; Boita, M.; Lamberti, C.; Nebbia, S.; Giribaldi, M.; Giuffrida, M.G.; Brussino, L.; et al. A case of work-related donkey milk allergy. J. Investig. Allergol. Clin. Immunol. 2018, 28, 182–215. [Google Scholar] [CrossRef]
- Nassal, J.; Rembalski, C. Hygienische Anforderungen bei der Produktion von Stutenmilch und Kumis. Arch. Lebensm. 1980, 31, 209–212. [Google Scholar]
- Solaroli, G.; Pagliarini, E.; Peri, C. Composition and nutritional quality of mare’s milk. Ital. J. Food Sci. 1993, 5, 3–10. [Google Scholar]
- Amati, L.; Marzulli, G.; Martulli, M.; Tafaro, A.; Jirillo, F.; Pugliese, V.; Martemucci, G.; D’Alessandro, A.G.; Jirillo, E. Donkey and goat milk intake and modulation of the human aged immune response. Curr. Pharmac. Des. 2010, 16, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Tafaro, A.; Magrone, T.; Jirillo, F.; Martemucci, G.; D’Alessandro, A.G.; Amati, L.; Jirillo, E. Immunological properties of donkey’s milk: Its potential use in the prevention of atherosclerosis. Curr. Pharm. Des. 2007, 13, 3711–3717. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Gu, J.; Sun, Y.; Xu, S.; Zhang, X.; Yang, H.; Ren, F. Anti-proliferative and anti-tumour effect of active components in donkey milk on A549 human lung cancer cells. Intern. Dairy J. 2009, 19, 703–708. [Google Scholar] [CrossRef]
- Drogoul, C.; Prevost, H.; Maubois, J.L. Le Lait de Juments: Un Produit, une Filiere a Developper; 18eme Journee d’Etude CREOPA: Paris, France, 1992; pp. 37–51. [Google Scholar]
- Guo, H.Y.; Pang, K.; Zhang, X.Y.; Zhao, L.; Chen, S.W.; Dong, M.L.; Ren, F.Z. Composition, physiochemical properties, nitrogen fraction distribution, and amino acid profile of donkey milk. J. Dairy Sci. 2007, 90, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- Doreau, M.; Martin-Rosset, W. Animals that produce dairy foods – horse. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Fox, P.F., McSweeney, P.L.H., Eds.; Academic Press: San Diego, CA, USA, 2011; pp. 358–364. [Google Scholar]
- Chen, Y.; Wang, Z.; Chen, X.; Liu, Y.; Zhang, H.; Sun, T. Identification of angiotensin I-converting enzyme inhibitory peptides from koumiss, a traditional fermented mare’s milk. J. Dairy Sci. 2010, 93, 884–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.H. Characterization of airag collected in Ulaanbaatar, Mongolia with emphasis on isolated lactic acid bacteria. J. Anim. Sci. Technol. 2016, 58, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kücükcetin, A.; Yaygin, H.; Hinrichs, J.; Kulozik, U. Adaptation of bovine milk towards mares’ milk composition by means of membrane technology for koumiss manufacture. Intern. Dairy J. 2003, 13, 945–951. [Google Scholar] [CrossRef]
- Montanari, G.; Grazia, L. Galactose-fermenting yeasts as fermentation microorganisms in traditional koumiss. Food Technol. Biotechnol. 1997, 35, 305–308. [Google Scholar]
- Akuzawa, R.; Surono, I.S. Fermented milks: Asia. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Fox, P.F., McSweeney, P.L.H., Eds.; Academic Press: San Diego, CA, USA, 2011; pp. 1045–1049. [Google Scholar]
- Danova, S.; Petrov, K.; Pavlov, P.; Petrova, P. Isolation and characterization of Lactobacillus strains involved in Koumiss fermentation. Int. J. Dairy Technol. 2005, 58, 100–105. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Liu, W.; Yang, M.; Airidengcaicike; Zhang, H. Identification of Lactobacillus from Koumiss by conventional and molecular methods. Eur. Food Res. Technol. 2008, 227, 1555–1561. [Google Scholar] [CrossRef]
