A Review of Antimicrobial Resistance in Poultry Farming within Low-Resource Settings
Abstract
:Simple Summary
Abstract
1. Introduction
2. Mechanisms for Antimicrobial Resistance Spread and Evolution
3. Context for Antimicrobial Use in Poultry Production
4. Introduction to Poultry Production Systems
4.1. Large-Scale Intensive Poultry Production
4.2. Family Poultry Husbandry
5. Small-Scale Poultry: An Instrument to Sustainable Development
6. Potential Risk of Antimicrobial Resistance Human Exposure Associated with Small-Scale Poultry Development
7. Eco-Epidemiology of Poultry Production: A Framework for Evaluating Antimicrobial Resistance of Poultry Origin in Low-Resource Settings
7.1. Antimicrobial Resistance Transmission to Other Domestic Animals and Wildlife
7.2. Zoonotic Antimicrobial Resistance Transmission
7.3. Poultry Waste Management and the Environmental Resistome
8. Barriers to Antimicrobial Stewardship Programs
8.1. Limited Research and Surveillance
8.2. Misperceptions about Antimicrobial Resistance
8.3. Lessons Learned in Access to Veterinary Services
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. Lancet Planet. Heal. 2017, 1, e316–e327. [Google Scholar] [CrossRef]
- Schwartz, B.; Broome, C.; Brown, G.; Hightower, A.; Ciesielski, C.; Gaventa, S.; Gellin, B.; Mascola, L. Listeriosis Study Group Association of Sporadic Listeriosis With Consumption of Uncooked Hot Dogs and Undercooked Chicken. Lancet 1988, 332, 779–782. [Google Scholar] [CrossRef]
- Vieira, N.; Bates, S.J.; Solberg, O.D.; Ponce, K.; Howsmon, R.; Cevallos, W.; Trueba, G.; Riley, L.; Eisenberg, J.N.S. High prevalence of enteroinvasive Escherichia coli isolated in a remote region of northern coastal Ecuador. Am. J. Trop. Med. Hyg. 2007, 76, 528–533. [Google Scholar] [CrossRef]
- Chantziaras, I.; Boyen, F.; Callens, B.; Dewulf, J. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: A report on seven countries. J. Antimicrob. Chemother. 2014, 69, 827–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aarestrup, F.M. Veterinary Drug Usage and Antimicrobial Resistance in Bacteria of Animal Origin. Basic Clin. Pharmacol. Toxicol. 2005, 96, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Swartz, M.N. Human diseases caused by foodborne pathogens of animal origin. Clin. Infect. Dis. 2002, 34, S111–S122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Boeckel, T.P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N.G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science 2019, 365, eaaw1944. [Google Scholar] [CrossRef] [Green Version]
- Allen, H.K. Antibiotic resistance gene discovery in food-producing animals. Curr. Opin. Microbiol. 2014, 19, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Robinson, T.P.; Bu, D.P.; Carrique-Mas, J.; Fèvre, E.M.; Gilbert, M.; Grace, D.; Hay, S.I.; Jiwakanon, J.; Kakkar, M.; Kariuki, S.; et al. Antibiotic resistance is the quintessential One Health issue. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 377–380. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D.G.J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev. 2018, 42. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Gandra, S.; Ashok, A.; Caudron, Q.; Grenfell, B.T.; Levin, S.A.; Laxminarayan, R. Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. Lancet Infect. Dis. 2014, 14, 742–750. [Google Scholar] [CrossRef]
- Manson, A.L.; Van Tyne, D.; Straub, T.J.; Clock, S.; Crupain, M.; Rangan, U.; Gilmore, M.S.; Earl, A.M. Chicken Meat-Associated Enterococci: Influence of Agricultural Antibiotic Use and Connection to the Clinic. Appl. Environ. Microbiol. 2019, 85. [Google Scholar] [CrossRef] [PubMed]
- Muloi, D.; Ward, M.J.; Pedersen, A.B.; Fèvre, E.M.; Woolhouse, M.E.J.; van Bunnik, B.A.D. Are Food Animals Responsible for Transfer of Antimicrobial-Resistant Escherichia coli or Their Resistance Determinants to Human Populations? A Systematic Review. Foodborne Pathog. Dis. 2018, 15, 2411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US FDA (United States Food and Drug Administration). 2018 Summary Report on Antimicrobials Sold or Distributed for Use in Food-producing Animals; FDA Center for Veterinariy Medicine: Rockville, MD, USA, 2019. [Google Scholar]
- FAO (Food and Agriculture Organization). Animal Production and Health Guidelines No. 16; Decision Tools for Family Poultry Development FAO: Rome, Italy, 2014. [Google Scholar]
- Agyare, C.; Etsiapa Boamah, V.; Ngofi Zumbi, C.; Boateng Osei, F. Antibiotic Use in Poultry Production and Its Effects on Bacterial Resistance. In Antimicrobial Resistance—A Global Threat; IntechOpen: London, UK, 2019. [Google Scholar]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic resistance—The need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef] [Green Version]
- Silbergeld, E.; Davis, M.; Feingold, B.; Goldberg, A.; Graham, J.; Leibler, J.; Peterson, A.; Price, L.B. New Infectious Diseases and Industrial Food Animal Production. Emerg. Infect. Dis. 2010, 16, 1503–1504. [Google Scholar] [CrossRef]
- You, Y.; Silbergeld, E.K. Learning from agriculture: Understanding low-dose antimicrobials as drivers of resistome expansion. Front. Microbiol. 2014, 5, 284. [Google Scholar] [CrossRef]
- Wiethoelter, A.K.; Beltrán-Alcrudo, D.; Kock, R.; Mor, S.M. Global trends in infectious diseases at the wildlife—Livestock interface. Proc. Natl. Acad. Sci. 2015, 112, 9662–9667. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity - Ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Guo, X.; Mroz, T.A.; Popkin, B.M.; Zhai, F. Structural Change in the Impact of Income on Food Consumption in China, 1989–1993. Econ. Dev. Cult. Change 2000, 48, 737–760. [Google Scholar] [CrossRef]
- Struik, P.C.; Kuyper, T.W. Sustainable intensification in agriculture: The richer shade of green. A review. Agron. Sustain. Dev. 2017, 37, 39. [Google Scholar] [CrossRef]
- Laxminarayan, R.; Van Boeckel, T.; Teillant, A. The Economic Costs of Withdrawing Antimicrobial Growth Promoters from the Livestock Sector. OECD Publ. 2015. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laxminarayan, R.; Matsoso, P.; Pant, S.; Brower, C.; Røttingen, J.-A.; Klugman, K.; Davies, S. Access to effective antimicrobials: A worldwide challenge. Lancet 2016, 387, 168–175. [Google Scholar] [CrossRef]
- Schar, D.; Sommanustweechai, A.; Laxminarayan, R.; Tangcharoensathien, V. Surveillance of antimicrobial consumption in animal production sectors of low- and middle-income countries: Optimizing use and addressing antimicrobial resistance. PLOS Med. 2018, 15, e1002521. [Google Scholar] [CrossRef] [Green Version]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. PNAS 2018, 115, 3463–3470. [Google Scholar] [CrossRef] [Green Version]
- Pehrsson, E.C.; Tsukayama, P.; Patel, S.; Mejía-Bautista, M.; Sosa-Soto, G.; Navarrete, K.M.; Calderon, M.; Cabrera, L.; Hoyos-Arango, W.; Bertoli, M.T.; et al. Interconnected microbiomes and resistomes in low-income human habitats. Nature 2016, 533, 212–216. [Google Scholar] [CrossRef] [Green Version]
- Thome, K.; Smith, M.D.; Daugherty, K.; Rada, N.; Christensen, C.; Meade, B. International food security assessment, 2019–2029. U.S. Dep. Agric. Econ. Res. Serv. 2019, GFA-30, 1–57. [Google Scholar]
- OECD (Organisation for Economic Co-operation and Development). Meat consumption (indicator). OECD Publ. 2020, 2020. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Glennon, E.E.; Chen, D.; Gilbert, M.; Robinson, T.P.; Grenfell, B.T.; Levin, S.A.; Bonhoeffer, S.; Laxminarayan, R. Reducing antimicrobial use in food animals. Science 2017, 357, 1350–1352. [Google Scholar] [CrossRef] [Green Version]
- Done, H.Y.; Venkatesan, A.K.; Halden, R.U. Erratum to: Does the Recent Growth of Aquaculture Create Antibiotic Resistance Threats Different from those Associated with Land Animal Production in Agriculture? AAPS J. 2016, 18, 1583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elwinger, K.; Fisher, C.; Jeroch, H.; Sauveur, B.; Tiller, H.; Whitehead, C.C. A brief history of poultry nutrition over the last hundred years. World’s Poult. Sci. J. 2016, 72, 701–720. [Google Scholar] [CrossRef] [Green Version]
- Dibner, J.J.; Richards, J.D. Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci. 2005, 84, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.L.; Harris, A.D.; Johnson, J.A.; Silbergeld, E.K.; Morris, J.G. Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc. Natl. Acad. Sci. USA 2002, 99, 6434–6439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lhermie, G.; Gröhn, Y.T.; Raboisson, D. Addressing Antimicrobial Resistance: An Overview of Priority Actions to Prevent Suboptimal Antimicrobial Use in Food-Animal Production. Front. Microbiol. 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Alders, R.G.; Pym, R.A.E. Village poultry: Still important to millions, eight thousand years after domestication. World’s Poult. Sci. J. 2009, 65, 181–190. [Google Scholar] [CrossRef]