- Dhewa, T.; Misra, V.; Kumar, N.; Sangy, K.P.S. Koumiss. Nutritional and therapeutic values. In Fermented Milk and Dairy Products; Puniya, A.K., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 483–496. [Google Scholar]
- Kerr, T.J.; McHale, B.B. Applications in General Microbiology: A Laboratory Manual; 6th Hunter Textbooks Inc., Ed.; Hunter Textbooks Inc.: Winston-Salem, NC, USA, 2001; p. 395. [Google Scholar]
- Jastrzębska, E.; Wadas, E.; Daszkiewicz, T.; Pietrzak-Fiećko, R. Nutritional value and health-promoting properties of mare’s milk.a review. Czech J. Anim. Sci. 2017, 62, 511–518. [Google Scholar] [CrossRef] [Green Version]
- Uniacke-Lowe, T. Fermented milks. Koumiss. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Fox, P.F., McSweeney, P.L.H., Eds.; Academic Press: San Diego, CA, USA, 2011; pp. 512–517. [Google Scholar]
- Bornaz, S.; Guizani, N.; Sammari, J.; Allouch, W.; Sahli, A.; Attia, H. Physicochemical properties of fermented Arabian mares’ milk. Int. Dairy J. 2010, 20, 500–505. [Google Scholar] [CrossRef]
- Di Cagno, R.; Tamborrino, A.; Gallo, G.; Leone, C.; De Angelis, M.; Faccia, M.; Amirante, P.; Gobbetti, M. Uses of mares’ milk in manufacture of fermented milks. Int. Dairy J. 2004, 14, 767–775. [Google Scholar] [CrossRef]
- Jacobsen, C.; Nielsen, V.R.; Hayford, A.E.; Moller, P.L.; Michaelsen, K.F.; Paerregaard, A.; Sandstrom, B.; Tvede, M.; Jakobsen, M. Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl. Environ. Microb. 1999, 65, 4949–4956. [Google Scholar] [CrossRef] [Green Version]
- Shu, Q.; Zhou, J.S.; Rutherfurd, K.J.; Birtles, M.J.; Prasad, J.; Gopal, P.K.; Gill, H.S. Probiotic lactic acid bacteria (Lactobacillus acidophilus HN017, Lactobacillus rhamnosus HN001 and Bifidobacterium lactis HN019) have no adverse effects on the health of mice. Intern. Dairy J. 1999, 9, 831–836. [Google Scholar] [CrossRef]
- Coppola, E.; Salimei, E.; Succi, M.; Sorrentino, E.; Nanni, M.; Ranieri, P. Behavior of Lactobacillus rhamnosus strains in ass’s milk. Ann. Microbiol. 2002, 52, 55–60. [Google Scholar]
- Chiavari, C.; Coloretti, F.; Nanni, M.; Sorrentino, E.; Grazia, L. Use of donkey’s milk for a fermented beverage with lactobacilli. Lait 2005, 85, 481–490. [Google Scholar] [CrossRef] [Green Version]
- Perna, A.M.; Intaglietta, I.; Simonetti, A.; Gambacorta, E. Donkey milk for manufacture of novel functional fermented beverages. J. Food Sci. 2015, 80, S1352–S1359. [Google Scholar] [CrossRef]
- Aspri, M.; Leni, G.; Galaverna, G.; Papademas, P. Bioactive properties of fermented donkey milk, before and after in vitro simulated gastrointestinal digestion. Food Chem. 2018, 268, 476–484. [Google Scholar] [CrossRef]
- Guo, L.; Qian, J.P.; Guo, Y.S.; Hai, X.; Liu, G.Q.; Luo, J.X.; Ya, M. Simultaneous identification of bovine and equine DNA in milks and dairy products inferred from triplex TaqMan real-time PCR technique. J. Dairy Sci. 2018, 101, 6776–6786. [Google Scholar] [CrossRef] [Green Version]
- Saric, L.C.; Saric, B.M.; Mandic, A.I.; Hadnadev, M.S.; Gubic, J.M.; Milovanovic, I.L.; Tomic, J.M. Characterization of extra-hard cheese produced from donkeys’ and caprine milk mixture. Dairy Sci. Technol. 2016, 96, 227–241. [Google Scholar] [CrossRef] [Green Version]
- D’Alessandro, A.G.; Martemucci, G.; Loizzo, P.; Faccia, M. Donkey cheese production using pure milk or in mixture with goat or cow milk: Preliminary results. Ital. J. Anim. Sci. 2019, 18 (Suppl. 1), 160–161. [Google Scholar]
- D’Alessandro, A.G.; Martemucci, G.; Loizzo, P.; Faccia, M. Production of cheese from donkey milk as influenced by transglutaminase addition. J. Dairy Sci. 2019, 102, 10867–10876. [Google Scholar] [CrossRef] [PubMed]
- Hailu, Y.; Hansen, E.B.; Seifu, E.; Eshetu, M.; Ipsen, R.; Kappeler, S. Functional and technological properties of camel milk proteins: A review. J. Dairy Res. 2016, 83, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Boudjenah-Haroun, S.; Laleye, C.L.; Moulti-Mati, F.; Si Ahmed, S.; Mahboub, N.; Siboukeur, O.E.; Mati, A. Comparative study of milk clotting activity of crude gastric enzymes extracted from camels’ abomasum at different ages and commercial enzymes ( rennet and pepsin ) on bovine and camel milk. Emir. J. Food Agric. 2011, 23, 301–310. [Google Scholar]
- Farah, Z.; Mollet, M.; Younan, M.; Dahir, R. Camel dairy in Somalia: Limiting factors and development potential. Livest. Sci. 2007, 110, 187–191. [Google Scholar] [CrossRef]
- Dziuba, B.; Dziuba, M. Milk proteins-derived bioactive peptides in dairy products: Molecular, biological and methodological aspects. Acta Sci. Pol. Technol. Aliment. 2014, 13, 5–25. [Google Scholar] [CrossRef]
- Berhe, T.; Seifu, E.; Ipsen, R.; Kurtu, M.Y.; Hansen, E.B. Processing challenges and opportunities of camel dairy products. Int. J. Food Sci. 2017, 2017, 9061757. [Google Scholar] [CrossRef] [Green Version]
- Abdelgadir, W.; Nielsen, D.S.; Hamad, S.; Jakobsen, M. A traditional Sudanese fermented camel’s milk product, Gariss, as a habitat of Streptococcus infantarius subsp. infantarius. Int. J. Food Microbiol. 2008, 127, 215–219. [Google Scholar] [CrossRef]
- Mwangi, L.W.; Matofari, J.W.; Muliro, P.S.; Bebe, B.O. Hygienic assessment of spontaneously fermented raw camel milk (Suusa) along the informal value chain in Kenya. Int. J. Food Contam. 2016, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Brezovečki, A.; Čagalj, M.; Filipović Dermit, Z.; Mikulec, N.; Bendelja Ljoljić, D.; Antunac, N. Camel milk and milk products. Mljekarstvo 2015, 65, 81–90. [Google Scholar]
- Berhe, T.; Vogensen, F.K.; Ipsen, R.; Seifu, E.; Kurtu, M.Y. Traditional fermented dairy products of ethiopia: A review. East Afr. J. Sci. 2017, 11, 73–80. [Google Scholar]
- Shori, A.B. Comparative study of chemical composition, isolation and identification of micro-flora in traditional fermented camel milk products: Gariss, Suusac, and Shubat. J. Saudi Soc. Agric. Sci. 2012, 11, 79–88. [Google Scholar] [CrossRef]
- Hassan, R.A.; El Zubeir, E.M.; Babiker, S.A. Chemical and microbial measurements of fermented camel milk “Gariss”’ from transhumance and nomadic herds in Sudan. Aust. J. Basic Appl. Sci. 2008, 2, 800–804. [Google Scholar]
- Sulieman, A.M.E.; Osawa, R.; Tsenkova, R. Isolation and identification of lactobacilli from Garris, a Sudanese fermented camel’s milk product. Res. J. Microbiol. 2007, 2, 125–132. [Google Scholar]
- Lore, T.A.; Mbugua, S.K.; Wangoh, J. Enumeration and identification of microflora in suusac, a Kenyan traditional fermented camel milk product. LWT 2005, 38, 125–130. [Google Scholar] [CrossRef]