- Mapiye, C.; Mwale, M.; Mupangwa, J.F.; Chimonyo, M.; Foti, R.; Mutenje, M.J. A Research Review of Village Chicken Production Constraints and Opportunities in Zimbabwe. Asian-Australasian J. Anim. Sci. 2008, 21, 1680–1688. [Google Scholar] [CrossRef]
- Vaarst, M.; Steenfeldt, S.; Horsted, K. Sustainable development perspectives of poultry production. World’s Poult. Sci. J. 2015, 71, 609–620. [Google Scholar] [CrossRef] [Green Version]
- Permin, A.; Riise, J.C.; Kryger, K.N. Strategies for developing family poultry production at village level—Experiences from West Africa and Asia. World’s Poult. Sci. J. 2005, 61, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Mottet, A.; Tempio, G. Global poultry production: Current state and future outlook and challenges. World’s Poult. Sci. J. 2017, 73, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Castanon, J.I.R. History of the Use of Antibiotic as Growth Promoters in European Poultry Feeds. Poult. Sci. 2007, 86, 2466–2471. [Google Scholar] [CrossRef]
- Thomke, S.; Elwinger, K. Growth promotants in feeding pigs and poultry. I. Growth and feed efficiency responses to antibiotic growth promotants. Anim. Res. 1998, 47, 85–97. [Google Scholar] [CrossRef] [Green Version]
- FAO (Food and Agriculture Organization). FAOSTAT Agri-environmental Indicators, Livestock Patterns Domain; FAO (Food and Agriculture Organization): Rome, Italy, 2019. [Google Scholar] [CrossRef]
- Conan, A.; Goutard, F.L.; Sorn, S.; Vong, S. Biosecurity measures for backyard poultry in developing countries: A systematic review. BMC Vet. Res. 2012, 8, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nhung, N.T.; Cuong, N.V.; Campbell, J.; Hoa, N.T.; Bryant, J.E.; Truc, V.N.T.; Kiet, B.T.; Jombart, T.; Trung, N.V.; Hien, V.B.; et al. High Levels of Antimicrobial Resistance among Escherichia coli Isolates from Livestock Farms and Synanthropic Rats and Shrews in the Mekong Delta of Vietnam. Appl. Environ. Microbiol. 2015, 81, 812–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Countries, M.; Cuong, N. Antimicrobial Usage in Animal Production: A Review of the Literature with a Focus on Low- and Middle-Income Countries. Antibiutics 2018, 7, 75. [Google Scholar] [CrossRef] [Green Version]
- Lam, S.; Pham, G.; Nguyen-Viet, H. Emerging health risks from agricultural intensification in Southeast Asia: A systematic review. Int. J. Occup. Environ. Health 2017, 23, 250–260. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, L.V.; Coolsaet, B.; Martin, A.; Mertz, O.; Pascual, U.; Corbera, E.; Dawson, N.; Fisher, J.A.; Franks, P.; Ryan, C.M. Social-ecological outcomes of agricultural intensification. Nat. Sustain. 2018, 1, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Nhung, N.T.; Chansiripornchai, N.; Carrique-Mas, J.J. Antimicrobial Resistance in Bacterial Poultry Pathogens: A Review. Front. Vet. Sci. 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Valcourt, N.; Javernick-Will, A.; Walters, J.; Linden, K. System Approaches to Water, Sanitation, and Hygiene: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 702. [Google Scholar] [CrossRef] [Green Version]
- Graham, J.P.; Eisenberg, J.N.S.; Trueba, G.; Zhang, L.; Johnson, T.J. Small-Scale Food Animal Production and Antimicrobial Resistance: Mountain, Molehill, or Something in-between? Environ. Health Perspect. 2017, 125, 104501. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.T.; de Bruyn, J.; Bagnol, B.; Grieve, H.; Li, M.; Pym, R.; Alders, R.G. Small-scale poultry and food security in resource-poor settings: A review. Glob Food Secur. 2017, 15, 43–52. [Google Scholar] [CrossRef]
- Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Levy, S. Microbial Resistance to antibiotics. Lancet 1982, 320, 83–88. [Google Scholar] [CrossRef]
- Ahmad, V.; Khan, M.S.; Jamal, Q.M.S.; Alzohairy, M.A.; Al Karaawi, M.A.; Siddiqui, M.U. Antimicrobial potential of bacteriocins: In therapy, agriculture and food preservation. Int. J. Antimicrob. Agents 2017, 49, 1–11. [Google Scholar] [CrossRef]
- Renwick, M.J.; Brogan, D.M.; Mossialos, E. A systematic review and critical assessment of incentive strategies for discovery and development of novel antibiotics. J. Antibiot. 2016, 69, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Burckhardt, I.; Zimmermann, S. Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry To Detect Carbapenem Resistance within 1 to 2.5 Hours. J. Clin. Microbiol. 2011, 49, 3321–3324. [Google Scholar] [CrossRef] [Green Version]
- Epstein, C.R.; Yam, W.C.; Peiris, J.S.M.; Epstein, R.J. Methicillin-resistant commensal staphylococci in healthy dogs as a potential zoonotic reservoir for community-acquired antibiotic resistance. Infect. Genet. Evol. 2009, 9, 283–285. [Google Scholar] [CrossRef]
- Djordjevic, S.P.; Stokes, H.W.; Chowdhury, P.R. Mobile elements, zoonotic pathogens and commensal bacteria: Conduits for the delivery of resistance genes into humans, production animals and soil microbiota. Front. Microbiol. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Dunning Hotopp, J.C. Horizontal gene transfer between bacteria and animals. Trends Genet. 2011, 27, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Banin, E.; Hughes, D.; Kuipers, O.P. Editorial: Bacterial pathogens, antibiotics and antibiotic resistance. FEMS Microbiol. Rev. 2017, 41, 450–452. [Google Scholar] [CrossRef] [Green Version]
- LAMBERT, P. Bacterial resistance to antibiotics: Modified target sites. Adv. Drug Deliv. Rev. 2005, 57, 1471–1485. [Google Scholar] [CrossRef] [PubMed]
- Peterson, E.; Kaur, P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Maria-Neto, S.; de Almeida, K.C.; Macedo, M.L.R.; Franco, O.L. Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside. Biochim. Biophys. Acta Biomembr. 2015, 1848, 3078–3088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villagra, N.A.; Fuentes, J.A.; Jofre, M.R.; Hidalgo, A.A.; Garcia, P.; Mora, G.C. The carbon source influences the efflux pump-mediated antimicrobial resistance in clinically important Gram-negative bacteria. J. Antimicrob. Chemother. 2012, 67, 921–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blair, J.M.; Richmond, G.E.; Piddock, L.J. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol. 2014, 9, 1165–1177. [Google Scholar] [CrossRef]
- Caniça, M.; Manageiro, V.; Jones-Dias, D.; Clemente, L.; Gomes-Neves, E.; Poeta, P.; Dias, E.; Ferreira, E. Current perspectives on the dynamics of antibiotic resistance in different reservoirs. Res. Microbiol. 2015, 166, 594–600. [Google Scholar] [CrossRef] [Green Version]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Silva, N.C.C.; Guimarães, F.F.; Manzi, M.P.; Budri, P.E.; Gómez-Sanz, E.; Benito, D.; Langoni, H.; Rall, V.L.M.; Torres, C. Molecular characterization and clonal diversity of methicillin-susceptible Staphylococcus aureus in milk of cows with mastitis in Brazil. J. Dairy Sci. 2013, 96, 6856–6862. [Google Scholar] [CrossRef] [Green Version]
- Husnik, F.; McCutcheon, J.P. Functional horizontal gene transfer from bacteria to eukaryotes. Nat. Rev. Microbiol. 2018, 16, 67–79. [Google Scholar] [CrossRef]
- Catry, B.; Laevens, H.; Devriese, L.A.; Opsomer, G.; Kruif, A. Antimicrobial resistance in livestock. J. Vet. Pharmacol. Ther. 2003, 26, 81–93. [Google Scholar] [CrossRef] [Green Version]
- von Wintersdorff, C.J.H.; Penders, J.; van Niekerk, J.M.; Mills, N.D.; Majumder, S.; van Alphen, L.B.; Savelkoul, P.H.M.; Wolffs, P.F.G. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moser, K.A.; Zhang, L.; Spicknall, I.; Braykov, N.P.; Levey, K.; Marrs, C.F.; Foxman, B.; Trueba, G.; Cevallos, W.; Goldstick, J.; et al. The Role of Mobile Genetic Elements in the Spread of Antimicrobial Resistant Escherichia coli from Chickens to Humans in Small-Scale Production Poultry Operations in Rural Ecuador. Am. J. Epidemiol. 2017, 95, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.-G.; Johnson, T.A.; Su, J.-Q.; Qiao, M.; Guo, G.-X.; Stedtfeld, R.D.; Hashsham, S.A.; Tiedje, J.M. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA 2013, 110, 3435–3440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, P.; Evenson, A. Use of sulfasuxidine, streptothricin, and streptomycin in nutritional studies with the chick. J. Biol. Chem. 1946, 165, 437–441. [Google Scholar] [PubMed]
- Starr, M.; Reynolds, D. Streptomycin resistance of coliform bacteria from turkeys fed streptomycin. Am. J. Public Health Nations Health 1951, 41, 1375–1380. [Google Scholar] [CrossRef]
- Barnes, E.M. The effect of antibiotic supplements on the faecal streptococci (Lancefield group D) of poultry. Br. Vet. J. 1958, 114, 333–344. [Google Scholar] [CrossRef]
- Elliott, S.D.; Barnes, E.M. Changes in serological type and antibiotic resistance of Lancefield group D streptococci in chickens receiving dietary chlortetracycline. Microbiology 1959, 20, 426–433. [Google Scholar] [CrossRef] [Green Version]
- Cabello, F.C. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environ. Microbiol. 2006, 8, 1137–1144. [Google Scholar] [CrossRef]
- Jones, F.T.; Ricke, S.C. Observations on the history of the development of antimicrobials and their use in poultry feeds. Poult. Sci. 2003, 82, 613–617. [Google Scholar] [CrossRef]
- Diarra, M.S.; Malouin, F. Antibiotics in Canadian poultry productions and anticipated alternatives. Front. Microbiol. 2014, 5, 282. [Google Scholar] [CrossRef] [Green Version]
- Aidara-Kane, A.; Angulo, F.J.; Conly, J.M.; Minato, Y.; Silbergeld, E.K.; McEwen, S.A.; Collignon, P.J. World Health Organization (WHO) guidelines on use of medically important antimicrobials in food-producing animals. Antimicrob. Resist. Infect. Control 2018, 7, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilchrist, M.J.; Greko, C.; Wallinga, D.B.; Beran, G.W.; Riley, D.G.; Thorne, P.S. The potential role of concentrated animal feeding operations in infectious disease epidemics and antibiotic resistance. Environ. Health Perspect. 2007, 115, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, M.; Xiao, X.; Pfeiffer, D.U.; Epprecht, M.; Boles, S.; Czarnecki, C.; Chaitaweesub, P.; Kalpravidh, W.; Minh, P.Q.; Otte, M.J.; et al. Mapping H5N1 highly pathogenic avian influenza risk in Southeast Asia. Proc. Natl. Acad. Sci. USA 2008, 105, 4769–4774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thanner, S.; Drissner, D.; Walsh, F. Antimicrobial Resistance in Agriculture. MBio 2016, 7, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thornton, P.K. Livestock production: Recent trends, future prospects. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flock, D.K.; Laughlin, K.F.; Bentley, J. Minimizing losses in poultry breeding and production: How breeding companies contribute to poultry welfare. World’s Poult. Sci. J. 2005, 61, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Brown, K.; Uwiera, R.R.E.; Kalmokoff, M.L.; Brooks, S.P.J.; Inglis, G.D. Antimicrobial growth promoter use in livestock: A requirement to understand their modes of action to develop effective alternatives. Int. J. Antimicrob. Agents 2017, 49, 12–24. [Google Scholar] [CrossRef]
- Boyd, W. Making Meat: Science, Technology, and American Poultry Production. Technol. Cult. 2001, 42, 631–664. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Washington, DC, USA, 2013; ISBN 925107920X. [Google Scholar]
- Hudson, J.A.; Jones, G.; Whittingham, M.J.; Hudson, J.A.; Frewer, L.J.; Jones, G.; Brereton, P.A.; Whittingham, M.J.; Stewart, G. The agri-food chain and antimicrobial resistance: A review Trends in Food Science & Technology The agri-food chain and antimicrobial resistance: A review. Trends Food Sci. Technol. 2017, 69, 131–147. [Google Scholar] [CrossRef] [Green Version]
- Akond, M.A.; Hassan, S.M.R.; Alam, S.; Shirin, M. Antibiotic resistance of Escherichia coli isolated from poultry and poultry environment of Bangladesh. Am. J. Environ. Sci. 2009, 5, 47–52. [Google Scholar] [CrossRef]
- Li, P.; Wu, D.; Liu, K.; Suolang, S.; He, T.; Liu, X.; Wu, C.; Wang, Y.; Lin, D. Investigation of antimicrobial resistance in Escherichia coli and enterococci isolated from Tibetan pigs. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Ratananakorn, L.; Wilson, D. Zoning and compartmentalisation as risk mitigation measures: An example from poultry production. Rev. Sci. Tech. l’OIE 2011, 30, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.; Murray, K.A.; Zambrana-Torrelio, C.; Morse, S.S.; Rondinini, C.; Di Marco, M.; Breit, N.; Olival, K.J.; Daszak, P. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 2017, 8, 1124. [Google Scholar] [CrossRef] [PubMed]
- Daszak, P.; Cunningham, A.A.; Hyatt, A.D. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop. 2001, 78, 103–116. [Google Scholar] [CrossRef]
- Kreuder Johnson, C.; Hitchens, P.L.; Smiley Evans, T.; Goldstein, T.; Thomas, K.; Clements, A.; Joly, D.O.; Wolfe, N.D.; Daszak, P.; Karesh, W.B.; et al. Spillover and pandemic properties of zoonotic viruses with high host plasticity. Sci. Rep. 2015, 5, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makaya, P.V.; Matope, G.; Pfukenyi, D.M. Distribution of Salmonella serovars and antimicrobial susceptibility of Salmonella Enteritidis from poultry in Zimbabwe. Avian Pathol. 2012, 41, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Alders, R.G.; Dumas, S.E.; Rukambile, E.; Magoke, G.; Maulaga, W.; Jong, J.; Costa, R. Family poultry: Multiple roles, systems, challenges, and options for sustainable contributions to household nutrition security through a planetary health lens. Matern. Child Nutr. 2018, 14, e12668. [Google Scholar] [CrossRef]
- Miao, Z.H.; Glatz, P.C.; Ru, Y.J. Free-range Poultry Production - A Review. Asian-Australasian J. Anim. Sci. 2005, 18, 113–132. [Google Scholar] [CrossRef]
- Raphulu, T.; Jansen van Rensburg, C.; Van Ryssen, J. Assessing Nutrient Adequacy from the Crop Contents of Free-Ranging Indigenous Chickens in Rural Villages of the Venda Region of South Africa. S. Afr. J. Anim. Sci. 2015, 45, 143. [Google Scholar] [CrossRef] [Green Version]
- Jensen, H.A. Structures for Improving Smallholder Chicken Production in Bangladesh Breeding Strategy. In Developing Breeding Strategies for Lower Input Animal Production Environments; Galal, S., Hammond, J., Boyazoglu, K., Eds.; ICAR, FAO: Valby, Denmark, 2001; ICAR Technical Series No. 3, 395-407. [Google Scholar]
- Nielsen, H.; Roos, N.; Thilsted, S.H. The Impact of Semi-Scavenging Poultry Production on the Consumption of Animal Source Foods by Women and Girls in Bangladesh. J. Nutr. 2003, 133, 4027S–4030S. [Google Scholar] [CrossRef] [PubMed]
- Nordhagen, S.; Klemm, R. Implementing small-scale poultry-for-nutrition projects: Successes and lessons learned. Matern. Child Nutr. 2018, 14, e12676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akinola, L.A.F.; Essien, A. Relevance of rural poultry production in developing countries with special reference to Africa. World’s Poult. Sci. J. 2011, 67, 697–705. [Google Scholar] [CrossRef]
- Guèye, E.F. The Role of Family Poultry in Poverty Alleviation, Food Security and the Promotion of Gender Equality in Rural Africa. Outlook Agric. 2000, 29, 129–136. [Google Scholar] [CrossRef]
- Dolberg, F. Poultry Production for Livelihood Improvement and Poverty Alleviation; University of Århus: Artus, Denmark, 2007. [Google Scholar]
- Leake, S.L.; Pagni, M.; Falquet, L.; Taroni, F.; Greub, G. The salivary microbiome for differentiating individuals: Proof of principle. Microbes Infect. 2016, 18, 399–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besbes, B.; Division, H. Genotype evaluation and breeding of poultry for performance under sub- optimal village conditions. World Poultry Sci. J. 2019, 65, 260–271. [Google Scholar] [CrossRef]
- Suganthi, U. The Uniqueness of Immunocompetence and Meat Quality of Native Chickens: A Specialized Review. World J. Pharm. Pharm. Sci. 2014, 3, 2576–2588. [Google Scholar]
- Melesse, A. Significance of scavenging chicken production in the rural community of Africa for enhanced food security. World’s Poult. Sci. J. 2014, 70, 593–606. [Google Scholar] [CrossRef]
- Forman, S.; Plante, C.; Murray, G.; Rey, B.; Belton, D.; Evans, B.; Steinmetz, P. Position paper: Improving governance for effective veterianry Services in developing countries - a priority for donor funding. Rev. Sci. Tech. l’OIE 2012, 31, 647–660. [Google Scholar] [CrossRef]
- Alhaji, N.B.; Haruna, A.E.; Muhammad, B.; Lawan, M.K.; Isola, T.O. Antimicrobials usage assessments in commercial poultry and local birds in North-central Nigeria: Associated pathways and factors for resistance emergence and spread. Prev. Vet. Med. 2018, 154, 139–147. [Google Scholar] [CrossRef]
- Glasgow, L.; Forde, M.; Brow, D.; Mahoney, C.; Fletcher, S.; Rodrigo, S. Antibiotic Use in Poultry Production in Grenada. Vet. Med. Int. 2019, 2019, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braykov, N.P.; Eisenberg, J.N.S.; Grossman, M.; Zhang, L.; Vasco, K.; Cevallos, W.; Muñoz, D.; Acevedo, A.; Moser, K.A.; Marrs, C.F.; et al. Antibiotic Resistance in Animal and Environmental Samples Associated with Small-Scale Poultry Farming in Northwestern Ecuador. mSphere 2016, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negro-Calduch, E.; Elfadaly, S.; Tibbo, M.; Ankers, P.; Bailey, E. Assessment of biosecurity practices of small-scale broiler producers in central Egypt. Prev. Vet. Med. 2013, 110, 253–262. [Google Scholar] [CrossRef]
- Fasina, F.O.; Ali, A.M.; Yilma, J.M.; Thieme, O.; Ankers, P. The cost—Benefit of biosecurity measures on infectious diseases in the Egyptian household poultry. Prev. Vet. Med. 2012, 103, 178–191. [Google Scholar] [CrossRef] [Green Version]