- Fugl, A.; Berhe, T.; Kiran, A.; Hussain, S.; Laursen, M.F.; Bahl, M.I.; Hailu, Y.; Sørensen, K.I.; Guya, M.E.; Ipsen, R.; et al. Characterisation of lactic acid bacteria in spontaneously fermented camel milk and selection of strains for fermentation of camel milk. Int. Dairy J. 2017, 73, 19–24. [Google Scholar] [CrossRef]
- Kappeler, S.; Farah, Z.; Puhan, Z. Sequence analysis of Camelus dromedarius milk caseins. J. Dairy Res. 1998, 65, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Kappeler, S.R.; Farah, Z.; Puhan, Z. 5′-Flanking regions of camel milk genes are highly similar to homologue regions of other species and can be divided into two distinct groups. J. Dairy Sci. 2003, 86, 498–508. [Google Scholar] [CrossRef] [Green Version]
- Konuspayeva, G.; Camier, B.; Gaucheron, F.; Faye, B. Some parameters to process camel milk into cheese. Emir. J. Food Agric. 2014, 26, 354–358. [Google Scholar]
- Hassl, M.; JØrgensen, B.D.; Janhøj, T. Rennet gelation properties of ultrafiltration retentates from camel milk. Milchwissenschaft 2011, 66, 80–84. [Google Scholar]
- Kamal, M.; Foukani, M.; Karoui, R. Effects of heating and calcium and phosphate mineral supplementation on the physical properties of rennet-induced coagulation of camel and cow milk gels. J. Dairy Res. 2017, 84, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Mehaia, M.A. Fresh soft white cheese (Domiati-type) from camel milk: Composition, yield, and sensory evaluation. J. Dairy Sci. 1993, 76, 2845–2855. [Google Scholar] [CrossRef]
- Waungana, A.; Singh, H.; Bennett, R.J. Influence od denaturation and aggregation of β-lactoglobulin on rennet coagulation properties of skim milk and ultrafiltered milk. Food Res. Int. 1996, 29, 715–721. [Google Scholar] [CrossRef]
- Hanus, O.; Gajdusek, S.; Gabriel, B.; Kopecky, J.; Jedelska, R. Cheesemaking properties of raw and pasteurized milk with respect to milk protein polymosrfism. Czech J. Anim.Sci. 1995, 40, 523–528. [Google Scholar]
- Citek, K.; Brzakova, M.; Hanusova, L.; Hanus, O.; Vecerek, L.; Samkova, E.; Krizova, Z.; Hostickova, I.; Kavova, T.; Strakova, K.; et al. Technological properties of cow’s milk: Correlations to milk composition, effect of interactions of genes and other factors. Czech J. Anim. Sci. 2020, 65, 13–22. [Google Scholar] [CrossRef]
- Khan, H.; Hussain, A.I.; Aslam, M. Evaluation of cheese prepared by processing camel milk. Pak. J. Zool. 2004, 36, 323–326. [Google Scholar]
- El Zubeir, I.E.M.; Jabreel, S.O. Fresh cheese from camel milk coagulated with Camifloc. Int. J. Dairy Technol. 2008, 61, 90–95. [Google Scholar] [CrossRef]
- Bekele, B.; Hansen, E.B.; Eshetu, M.; Ipsen, R.; Hailu, Y. Effect of starter cultures on properties of soft white cheese made from camel (Camelus dromedarius) milk. J. Dairy Sci. 2019, 102, 1108–1115. [Google Scholar] [CrossRef] [Green Version]
- Inayat, S.; Arain, M.A.; Khaskheli, M.; Malik, A.H. Study of the effect of processing on the chemical quality of soft unripened cheese made from camel milk. Pak. J. Nutr. 2003, 2, 102–105. [Google Scholar]