- Roess, A.A.; Winch, P.J.; Akhter, A.; Afroz, D.; Ali, N.A.; Shah, R.; Begum, N.; Seraji, H.R.; El Arifeen, S.; Darmstadt, G.L.; et al. Household Animal and Human Medicine Use and Animal Husbandry Practices in Rural Bangladesh: Risk Factors for Emerging Zoonotic Disease and Antibiotic Resistance. Zoonoses Public Health 2015, 62, 569–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alders, R.; Awuni, J.A.; Bagnol, B.; Farrell, P.; de Haan, N. Impact of Avian Influenza on Village Poultry Production Globally. Ecohealth 2013. [Google Scholar] [CrossRef] [PubMed]
- Hamilton-West, C.; Rojas, H.; Pinto, J.; Orozco, J.; Hervé-Claude, L.P.; Urcelay, S. Characterization of backyard poultry production systems and disease risk in the central zone of Chile. Res. Vet. Sci. 2012, 93, 121–124. [Google Scholar] [CrossRef]
- Nilsson, M.; Griggs, D.; Visbeck, M. Policy: Map the interactions between Sustainable Development Goals. Nature 2016, 534, 320–322. [Google Scholar] [CrossRef]
- Di Marco, M.; Baker, M.L.; Daszak, P.; De Barro, P.; Eskew, E.A.; Godde, C.M.; Harwood, T.D.; Herrero, M.; Hoskins, A.J.; Johnson, E. Opinion: Sustainable development must account for pandemic risk. Proc. Natl. Acad. Sci. USA 2020, 117, 3888–3892. [Google Scholar] [CrossRef] [Green Version]
- Forman, S.; Hungerford, N.; Yamakawa, M.; Yanase, T.; Tsai, H.J.; Joo, Y.S.; Yang, D.K.; Nha, J.J. Climate change impacts and risks for animal health in Asia. Rev Sci Tech Off Int Epiz 2008, 27, 581–597. [Google Scholar] [CrossRef]
- Stafford-Smith, M.; Griggs, D.; Gaffney, O.; Ullah, F.; Reyers, B.; Kanie, N.; Stigson, B.; Shrivastava, P.; Leach, M.; O’Connell, D. Integration: The key to implementing the Sustainable Development Goals. Sustain. Sci. 2017, 12, 911–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanspach, J.; Abson, D.J.; French Collier, N.; Dorresteijn, I.; Schultner, J.; Fischer, J. From trade-offs to synergies in food security and biodiversity conservation. Front. Ecol. Environ. 2017, 15, 489–494. [Google Scholar] [CrossRef]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; De Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Harun, M.; Massango, F.A. Village Poultry Production in Mozambique: Farming Systems and Ethnoveterinary Knowledge in Angonia and Tsangano Districts, Tete Province; Australian Centre for International Agricultural Research (ACIAR): Parkvill, Victoria, Australia, 2000; pp. 76–79. [Google Scholar]
- Ahamed, N. The smallholder poultry model in Bangladesh. In Proceedings of the Possibilities for Smallholder Poultry Projects in Eastern and Southern Africa, Morogoro, Tanzania, 22–25 May 2000. [Google Scholar]
- Goutard, F.L.; Binot, A.; Duboz, R.; Rasamoelina-Andriamanivo, H.; Pedrono, M.; Holl, D.; Peyre, M.I.; Cappelle, J.; Chevalier, V.; Figuié, M.; et al. How to reach the poor? Surveillance in low-income countries, lessons from experiences in Cambodia and Madagascar. Prev. Vet. Med. 2015, 120, 12–26. [Google Scholar] [CrossRef]
- Silbergeld, E.K.; Graham, J.; Price, L.B. Industrial Food Animal Production, Antimicrobial Resistance, and Human Health. Annu. Rev. Public Health 2008, 29, 151–169. [Google Scholar] [CrossRef]
- Conan, A.; Goutard, F.L.; Holl, D.; Ra, S.; Ponsich, A.; Tarantola, A.; Sorn, S.; Vong, S. Cluster randomised trial of the impact of biosecurity measures on poultry health in backyard flocks. Vet. J. 2013, 198, 649–655. [Google Scholar] [CrossRef]
- Livingstone, I.; Wiggs, G.F.S.; Weaver, C.M. Geomorphology of desert sand dunes: A review of recent progress. Earth-Sci. Rev. 2007, 80, 239–257. [Google Scholar] [CrossRef]
- Monte, D.F.; Fernandes, M.R.; Cerdeira, L.; Esposito, F.; Galvão, J.A.; Franco, B.D.G.M.; Lincopan, N.; Landgraf, M. Chicken meat as a reservoir of colistin-resistant Escherichia coli strains carrying mcr-1 genes in South America. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Okorafor, O.N.; Anyanwu, M.U.; Nwafor, E.O.; Anosa, G.N.; Udegbunam, R.I. Multidrug-resistant enterobacteria colonize commercial day-old broiler chicks in Nigeria. Vet. world 2019, 12, 418–423. [Google Scholar] [CrossRef]
- Hedman, H.D.; Eisenberg, J.N.S.; Trueba, G.; Rivera, D.L.V.; Herrera, R.A.Z.; Barrazueta, J.V.; Rodriguez, G.I.G.; Krawczyk, E.; Berrocal, V.J.; Zhang, L. Impacts of small-scale chicken farming activity on antimicrobial-resistant Escherichia coli carriage in backyard chickens and children in rural Ecuador. One Heal. 2019, 8, 100112. [Google Scholar] [CrossRef]
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic resistance in the food chain: A developing country-perspective. Front. Microbiol. 2016, 7, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Hedman, H.D.; Eisenberg, J.N.S.; Vasco, K.A.; Blair, C.N.; Trueba, G.; Berrocal, V.J.; Zhang, L. High prevalence of extended-spectrum beta-lactamase ctx-m-producing Escherichia coli in small-scale poultry farming in rural Ecuador. Am. J. Trop. Med. Hyg. 2019, 100, 374–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayoux, L. Gender and Rural Microfinance: Reaching and Empowering Women. Guide for Practitioners; International Fund for Agricultural Development (IFAD): Roma, Italy, 2009; pp. 1–72. [Google Scholar]
- Sambo, E.; Bettridge, J.; Dessie, T.; Amare, A.; Habte, T.; Wigley, P.; Christley, R.M. Participatory evaluation of chicken health and production constraints in Ethiopia. Prev. Vet. Med. 2015, 118, 117–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulding, K.E. General Systems Theory—The Skeleton of Science. Manage. Sci. 1956, 2, 197–208. [Google Scholar] [CrossRef] [Green Version]
- Wilby, J.M. Combining a systems framework with epidemiology in the study of emerging infectious disease. Syst. Res. Behav. Sci. 2005, 22, 385–398. [Google Scholar] [CrossRef]
- Parkes, M.W.; Bienen, L.; Breilh, J.; Hsu, L.-N.; McDonald, M.; Patz, J.A.; Rosenthal, J.P.; Sahani, M.; Sleigh, A.; Waltner-Toews, D.; et al. All Hands on Deck: Transdisciplinary Approaches to Emerging Infectious Disease. Ecohealth 2005, 2, 258–272. [Google Scholar] [CrossRef]
- Wilcox, B.A.; Colwell, R.R. Emerging and Reemerging Infectious Diseases: Biocomplexity as an Interdisciplinary Paradigm. Ecohealth 2005, 2, 244. [Google Scholar] [CrossRef]
- Brower, C.H.; Mandal, S.; Hayer, S.; Sran, M.; Zehra, A.; Patel, S.J.; Kaur, R.; Chatterjee, L.; Mishra, S.; Das, B.R.; et al. The Prevalence of Extended-Spectrum Beta-Lactamase-Producing Multidrug-Resistant Escherichia Coli in Poultry Chickens and Variation According to Farming Practices in Punjab, India. Environ. Health Perspect. 2017, 125, 077015. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.N.M.; Hotzel, H.; Njeru, J.; Mwituria, J.; El-Adawy, H.; Tomaso, H.; Neubauer, H.; Hafez, H.M. Antimicrobial resistance of Campylobacter isolates from small scale and backyard chicken in Kenya. Gut Pathog. 2016, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ngbede, E.O.; Raji, M.A.; Kwanashie, C.N.; Kwaga, J.K.P. Antimicrobial resistance and virulence profile of enterococci isolated from poultry and cattle sources in Nigeria. Trop. Anim. Health Prod. 2017, 49, 451–458. [Google Scholar] [CrossRef]
- Samanta, I.; Joardar, S.N.; Das, P.K.; Das, P.; Sar, T.K.; Dutta, T.K.; Bandyopadhyay, S.; Batabyal, S.; Isore, D.P. Virulence Repertoire, Characterization, and Antibiotic Resistance Pattern Analysis of Escherichia coli Isolated from Backyard Layers and Their Environment in India. Avian Dis. 2014, 58, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, S.; Simaluiza, R.J.; Toledo, Z.; Fernández, H. Frequency and antimicrobial behaviour of thermophilic Campylobacter species isolated from Ecuadorian backyard chickens. Arch. Med. Vet. 2016, 48, 311–314. [Google Scholar] [CrossRef] [Green Version]
- Sarker, M.; Mannan, M.; Ali, M.; Bayzid, M.; Ahad, A.; Bupasha, Z. Antibiotic resistance of Escherichia coli isolated from broilers sold at live bird markets in Chattogram, Bangladesh. J. Adv. Vet. Anim. Res. 2019, 6, 272. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Divers, S.M.; Villegas, P.; Jimenez, C.; Hernandez-Divers, S.J.; Garcia, M.; Riblet, S.M.; Carroll, C.R.; O’Connor, B.M.; Webb, J.L.; Yabsley, M.J.; et al. Backyard Chicken Flocks Pose a Disease Risk for Neotropic Birds in Costa Rica. Avian Dis. 2008, 52, 558–566. [Google Scholar] [CrossRef]
- Langata, L.M.; Maingi, J.M.; Musonye, H.A.; Kiiru, J.; Nyamache, A.K. Antimicrobial resistance genes in Salmonella and Escherichia coli isolates from chicken droppings in Nairobi, Kenya. BMC Res. Notes 2019, 12, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, N.T.; Nguyen, H.M.; Nguyen, C.V.; Nguyen, T.V.; Nguyen, M.T.; Thai, H.Q.; Ho, M.H.; Thwaites, G.; Ngo, H.T.; Baker, S.; et al. Use of Colistin and Other Critical Antimicrobials on Pig and Chicken Farms in Southern Vietnam and Its Association with Resistance in Commensal Escherichia coli Bacteria. Appl. Environ. Microbiol. 2016, 82, 3727–3735. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2020, 18, 6007.
- CDC. Antibiotic Resistance Threats in the United States; U.S. Department of Health and Human Services, CDC; National Center for Emerging Zoonotic and Infectious Diseases (U.S.): Atlanta, Georgia, 2019; pp. 1–140. [Google Scholar] [CrossRef] [Green Version]
- Carrique-Mas, J.J.; Davies, R.H.; Morris, V.K.; Mueller-Doblies, D.; Allen, V.M.; Wales, A.D. A longitudinal observational study of Salmonella shedding patterns by commercial turkeys during rearing and fattening, showing limitations of some control measures. Br. Poult. Sci. 2015, 56, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Aarestrup, F.M. Association between the consumption of antimicrobial agents in animal husbandry and the occurrence of resistant bacteria among food animals. Int. J. Antimicrob. Agents 1999, 12, 279–285. [Google Scholar] [CrossRef]
- Smith, J.L.; Drum, D.J.V.; Dai, Y.; Kim, J.M.; Sanchez, S.; Maurer, J.J.; Hofacre, C.L.; Lee, M.D. Impact of Antimicrobial Usage on Antimicrobial Resistance in Commensal Escherichia coli Strains Colonizing Broiler Chickens. Appl. Environ. Microbiol. 2007, 73, 1404–1414. [Google Scholar] [CrossRef] [Green Version]
- Bedford, M. Removal of antibiotic growth promoters from poultry diets: Implications and strategies to minimise subsequent problems. World’s Poult. Sci. J. 2000, 56, 347–365. [Google Scholar] [CrossRef]
- Handley, J.A.; Park, S.H.; Kim, S.A.; Ricke, S.C. Microbiome Profiles of Commercial Broilers Through Evisceration and Immersion Chilling During Poultry Slaughter and the Identification of Potential Indicator Microorganisms. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Bhavnani, D.; De Los Ángeles Bayas, R.; Lopez, V.K.; Zhang, L.; Trueba, G.; Foxman, B.; Marrs, C.; Cevallos, W.; Eisenberg, J.N.S. Distribution of enteroinvasive and enterotoxigenic Escherichia coli across space and time in northwestern Ecuador. Am. J. Trop. Med. Hyg. 2016, 94, 276–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persoons, D.; Dewulf, J.; Smet, A.; Herman, L.; Heyndrickx, M.; Martel, A.; Catry, B.; Butaye, P.; Haesebrouck, F. Prevalence and Persistence of Antimicrobial Resistance in Broiler Indicator Bacteria. Microb. Drug Resist. 2010, 16, 67–74. [Google Scholar] [CrossRef]
- Rabello, R.F.; Bonelli, R.R.; Penna, B.A.; Albuquerque, J.P.; Souza, R.M.; Cerqueira, A.M.F. Antimicrobial Resistance in Farm Animals in Brazil: An Update Overview. Animals 2020, 10, 552. [Google Scholar] [CrossRef] [Green Version]
- Parry, C.M.; Threlfall, E.J. Antimicrobial resistance in typhoidal and nontyphoidal salmonellae. Curr. Opin. Infect. Dis. 2008, 21, 531–538. [Google Scholar] [CrossRef]
- Mayrhofer, S.; Paulsen, P.; Smulders, F.J.M.; Hilbert, F. Antimicrobial resistance profile of five major food-borne pathogens isolated from beef, pork and poultry. Int. J. Food Microbiol. 2004, 97, 23–29. [Google Scholar] [CrossRef]
- Juhas, M. Horizontal gene transfer in human pathogens. Crit. Rev. Microbiol. 2015, 41, 101–108. [Google Scholar] [CrossRef]
- Guo, X.; Stedtfeld, R.D.; Hedman, H.; Eisenberg, J.N.S.; Trueba, G.; Yin, D.; Tiedje, J.M.; Zhang, L. Antibiotic Resistome Associated with Small-Scale Poultry Production in Rural Ecuador. Environ. Sci. Technol. 2018, 52, 8165–8172. [Google Scholar] [CrossRef]
- Aarestrup, F.M. Occurrence of Glycopeptide Resistance among Enterococcus faecium Isolates from Conventional and Ecological Poultry Farms. Microb. Drug Resist. 1995, 1, 255–257. [Google Scholar] [CrossRef]
- Huijbers, P.M.C.; van Hoek, A.H.A.M.; Graat, E.A.M.; Haenen, A.P.J.; Florijn, A.; Hengeveld, P.D.; Van Duijkeren, E. Methicillin-resistant Staphylococcus aureus and extended-spectrum and AmpC β-lactamase-producing Escherichia coli in broilers and in people living and/or working on organic broiler farms. Vet. Microbiol. 2015, 176, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Fernández, E.; Cancelo, A.; Díaz-Vega, C.; Capita, R.; Alonso-Calleja, C. Antimicrobial resistance in E. coli isolates from conventionally and organically reared poultry: A comparison of agar disc diffusion and Sensi Test Gram-negative methods. Food Control 2013, 30, 227–234. [Google Scholar] [CrossRef]
- Young, I.; Rajić, A.; Wilhelm, B.J.; Waddell, L.; Parker, S.; McEwen, S.A. Comparison of the prevalence of bacterial enteropathogens, potentially zoonotic bacteria and bacterial resistance to antimicrobials in organic and conventional poultry, swine and beef production: A systematic review and meta-analysis. Epidemiol. Infect. 2009, 137, 1217–1232. [Google Scholar] [CrossRef] [PubMed]
- Soonthornchaikul, N.; Garelick, H.; Jones, H.; Jacobs, J.; Ball, D.; Choudhury, M. Resistance to three antimicrobial agents of Campylobacter isolated from organically- and intensively-reared chickens purchased from retail outlets. Int. J. Antimicrob. Agents 2006, 27, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Rugumisa, B.T.; Call, D.R.; Mwanyika, G.O.; Mrutu, R.I.; Luanda, C.M.; Lyimo, B.M.; Subbiah, M.; Buza, J.J. Prevalence of Antibiotic-Resistant Fecal Escherichia coli Isolates from Penned Broiler and Scavenging Local Chickens in Arusha, Tanzania. J. Food Prot. 2016, 79, 1424–1429. [Google Scholar] [CrossRef] [PubMed]
- Miranda, J.M.; Guarddon, M.; Vázquez, B.I.; Fente, C.A.; Barros-Velázquez, J.; Cepeda, A.; Franco, C.M. Antimicrobial resistance in Enterobacteriaceae strains isolated from organic chicken, conventional chicken and conventional turkey meat: A comparative survey. Food Control 2008, 19, 412–416. [Google Scholar] [CrossRef]
- Schwaiger, K.; Schmied, E.M.; Bauer, J. Comparative analysis of antibiotic resistance characteristics of gram-negative bacteria isolated from laying hens and eggs in conventional and organic keeping systems in Bavaria, Germany. Zoonoses Public Health 2008, 55, 331–341. [Google Scholar] [CrossRef]
- Luangtongkum, T.; Jeon, B.; Han, J.; Plummer, P.; Logue, C.M.; Zhang, Q. Antibiotic resistance in Campylobacter: Emergence, transmission and persistence. Future Microbiol. 2009, 4, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Hammerum, A.M.; Heuer, O.E.; Lester, C.H.; Agersø, Y.; Seyfarth, A.M.; Emborg, H.-D.; Frimodt-Møller, N.; Monnet, D.L. Comment on: Withdrawal of growth-promoting antibiotics in Europe and its effects in relation to human health. Int. J. Antimicrob. Agents 2007, 30, 466–468. [Google Scholar] [CrossRef]
- Vasco, K.; Graham, J.P.; Trueba, G. Detection of Zoonotic Enteropathogens in Children and Domestic Animals in a Semirural Community in Ecuador. Appl. Environ. Microbiol. 2016, 82, 4218–4224. [Google Scholar] [CrossRef] [Green Version]
- Graham, J.P.J.P.; Vasco, K.; Trueba, G. Hyperendemic Campylobacter jejuni in guinea pigs (Cavia porcellus) raised for food in a semi-rural community of Quito, Ecuador. Environ. Microbiol. Rep. 2016, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otim, M.O.; Kabagambe, E.K.; Mukiibi, G.M.; Christensen, H.; Bisgaard, M. A study of risk factors associated with Newcastle disease epidemics in village free-range chickens in Uganda. Trop. Anim. Health Prod. 2007, 39, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Chashni, S.H.E.; Hassanzadeh, M.; Fard, M.H.B.; Mirzaie, S. Characterization of the Salmonella isolates from backyard chickens in north of Iran, by serotyping, multiplex PCR and antibiotic resistance analysis. Arch. Razi Inst. 2009, 64, 77–83. [Google Scholar]
- Hussain, A.; Shaik, S.; Ranjan, A.; Nandanwar, N.; Tiwari, S.K.; Majid, M.; Baddam, R.; Qureshi, I.A.; Semmler, T.; Wieler, L.H.; et al. Risk of transmission of antimicrobial resistant Escherichia coli from commercial broiler and free-range retail chicken in India. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Pornsukarom, S.; van Vliet, A.H.M.; Thakur, S. Whole genome sequencing analysis of multiple Salmonella serovars provides insights into phylogenetic relatedness, antimicrobial resistance, and virulence markers across humans, food animals and agriculture environmental sources. BMC Genomics 2018, 19, 801. [Google Scholar] [CrossRef]
- Hassell, J.M.; Begon, M.; Ward, M.J.; Fèvre, E.M. Urbanization and Disease Emergence: Dynamics at the Wildlife—Livestock—Human Interface. Trends Ecol. Evol. 2017, 32, 55–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, H.W. The Transfer Of Antibiotic Resistance Between Strains Of Enterobacteria In Chicken, Calves And Pigs. J. Med. Microbiol. 1970, 3, 165–180. [Google Scholar] [CrossRef] [Green Version]
- Trongjit, S.; Angkititrakul, S.; Tuttle, R.E.; Poungseree, J.; Padungtod, P.; Chuanchuen, R. Prevalence and antimicrobial resistance in Salmonella enterica isolated from broiler chickens, pigs and meat products in Thailand—Cambodia border provinces. Microbiol. Immunol. 2017, 61, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Byarugaba, D.K.; Kisame, R.; Olet, S. Multi-drug resistance in commensal bacteria of food of animal origin in Uganda. African J. Microbiol. Res. 2011, 5, 1539–1548. [Google Scholar] [CrossRef]
- Krishnasamy, V.; Otte, J.; Silbergeld, E. Antimicrobial use in Chinese swine and broiler poultry production. Antimicrob. Resist. Infect. Control 2015, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Lan, L.H.; Sun, B.B.; Zuo, B.X.Z.; Chen, X.Q.; Du, A.F. Prevalence and drug resistance of avian Eimeria species in broiler chicken farms of Zhejiang province, China. Poult. Sci. 2017, 96, 2104–2109. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Chen, Z.; Chen, S.; Deng, Y.; Liu, Y.; Tian, W.; Huang, X.; Wu, C.; Sun, Y.; Sun, Y.; et al. Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farmworkers, and the environment. Antimicrob. Agents Chemother. 2010, 54, 4219–4224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakobsen, L.; Garneau, P.; Kurbasic, A.; Bruant, G.; Stegger, M.; Harel, J.; Jensen, K.S.; Brousseau, R.; Hammerum, A.M.; Frimodt-Møller, N. Microarray-based detection of extended virulence and antimicrobial resistance gene profiles in phylogroup B2 Escherichia coli of human, meat and animal origin. J. Med. Microbiol. 2011, 60, 1502–1511. [Google Scholar] [CrossRef] [PubMed]
- Lemus, J.Á.; Blanco, G.; Grande, J.; Arroyo, B.; García-Montijano, M.; Martínez, F. Antibiotics Threaten Wildlife: Circulating Quinolone Residues and Disease in Avian Scavengers. PLoS ONE 2008, 3, e1444. [Google Scholar] [CrossRef]