- Konuspayeva, G.; Camier, B.; Aleilawi, N.; Al-Shumeimyri, M.; Al-Hammad, K.; Algruin, K.; Alshammari, F.; Beaucher, E.; Faye, B. Manufacture of dry- and brine-salted soft camel cheeses for the camel dairy industry. Int. J. Dairy Technol. 2017, 70, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Ama, D.; Iem, E.Z. Compositional content of white cheese manufactured from mixtures of camel and sheep milk during storage. J. Food Nutr. Disor. 2014, 3, 1–5. [Google Scholar]
- Mohammed, S.; Eshetu, M.; Tadesse, Y.; Hailu, Y. Rheological properties and shelf life of soft cheese made from camel milk using camel chymosin. Dairy Vet. Sci. J. 2019, 10, 555794. [Google Scholar]
- Benkerroum, N.; Dehhaoui, M.; El Fayq, A.; Tlaiha, R. The effect of concentration of chymosin on the yield and sensory properties of camel cheese and on its microbiological quality. Int. J. Dairy Technol. 2011, 64, 232–239. [Google Scholar] [CrossRef]
- Mehaia, M.A. Manufacturing of soft white cheese (Domiati type) from dromedary camel milk usign UF process. J. Food Technol. 2006, 4, 206–212. [Google Scholar]
- Hailu, Y.; Hansen, E.B.; Seifu, E.; Eshetu, M.; Petersen, M.A.; Lametsch, R.; Rattray, F.; Ipsen, R. Rheological and sensory properties and aroma compounds formed during ripening of soft brined cheese made from camel milk. Int. Dairy J. 2018, 81, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Hailu, Y.; Eyassu, S.; Zelalem, Y. Physicochemical properties and consumer acceptability of soft unripened cheese made from camel milk using crude extract of ginger (Zingiber officinale) as coagulant. Afr. J. Food Sci. 2014, 8, 87–91. [Google Scholar]
- Degen, A.A.; Kam, M.; Pandey, S.B.; Upreti, C.R.; Pandey, S.; Regmi, P. Transhumant pastoralism in yak production in the lower mustang district of Nepal. Nomadic People 2007, 11, 57–85. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, W.; Gao, W.; Yang, M.; Zhang, J.; Wu, L.; Wang, J.; Menghe, B.; Sun, T.; Zhang, H. Identification and characterization of the dominant lactic acid bacteria from kurut: The naturally fermented yak milk in Qinghai, China. J. Gen. Appl. Microbiol. 2010, 56, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xu, J.; Wang, J.; Sun, T.; Li, H.; Guo, M. A survey on chemical and microbiological composition of kurut, naturally fermented yak milk from Qinghai in China. Food Control 2008, 19, 578–586. [Google Scholar] [CrossRef]
- Cao, Y.; Gan, W.; Ye, Z.; Yu, H.; Huang, B. Investigation on yak milk products and their traditional process craft of Daocheng country. In Proceedings of the 4th International Congress on Yak, Session VI: Products, Processing and Marketing, Chengdu, China, 19–26 September 2004; Sichuan Publishing Group of China: Chengdu, China, 2004; pp. 4–67. [Google Scholar]
- Liu, W.J.; Sun, Z.H.; Zhang, Y.B.; Zhang, C.L.; Yang, M.; Sun, T.S.; Bao, Q.H.; Chen, W.; Zhang, H.P. A survey of the bacterial composition of kurut from Tibet using a culture-independent approach. J. Dairy Sci. 2012, 95, 1064–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, X.; Guo, L.W.; Chen, H.; Ke, W.C.; Guo, W.; Guo, X.S.; Zhang, Y. Characteristics of volatile flavor components in traditional fermented yak milk produced in different ecoregions of the Qinghai-Tibetan plateau. J. Dairy Sci. 2020, 103, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Nan, L.; Wang, Q.; Liu, Z.; Lee, Y.-K.; Liu, X.; Zhao, J.; Zhang, H.; Chen, W. Microbial diversity and volatile profile of traditional fermented yak milk. J. Dairy Sci. 2020, 103, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Neupaney, D.; Kim, J.; Ishioroshi, M.; Samejima, K. Study on composition of Nepalese cheeses, yak milk, and yak cheese whey. Milk Sci. 1997, 46, 95–102. [Google Scholar]