- Leibler, J.H.; Otte, J.; Roland-Holst, D.; Pfeiffer, D.U.; Soares Magalhaes, R.; Rushton, J.; Graham, J.P.; Silbergeld, E.K. Industrial food animal production and global health risks: Exploring the ecosystems and economics of avian influenza. Ecohealth 2009, 6, 58–70. [Google Scholar] [CrossRef] [PubMed]
- van de Giessen, A.W.; van Santen-Verheuvel, M.G.; Hengeveld, P.D.; Bosch, T.; Broens, E.M.; Reusken, C.B.E.M. Occurrence of methicillin-resistant Staphylococcus aureus in rats living on pig farms. Prev. Vet. Med. 2009, 91, 270–273. [Google Scholar] [CrossRef]
- Zurek, L.; Ghosh, A. Insects Represent a Link between Food Animal Farms and the Urban Environment for Antibiotic Resistance Traits. Appl. Environ. Microbiol. 2014, 80, 3562–3567. [Google Scholar] [CrossRef] [Green Version]
- Crippen, T.L.; Poole, T.L. Conjugative Transfer of Plasmid-Located Antibiotic Resistance Genes Within the Gastrointestinal Tract of Lesser Mealworm Larvae, Alphitobius diaperinus (Coleoptera: Tenebrionidae). Foodborne Pathog. Dis. 2009, 6, 907–915. [Google Scholar] [CrossRef]
- Onwugamba, F.C.; Fitzgerald, J.R.; Rochon, K.; Guardabassi, L.; Alabi, A.; Kühne, S.; Grobusch, M.P.; Schaumburg, F. The role of ‘filth flies’ in the spread of antimicrobial resistance. Travel Med. Infect. Dis. 2018, 22, 8–17. [Google Scholar] [CrossRef]
- Malik, A.; Singh, N.; Satya, S. House fly (Musca domestica): A review of control strategies for a challenging pest. J. Environ. Sci. Heal. Part B 2007, 42, 453–469. [Google Scholar] [CrossRef]
- Hazeleger, W.C.; Bolder, N.M.; Beumer, R.R.; Jacobs-Reitsma, W.F. Darkling Beetles (Alphitobius diaperinus) and Their Larvae as Potential Vectors for the Transfer of Campylobacter jejuni and Salmonella enterica Serovar Paratyphi B Variant Java between Successive Broiler Flocks. Appl. Environ. Microbiol. 2008, 74, 6887–6891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, S.B.; Fitzgerald, G.B.; Macone, A. Spread of antibiotic-resistant plasmids from chicken to chicken and from chicken to man. Nature 1976, 260, 40–42. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.P.; Leibler, J.H.; Price, L.B.; Otte, J.M.; Pfeiffer, D.U.; Tiensin, T.; Silbergeld, E.K. The Animal-Human Interface and Infectious Disease in Industrial Food Animal Production: Rethinking Biosecurity and Biocontainment. Public Health Rep. 2008, 123, 282–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabir, J.; Umoh, V.J.; Audu-okoh, E.; Umoh, J.U.; Kwaga, J.K.P. Veterinary drug use in poultry farms and determination of antimicrobial drug residues in commercial eggs and slaughtered chicken in Kaduna State, Nigeria. Food Control 2004, 15, 99–105. [Google Scholar] [CrossRef]
- Founou, L.L.; Amoako, D.G.; Founou, R.C.; Essack, S.Y. Antibiotic Resistance in Food Animals in Africa: A Systematic Review and Meta-Analysis. Microb. Drug Resist. 2018, 24, 648–665. [Google Scholar] [CrossRef]
- Hamza, E.; Dorgham, S.M.; Hamza, D.A. Carbapenemase-producing Klebsiella pneumoniae in broiler poultry farming in Egypt. J. Glob. Antimicrob. Resist. 2016, 7, 8–10. [Google Scholar] [CrossRef]
- Gong, J.; Wang, C.; Shi, S.; Bao, H.; Zhu, C.; Kelly, P.; Zhuang, L.; Lu, G.; Dou, X.; Wang, R.; et al. Highly Drug-Resistant Salmonella enterica Serovar Indiana Clinical Isolates Recovered from Broilers and Poultry Workers with Diarrhea in China. Antimicrob. Agents Chemother. 2016, 60, 1943–1947. [Google Scholar] [CrossRef] [Green Version]
- Akinlabi, O. Ogunleye Survey of 3rd generation cephalosporin genes in multi-resistant Salmonella serotypes from septic poultry and an asymptomatic healthy pig from Nigeria. African J. Microbiol. Res. 2011, 5. [Google Scholar] [CrossRef]
- Oberhelman, R.A.; Gilman, R.H.; Sheen, P.; Cordova, J.; Zimic, M.; Cabrera, L.; Meza, R.; Perez, J. An intervention-control study of corralling of free-ranging chickens to control Campylobacter infections among children in a Peruvian periurban shantytown. Am. J. Trop. Med. Hyg. 2006, 74, 1054–1059. [Google Scholar] [CrossRef]
- Bardosh, K.L.; Hussein, J.W.; Sadik, E.A.; Hassen, J.Y.; Ketema, M.; Ibrahim, A.M.; McKune, S.L.; Havelaar, A.H. Chicken eggs, childhood stunting and environmental hygiene: An ethnographic study from the Campylobacter genomics and environmental enteric dysfunction (CAGED) project in Ethiopia. One Heal. Outlook 2020, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Roess, A.A.; Winch, P.J.; Ali, N.A.; Akhter, A.; Afroz, D.; El Arifeen, S.; Darmstadt, G.L. Animal Husbandry Practices in Rural Bangladesh: Potential Risk Factors for Antimicrobial Drug Resistance and Emerging Diseases. Am. J. Trop. Med. Hyg. 2013, 89, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Harvey, S.A.; Winch, P.J.; Leontsini, E.; Torres Gayoso, C.; López Romero, S.; Gilman, R.H.; Oberhelman, R.A. Domestic poultry-raising practices in a Peruvian shantytown: Implications for control of Campylobacter jejuni-associated diarrhea. Acta Trop. 2003, 86, 41–54. [Google Scholar] [CrossRef]
- Zambrano, L.D.; Levy, K.; Menezes, N.P.; Freeman, M.C. Human diarrhea infections associated with domestic animal husbandry: A systematic review and meta-analysis. Trans. R. Soc. Trop. Med. Hyg. 2014, 108, 313–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosites, E.; Thumbi, S.M.; Otiang, E.; McElwain, T.F.; Njenga, M.; Rabinowitz, P.M.; Rowhani-Rahbar, A.; Neuhouser, M.L.; May, S.; Palmer, G.H.; et al. Relations between Household Livestock Ownership, Livestock Disease, and Young Child Growth. J. Nutr. 2016, 146, 1118–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalter, H.D.; Gilman, R.H.; Moulton, L.H.; Cullotta, A.R.; Cabrera, L.; Velapatino, B. Risk Factors for Antibiotic-Resistant Escherichia coli Carriage in Young Children in Peru: Community-Based Cross-Sectional Prevalence Study. Am. J. Trop. Med. Hyg. 2010, 82, 879–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riccobono, E.; Pallecchi, L.; Mantella, A.; Bartalesi, F.; Zeballos, I.C.; Trigoso, C.; Villagran, A.L.; Bartoloni, A.; Rossolini, G.M. Carriage of Antibiotic-Resistant Escherichia coli Among Healthy Children and Home-Raised Chickens. Microb. Drug. Resist. 2011, 18, 10–13. [Google Scholar]
- Bi, Z.; Berglund, B.; Sun, Q.; Nilsson, M.; Chen, B.; Tärnberg, M.; Ding, L.; Stålsby Lundborg, C.; Bi, Z.; Tomson, G.; et al. Prevalence of the mcr-1 colistin resistance gene in extended-spectrum β-lactamase-producing Escherichia coli from human faecal samples collected in 2012 in rural villages in Shandong Province, China. Int. J. Antimicrob. Agents 2017, 49, 493–497. [Google Scholar] [CrossRef]
- Sharma, J.; Kumar, D.; Hussain, S.; Pathak, A.; Shukla, M.; Prasanna Kumar, V.; Anisha, P.N.; Rautela, R.; Upadhyay, A.K.; Singh, S.P. Prevalence, antimicrobial resistance and virulence genes characterization of nontyphoidal Salmonella isolated from retail chicken meat shops in Northern India. Food Control 2019, 102, 104–111. [Google Scholar] [CrossRef]
- Manie, T.; Khan, S.; Brozel, V.S.; Veith, W.J.; Gouws, P.A. Gouws Antimicrobial resistance of bacteria isolated from slaughtered and retail chickens in South Africa. Lett. Appl. Microbiol. 1998, 26, 253–258. [Google Scholar] [CrossRef]
- Adetunji, V.O. Antibiotic resistance of Escherichia coli, Listeria and Salmonella isolates from retail meat tables in Ibadan municipal abattoir, Nigeria. African J. Biotechnol. 2011, 10, 307–318. [Google Scholar]
- Djeffal, S.; Bakour, S.; Mamache, B.; Elgroud, R.; Agabou, A.; Chabou, S.; Hireche, S.; Bouaziz, O.; Rahal, K.; Rolain, J.-M. Prevalence and clonal relationship of ESBL-producing Salmonella strains from humans and poultry in northeastern Algeria. BMC Vet. Res. 2017, 13, 132. [Google Scholar] [CrossRef] [PubMed]
- Miles, T.D.; McLaughlin, W.; Brown, P.D. Antimicrobial resistance of Escherichia coli isolates from broiler chickens and humans. BMC Vet. Res. 2006, 2, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padungtod, P.; Kaneene, J.B.; Hanson, R.; Morita, Y.; Boonmar, S. Antimicrobial resistance in Campylobacter isolated from food animals and humans in northern Thailand. FEMS Immunol. Med. Microbiol. 2006, 47, 217–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bester, L.A.; Essack, S.Y. Prevalence of antibiotic resistance in Campylobacter isolates from commercial poultry suppliers in KwaZulu-Natal, South Africa. J. Antimicrob. Chemother. 2008, 62, 1298–1300. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.-L.; Xiang, L.; Yan, Q.-Y.; Jiang, Y.-N.; Li, Y.-W.; Huang, X.-P.; Li, H.; Cai, Q.-Y.; Mo, C.-H. Distribution and risk assessment of quinolone antibiotics in the soils from organic vegetable farms of a subtropical city, Southern China. Sci. Total Environ. 2014, 487, 399–406. [Google Scholar] [CrossRef]
- Salinas, L.; Cárdenas, P.; Johnson, T.J.; Vasco, K.; Graham, J.; Trueba, G. Diverse Commensal Escherichia coli Clones and Plasmids Disseminate Antimicrobial Resistance Genes in Domestic Animals and Children in a Semirural Community in Ecuador. mSphere 2019, 4. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hu, Y.; Cao, J.; Bi, Y.; Lv, N.; Liu, F.; Liang, S.; Shi, Y.; Jiao, X.; Gao, G.F.; et al. Antibiotic resistance gene reservoir in live poultry markets. J. Infect. 2019, 78, 445–453. [Google Scholar] [CrossRef]
- Saba, F.D.P.; Dhara, S.; deSouza, N.; Aniket, K.; Gayatri, S.; Hitendra, M.; David, H.; Yogesh, S.; Balu, K. Prevalence, seasonality and antibiotic susceptibility of thermophilic Campylobacters in ceca and carcasses of poultry birds in the live-bird market. African J. Microbiol. Res. 2013, 7, 2442–2453. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghamdi, M.S.; El-Morsy, F.; Al-Mustafa, Z.H.; Al-Ramadhan, M.; Hanif, M. Antibiotic resistance of Escherichia coli isolated from poultry workers, patients and chicken in the eastern province of Saudi Arabia. Trop. Med. Int. Health 1999, 4, 278–283. [Google Scholar] [CrossRef]
- Gupta, G.; Borowiec, J.; Okoh, J. Toxicity identification of poultry litter aqueous leachate. Poult. Sci. 1997, 76, 1364–1367. [Google Scholar] [CrossRef]
- Stephenson, A.H.; McCaskey, T.A.; Ruffin, B.G. A survey of broiler litter composition and potential value as a nutrient resource. Biol. Wastes 1990, 34, 1–9. [Google Scholar] [CrossRef]
- Kelley, T.R.; Pancorbo, O.C.; Merka, W.C.; Barnhart, H.M. Antibiotic Resistance of Bacterial Litter Isolates. Poult. Sci. 1998, 77. [Google Scholar] [CrossRef] [PubMed]
- Riedle, J.D.; Shipman, P.A.; Fox, S.F.; Leslie, D.M. Microhabitat Use, Home Range, and Movements of the Alligator Snapping Turtle, Macrochelys Temminckii, in Oklahoma. Southwest. Nat. 2006, 51, 35–40. [Google Scholar] [CrossRef]
- Mu, Q.; Li, J.; Sun, Y.; Mao, D.; Wang, Q.; Luo, Y. Occurrence of sulfonamide-, tetracycline-, plasmid-mediated quinolone- and macrolide-resistance genes in livestock feedlots in Northern China. Environ. Sci. Pollut. Res. 2015, 22, 6932–6940. [Google Scholar] [CrossRef] [PubMed]
- Bolan, N.S.; Szogi, A.A.; Chuasavathi, T.; Seshadri, B.; Rothrock Jr, M.J.; Panneerselvam, P. Uses and management of poultry litter. World’s Poult. Sci. J. 2010, 66, 673–698. [Google Scholar] [CrossRef] [Green Version]
- Turan, N.G.; Akdemir, A.; Ergun, O.N. Emission of volatile organic compounds during composting of poultry litter. Water. Air. Soil Pollut. 2007, 184. [Google Scholar] [CrossRef]
- Khan, A.A.; Nawaz, M.S.; Summage West, C.; Khan, S.A.; Lin, J. Isolation and molecular characterization of fluoroquinolone-resistant Escherichia coli from poultry litter. Poult. Sci. 2005, 84, 61–66. [Google Scholar] [CrossRef]
- Du, L.; Liu, W. Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agron. Sustain. Dev. 2012, 32, 309–327. [Google Scholar] [CrossRef] [Green Version]
- Nahar, A. Multidrug Resistant-Proteus Mirabilis Isolated from Chicken Droppings in Commercial Poultry Farms: Bio-security Concern and Emerging Public Health Threat in Bangladesh. J. Biosaf. Heal. Educ. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Waseem, H.; Ali, J.; Jamal, A.; Ali, M.I. Potential dissemination of antimicrobial resistance from small scale poultry slaughterhouses in Pakistan. Appl. Ecol. Environ. Res. 2019, 17, 3049–3063. [Google Scholar] [CrossRef]
- Guenther, S.; Ewers, C.; Wieler, L.H. Extended-spectrum beta-lactamases producing E. coli in wildlife, yet another form of environmental pollution? Front. Microbiol. 2011, 2, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, A.L.; Pace, N.R.; Hernandez, M.T.; LaPara, T.M. Tetracycline Resistance and Class 1 Integron Genes Associated with Indoor and Outdoor Aerosols. Environ. Sci. Technol. 2013, 47, 4046–4052. [Google Scholar] [CrossRef] [PubMed]
- Few, R. Flooding, vulnerability and coping strategies: Local responses to a global threat. Prog. Dev. Stud. 2003, 3, 43–58. [Google Scholar] [CrossRef]
- Byarugaba, D.K. Antimicrobial resistance in developing countries and responsible risk factors. Int. J. Antimicrob. Agents 2004, 24, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, P.K.; Rahman, M.; Rahman, M.; Nabi, A.; Islam, Z.; Hoque, M.M.; Endtz, H.P.; Islam, M.A. Antimicrobial Resistance, Virulence Factors and Genetic Diversity of Escherichia coli Isolates from Household Water Supply in Dhaka, Bangladesh. PLoS ONE 2013, 8, e61090. [Google Scholar] [CrossRef] [Green Version]
- Su, J.-Q.; Wei, B.; Ou-Yang, W.-Y.; Huang, F.-Y.; Zhao, Y.; Xu, H.-J.; Zhu, Y.-G. Antibiotic Resistome and Its Association with Bacterial Communities during Sewage Sludge Composting. Environ. Sci. Technol. 2015, 49, 7356–7363. [Google Scholar] [CrossRef]
- Ayeni, L.S. Effect of sole and combined cocoa pod ash, poultry manure and NPK 20:10:10 fertilizer on soil organic carbon, available P and forms of nitrogen on alfisols in southwestern Nigeria. Sci. Soil. Sci. 2011, 1, 77–82. [Google Scholar]
- Youngquist, C.P.; Mitchell, S.M.; Cogger, C.G. Fate of Antibiotics and Antibiotic Resistance during Digestion and Composting: A Review. J. Environ. Qual. 2016, 45, 537–545. [Google Scholar] [CrossRef]
- Li, Z.; Shuman, L.M. Mobility of Zn, Cd and Pb in soils as affected by poultry litter extract—II. Redistribution among soil fractions. Environ. Pollut. 1997, 95, 227–234. [Google Scholar] [CrossRef]
- Qian, X.; Gu, J.; Sun, W.; Wang, X.-J.; Su, J.-Q.; Stedfeld, R. Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting. J. Hazard. Mater. 2018, 344, 716–722. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Hu, H.-W.; Gou, M.; Wang, J.-T.; Chen, D.; He, J.-Z. Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. Environ. Pollut. 2017, 231, 1621–1632. [Google Scholar] [CrossRef] [PubMed]
- Enany, M.E.; Algammal, A.M.; Nasef, S.A.; Abo-Eillil, S.A.M.; Bin-Jumah, M.; Taha, A.E.; Allam, A.A. The occurrence of the multidrug resistance (MDR) and the prevalence of virulence genes and QACs resistance genes in E. coli isolated from environmental and avian sources. AMB Express 2019, 9, 192. [Google Scholar] [CrossRef] [PubMed]
- Dahshan, H.; Abd-Elall, A.M.M.; Megahed, A.M.; Abd-El-Kader, M.A.; Nabawy, E.E. Veterinary antibiotic resistance, residues, and ecological risks in environmental samples obtained from poultry farms, Egypt. Environ. Monit. Assess. 2015, 187, 2. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, H.O.; Ahmed, A.M.; Oreiby, A.F.; Eid, A.M.; Shimamoto, T.; Shimamoto, T. Characterisation of the plasmid-mediated colistin resistance gene mcr-1 in Escherichia coli isolated from animals in Egypt. Int. J. Antimicrob. Agents 2016, 47, 413–414. [Google Scholar] [CrossRef] [PubMed]
- Quesada, A.; Ugarte-Ruiz, M.; Iglesias, M.R.; Porrero, M.C.; Martínez, R.; Florez-Cuadrado, D.; Campos, M.J.; García, M.; Píriz, S.; Sáez, J.L.; et al. Detection of plasmid mediated colistin resistance (MCR-1) in Escherichia coli and Salmonella enterica isolated from poultry and swine in Spain. Res. Vet. Sci. 2016, 105, 134–135. [Google Scholar] [CrossRef] [PubMed]
- Sáenz, Y.; Briñas, L.; Domínguez, E.; Zarazaga, M.; Vila, J.; Torres, C.; Sa, Y.; Brin, L.; Domínguez, E.; Ruiz, J.; et al. Origins Mechanisms of Resistance in Multiple-Antibiotic-Resistant Escherichia coli Strains of Human, Animal, and Food Origins. Antimicrob. Agents Ch. 2004. [Google Scholar] [CrossRef]
- Dolejska, M.; Villa, L.; Hasman, H.; Hansen, L.; Carattoli, A. Characterization of IncN plasmids carrying bla CTX-M-1 and qnr genes in Escherichia coli and Salmonella from animals, the environment and humans. J. Antimicrob. Chemoth. 2013, 8, 333–339. [Google Scholar] [CrossRef]
- Watkins, R.R.; Smith, T.C.; Bonomo, R.A. On the path to untreatable infections: Colistin use in agriculture and the end of ‘last resort’ antibiotics. Expert Rev. Anti. Infect. Ther. 2016, 14, 785–788. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Zeng, X.; Li, X.-P.; Liao, X.-P.; Liu, Y.-H.; Lin, J. Plasmid-mediated colistin resistance in animals: Current status and future directions. Anim. Heal. Res. Rev. 2017, 18, 136–152. [Google Scholar] [CrossRef]
- Xie, W.-Y.; McGrath, S.P.; Su, J.-Q.; Hirsch, P.R.; Clark, I.M.; Shen, Q.; Zhu, Y.-G.; Zhao, F.-J. Long-Term Impact of Field Applications of Sewage Sludge on Soil Antibiotic Resistome. Environ. Sci. Technol. 2016, 50, 12602–12611. [Google Scholar] [CrossRef]
- Su, J.Q.; Wei, B.; Xu, C.Y.; Qiao, M.; Zhu, Y.G. Functional metagenomic characterization of antibiotic resistance genes in agricultural soils from China. Environ. Int. 2014, 65, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Allen, H.K.; Donato, J.; Wang, H.H.; Cloud-Hansen, K.A.; Davies, J.; Handelsman, J. Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 2010, 8, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, N.B.; Vlamakis, H.; Hayes, K.; Salyers, A.A. Evidence for Extensive Resistance Gene Transfer amongBacteroides spp. and among Bacteroides and Other Genera in the Human Colon. Appl. Environ. Microbiol. 2001, 67, 561–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Liu, P.; Xiong, W.; Zhou, Q.; Wangxiao, J.; Zeng, Z.; Sun, Y. Fate of potential indicator antimicrobial resistance genes (ARGs) and bacterial community diversity in simulated manure-soil microcosms. Ecotoxicol. Environ. Saf. 2018, 147, 817–823. [Google Scholar] [CrossRef]
- Nandi, S.; Maurer, J.J.; Hofacre, C.; Summers, A.O. Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter. Proc. Natl. Acad. Sci. USA 2004, 101, 7118–7122. [Google Scholar] [CrossRef] [Green Version]
- Heuer, O.E.; Pedersen, K.; Jensen, L.B.; Madsen, M.; Olsen, J.E. Persistence of Vancomycin-Resistant Enterococci (VRE) in Broiler Houses after the Avoparcin Ban. Microb. Drug Resist. 2002, 8, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Alonso, A.; Sanchez, P.; Martinez, J.L. Environmental selection of antibiotic resistance genes. Minireview. Environ. Microbiol. 2001, 3, 1–9. [Google Scholar] [CrossRef]
- Huijbers, P.M.C.; Blaak, H.; de Jong, M.C.M.; Graat, E.A.M.; Vandenbroucke-Grauls, C.M.J.E.; de Roda Husman, A.M. Role of the Environment in the Transmission of Antimicrobial Resistance to Humans: A Review. Environ. Sci. Technol. 2015, 49, 11993–12004. [Google Scholar] [CrossRef]
- Mensah, P.; Mwamakamba, L.; Kariuki, S.; Fonkoua, M.C.; Aidara-Kane, A. Strengthening foodborne diseases surveillance in the WHO African region: An essential need for disease control and food safety assurance. Afri. J. Food, Agri. Nutr. Dev 2012, 12, 6336–6353. [Google Scholar]
- Tiong, J.J.L.; Loo, J.S.E.; Mai, C.-W. Global Antimicrobial Stewardship: A Closer Look at the Formidable Implementation Challenges. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef]
- Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control 2017, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Doron, S.; Davidson, L.E. Antimicrobial Stewardship. Mayo Clin. Proc. 2011, 86, 1113–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouzid, M.; Cumming, O.; Hunter, P.R. What is the impact of water sanitation and hygiene in healthcare facilities on care seeking behaviour and patient satisfaction? A systematic review of the evidence from low-income and middle-income countries. BMJ Glob. Heal. 2018, 3, e000648. [Google Scholar] [CrossRef] [PubMed]
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A Review of Antibiotic Use in Food Animals: Perspective, Policy, and Potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef] [Green Version]
- FAO/OIE/WHO (Food and Agriculture Organization of the United Nations, World Organisation for Animal Health, W.H.O. The FAO Action Plan on Antimicrobial Resistance 2016–2020: Supporting the Food and Agriculture Sectors in Implementing the Global Action Plan on Antimicrobial Resistance to Minimize the impact of Antimicrobial Resistance FAO, Rome. 2016. Available online: https://apps.who.int/iris/handle/10665/193736 (accessed on 26 May 2020).