- Kumar, R.S.; Kanmani, P.; Yuvaraj, N.; Paari, K.A.; Pattukumar, V.; Arul, V. Traditional Indian fermented foods: A rich source of lactic acid bacteria. Int. J. Food Sci. Nutr. 2013, 64, 415–428. [Google Scholar] [CrossRef]
- Singh, R.K.; Singh, A.; Sureja, A.K. Traditional foods of Monpa tribe of West Kameng, Arunachal Pradesh. Ind. J. Trad. Knowl. 2007, 6, 25–36. [Google Scholar]
- Dahl, N.R.; Karki, T.B.; Swamylingappa, B.; Li, Q.; Gu, G. Traditional Foods and Beverages of Nepal—A Review. Food Rev. Int. 2005, 21, 1–25. [Google Scholar] [CrossRef]
- Ghatani, K.; Tamang, B. Assessment of probiotic characteristics of lactic acid bacteria isolated from fermented yak milk products of Sikkim, India: Chhurpi, Shyow, and Khachu. J. Food Biotechnol. 2017, 31, 210–232. [Google Scholar] [CrossRef]
- Zhu, Y.; Cao, Y.; Yang, M.; Wen, P.; Cao, L.; Ma, J.; Zhang, Z.; Zhang, W. Bacterial diversity and community in Qula from the Qinghai–Tibetan Plateau in China. Peer J. 2018, 6, e6044. [Google Scholar] [CrossRef]
- Zhang, B.; Tan, Z.; Wang, Y.; Li, Z.; Jiao, Z.; Huang, Q. Dynamic changes of the microbial communities during the preparation of traditional Tibetan Qula cheese. Dairy Sci. Technol. 2014, 95, 167–180. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Y.; Tan, Z.; Li, Z.; Jiao, Z.; Huang, Q. Screening of probiotic activities of Lactobacilli strains isolated from traditional tibetan Qula, a raw yak milk cheese. Asian-Australas. J. Anim. Sci. 2016, 29, 1490–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Or-Rashid, M.M.; Odongo, N.E.; Subedi, B.; Karki, P.; McBride, B.W. Fatty acid composition of yak (Bos grunniens) cheese including conjugated linoleic acid and trans-18:1 fatty acids. J. Agric. Food Chem. 2008, 56, 1654–1660. [Google Scholar] [CrossRef] [PubMed]
- Bingyu Jing, B.; Chen, W.; Wang, M.; Mao, X.; Chen, J.; Yu, X. Traditional Tibetan Ghee: Physicochemical characteristics and fatty acid composition. J. Oleo Sci. 2019, 68, 827–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marquardt, S.; Barsila, S.R.; Amelchanka, S.L.; Devkota, N.R.; Kreuzer, M.; Leiber, F. Fatty acid profile of ghee derived from two genotypes (cattle–yak vs yak) grazing different alpine Himalayan pasture sites. Anim. Prod. Sci. 2016, 58, 358–368. [Google Scholar] [CrossRef]
- Holand, Ø.; Gjøstein, H.; Nieminen, M. Reindeer Milk. In Handbook of Milk of Non-Bovine Mammals, 1st ed.; Park, Y.W., Haenlei, G.F.W., Eds.; Blackwell Publishing Professional: Ames, IA, USA, 2006; pp. 535–558. [Google Scholar]
- Lundmark, L. Reindeer pastoralism in Sweden 1550–1950. In Proceedings of the 14th Nordic Conference on Reindeer and Reindeer Husbandry Research, Vantaa, Finland, 20–22 March 2006; Nordic Council for Reindeer Husbandry Research, Swedish University of Agricultural Sciences: Uppsala, Sweden, 2007; pp. 9–16. [Google Scholar] [CrossRef]
- Johansson, C.U. Moose Milk Makes for Unusual Cheese; The Globe and Mail: Toronto, ON, Canada, 2004. [Google Scholar]
- Available online: https://edition.cnn.com/travel/article/strange-cheeses/index.html (accessed on 24 July 2020).
Horse | Donkey | Camel | Yak | Cow | Human | |
---|---|---|---|---|---|---|
Total solids % | 10.2 | 8.8 | 12.5 | 16.0 | 12.7 | 12.4 |
Lactose % | 6.4 | 6.9 | 4.5 | 5.3 | 4.8 | 7.0 |
Protein % | 2.1 | 1.7 | 3.3 | 4.2 | 3.4 | 0.9 |
Casein/whey proteins | 1.1 | 1.3 | 1.7 | 4.5 | 4.7 | 0.4 |
Casein micelle (ø, nm) | 255 | 298 | 380 | 220 | 182 | 64 |
αs1 (% total casein) | 46 | 25 | 22 | 31 | 38 | 12 |
αs2 | 1 | 2 | 10 | 10 | 10 | - |
β | 46 | 70 | 65 | 48 | 36 | 65 |
κ | <1 | <1 | 3 | 11 | 13 | 23 |
others | 6 | 3 | n.c. | n.c. | 3 | n.c. |
Fat % | 1.2 | 0.4 | 3.8 | 5.6 | 3.7 | 3.8 |
Fat globule (ø, µm) | 2.5 | 1.9 | 3.0 | 4.4 | 3.9 | 4 |
Total calcium (mmol L−1) | 15 | 20 | 25 | 33 | 27 | 7.5 |
Colloidal calcium (% of total) | 60 | 45 | 70 | 58 | 67 | 36 |
Milk | n | SCC (Mean) | SCC (Min–Max) | TBC (Mean) | TBC (Min–Max) | Rf |
---|---|---|---|---|---|---|
Horse | 260 | n.r. | n.r. | 14.1 | n.r. | [52] |
Horse | 300 | 62 | 41–194 | n.r. | 33–51 | [54] |
Donkey | 10 | <50 | 1.4–600 | n.r. | 0.01–0.25 | [47] |
Donkey | 88 | n.r. | n.r. | 15.2 | 0.01–90 | [50] |
Donkey | 6 | n.r. | n.r. | 21.9 | 9.3–51.3 | [51] |
Donkey | 152 | n.r | n.r. | n.r. | 0.63–10 | [48] |
Donkey | 1 BM | n.r. | n.r. | 69.2 | n.r. | [55] |
Camel | 458 | 404 | 251–562 | 5.2 | 4.0–6.0 | [57] |
Camel | 33 | n.r. | 97–720 | n.r. | n.r. | [58] * |
Camel | 38 | n.r. | 25–331 | n.r | n.r. | [59] |
Camel | 10 | 69 | 28–121 | n.r. | n.r. | [60] |
Camel | 84 | n.r. | n.r. | 7.1 | 0–25 | [61] |
Camel | 1 BM | n.r. | n.r. | 31.6 | 6–150 | [62] |
Camel | 34 BM | n.r. | n.r. | 100 | 1–14,125 | [63] |
Yak | 24 | n.r. | n.r. | 380 | 18.2–2570 | [64] |
Milk | Rennet | T (°C) | CaCl2% | Milk pH | CT | Curd Firmness | Cheese TS% | Y% | Rf |
---|---|---|---|---|---|---|---|---|---|
D | C | 32 | 0.10 | 7.4 | 45′ | weak | n.r. | 6.25 | [36] |
D | MR | 32–35 | 0.10 | 7.4 | n.r. | very weak | n.r. | n.r. | [36] |
D | MR | 42 | 0.03 | 6.3 | 42′ | weak | 34.2 | 6.9 | [35] |
D | CR | 40 | 0.03 | 6.5 | 3 h | weak | 32.4 | 5.9 | [34] |
D | CmR | 37 | - | 7.06 | 5 h | clotted precipitate | 35,6 | 3.32 | [33] |
D | MR + TG | 42 | 0.03 | 6.3 | 34′ | weak | 36.3 | 6.91 | [130] |
D/G (60/40) | CR | 32 | 0.02 | 7.2 | 45′ | firm | 61.5 * | 4.0 * | [129] |
D/G (85/15) | CR | 40 | 0.03 | 6.5 | 2 h | soft | 36.7 | 8.1 | [34] |
D/G (70/30) | CR | 40 | 0.03 | 6.5 | 1 h 40′ | firm | 38.2 | 10.2 | [34] |
D/C (70/30) | MR | 40 | 0.03 | 6.3 | n.r. | firm | n.r. | 11.4 | [131] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faccia, M.; D’Alessandro, A.G.; Summer, A.; Hailu, Y. Milk Products from Minor Dairy Species: A Review. Animals 2020, 10, 1260. https://doi.org/10.3390/ani10081260
Faccia M, D’Alessandro AG, Summer A, Hailu Y. Milk Products from Minor Dairy Species: A Review. Animals. 2020; 10(8):1260. https://doi.org/10.3390/ani10081260
Chicago/Turabian StyleFaccia, Michele, Angela Gabriella D’Alessandro, Andrea Summer, and Yonas Hailu. 2020. "Milk Products from Minor Dairy Species: A Review" Animals 10, no. 8: 1260. https://doi.org/10.3390/ani10081260
APA StyleFaccia, M., D’Alessandro, A. G., Summer, A., & Hailu, Y. (2020). Milk Products from Minor Dairy Species: A Review. Animals, 10(8), 1260. https://doi.org/10.3390/ani10081260