- World Health Organization Antibacterial agents in clinical development: An analysis of the antibacterial clinical development pipeline, including tuberculosis. WHO/EMP/IAU/ 2017, 11, 48.
- Wilkinson, A.; Ebata, A.; MacGregor, H. Interventions to reduce antibiotic prescribing in LMICs: A scoping review of evidence from human and animal health systems. Antibiotics 2019, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Wertheim, H.F.L.; Chuc, N.T.K.; Punpuing, S.; Khan, W.A.; Gyapong, M.; Asante, K.P.; Munguambe, K.; Gómez-Olivé, F.X.; Ariana, P.; John-Langba, J.; et al. Community-level antibiotic access and use (ABACUS) in low- and middle-income countries: Finding targets for social interventions to improve appropriate antimicrobial use—An observational multi-centre study. Wellcome Open Res. 2017, 2, 58. [Google Scholar] [CrossRef] [Green Version]
- Kimang’a, A.N. A Situational Analysis of Antimicrobial Drug Resistance in Africa: Are We Losing the Battle? Ethiop. J. Health Sci. 2012, 22, 135–143. [Google Scholar]
- Huttner, B.; Harbarth, S.; Nathwani, D. Success stories of implementation of antimicrobial stewardship: A narrative review. Clin. Microbiol. Infect. 2014, 20, 954–962. [Google Scholar] [CrossRef] [Green Version]
- Katakweba, A.A.S.; Møller, K.S.; Muumba, J.; Muhairwa, A.P.; Damborg, P.; Rosenkrantz, J.T. Antimicrobial resistance in faecal samples from buffalo, wildebeest and zebra grazing together with and without cattle in Tanzania. J. Appl. Microbiol. 2014. [Google Scholar] [CrossRef]
- Eltayb, A.; Barakat, S.; Marrone, G.; Shaddad, S.; Stålsby Lundborg, C. Antibiotic Use and Resistance in Animal Farming: A Quantitative and Qualitative Study on Knowledge and Practices among Farmers in Khartoum, Sudan. Zoonoses Public Health 2012, 59, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Redding, L.E.; Barg, F.K.; Smith, G.; Galligan, D.T.; Levy, M.Z.; Hennessy, S. The role of veterinarians and feed-store vendors in the prescription and use of antibiotics on small dairy farms in rural Peru. J. Dairy Sci. 2013, 96, 7349–7354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadiq, M.B.; Syed-Hussain, S.S.; Ramanoon, S.Z.; Saharee, A.A.; Ahmad, N.I.; Mohd Zin, N.; Khalid, S.F.; Naseeha, D.S.; Syahirah, A.A.; Mansor, R. Knowledge, attitude and perception regarding antimicrobial resistance and usage among ruminant farmers in Selangor, Malaysia. Prev. Vet. Med. 2018, 156, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Lowenstein, C.; Waters, W.F.; Roess, A.; Leibler, J.H.; Graham, J.P. Animal husbandry practices and perceptions of zoonotic infectious disease risks among livestock keepers in a rural parish of quito, Ecuador. Am. J. Trop. Med. Hyg. 2016, 95, 1450–1458. [Google Scholar] [CrossRef] [Green Version]
- Le Gall, F.G. Economic and Social Justification of Investment in Animal Health and Zoonoses. In Compendium of Technical Items Presented to the International Committee or to Regional Commissions of the World Organisation for Animal Health. Conf. OIE. 2006, pp. 55–70. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.431.7850&rep=rep1&type=pdf (accessed on 26 May 2020).
- Dapás, J.I.; Quirós, R.E. Antimicrobial Stewardship in Low- and Middle-Income Countries. Curr. Treat. Options Infect. Dis. 2018, 10, 17–27. [Google Scholar] [CrossRef]
- De Been, M.; Lanza, V.; de Toro, M.; Scharringa, J. Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLoS Genet 2014, 10, e1004776. [Google Scholar]
- Jørgensen, P.S.; Wernli, D.; Carroll, S.P.; Dunn, R.R.; Harbarth, S.; Levin, S.A.; So, A.D.; Schlüter, M.; Laxminarayan, R. Use antimicrobials wisely. Nature 2016, 537, 159–161. [Google Scholar] [CrossRef]
- Abdula, N.; Macharia, J.; Motsoaledi, A.; Swaminathan, S.; Vijayraghavan, K. National action for global gains in antimicrobial resistance. Lancet 2016, 387, e3–e5. [Google Scholar] [CrossRef]
- Leach, M.; Bett, B.; Said, M.; Bukachi, S.; Sang, R.; Anderson, N.; Machila, N.; Kuleszo, J.; Schaten, K.; Dzingirai, V.; et al. Local disease—Ecosystem—Livelihood dynamics: Reflections from comparative case studies in Africa. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160163. [Google Scholar] [CrossRef]
- Kahn, L.H. Antimicrobial resistance: A One Health perspective. Trans. R. Soc. Trop. Med. Hyg. 2017, 111, 255–260. [Google Scholar] [CrossRef]
- Bardosh, K.; Inthavong, P.; Xayaheuang, S.; Okello, A.L. Controlling parasites, understanding practices: The biosocial complexity of a One Health intervention for neglected zoonotic helminths in northern Lao PDR. Soc. Sci. Med. 2014, 120, 215–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aarestrup, F. Get pigs off antibiotics. Nature 2012, 486, 465–466. [Google Scholar] [CrossRef] [PubMed]
- Curran, M.M.; MacLehose, H.G. Community animal health services for improving household wealth and health status of low-income farmers. Anim. Heal. Prod. 2002, 34, 449–470. [Google Scholar] [CrossRef] [PubMed]
- Lipsitch, M.; Singer, R.S.; Levin, B.R.; M Lipsitch, R.S.; Levin, B.R. Antibiotics in agriculture: When is it time to close the barn door? Proc. Natl. Acad. Sci. USA 2002, 99, 5752–5754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnitzler, S.U.; Schnitzler, P. An update on swine-origin influenza virus A/H1N1: A review. Virus Genes 2009, 39, 279–292. [Google Scholar] [CrossRef]
- World Organisation for Animal Health (OIE) Outcomes from the OIE’s Questionnaire on Antimicrobial Use in Animals in 2015. Available online: https://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/AMR/A_Bull_2016-3_Moulin.pdf (accessed on 20 June 2020).
- Maron, D.; Smith, T.J.; Nachman, K.E. Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey. Global. Health 2013, 9, 48. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization Critically Important Antimicrobials for Human Medicine, 6th ed.; WHO: Geneva, Switzerland, 2019; p. 45.
- Woolhouse, M.; Farrar, J. Policy: An intergovernmental panel on antimicrobial resistance. Nature 2014, 509, 555–557. [Google Scholar] [CrossRef] [Green Version]
- Nadimpalli, M.; Delarocque-astagneau, E.; Love, D.C.; Price, L.B.; Huynh, B.; Collard, J.; Lay, K.S.; Borand, L.; Ndir, A.; Walsh, T.R.; et al. Combating Global Antibiotic Resistance: Emerging One Health Concerns in Lower- and Middle-Income Countries. Clin. Infect Dis. 2018, 66, 963–969. [Google Scholar] [CrossRef]
- Okeke, I.N.; Lamikanra, A.; Edelman, R. Socioeconomic and Behavioral Factors Leading to Acquired Bacterial Resistance to Antibiotics in Developing Countries. Emerg. Infect. Dis. 1999, 5, 18–27. [Google Scholar] [CrossRef]
- Zheng, C.; Bluemling, B.; Liu, Y.; Mol, A.P.J.; Chen, J. Managing Manure from China’s Pigs and Poultry: The Influence of Ecological Rationality. Ambio 2014, 43, 661–672. [Google Scholar] [CrossRef] [Green Version]
System | Housing | Characteristics |
---|---|---|
Broilers | Assumed to be primarily loosely housed on litter, with automatic feed and water provision | Fully market-oriented; high capital input requirements (including infrastructure, buildings, equipment); high level of overall flock productivity; purchased non-local feed or on farm intensively produced feed |
Layers | Housed in a variety of cage, barn, and free-range systems, with automatic feed and water provision | Fully market-oriented; high capital input requirements (including infrastructure, buildings, equipment); high level of overall flock productivity; purchased non-local feed or on farm intensively produced feed |
Backyard | Simple housing using local wood, bamboo, clay, leaf material and handmade construction resources for supports (columns, rafters, roof frame) plus scrap wire netting walls and scrap iron for roof. When cages are used, these are made of local material or scrap wire | Animals producing meat and eggs for the owner and local market, living freely. Diet consists of swill and scavenging (20–40%) and locally produced feeds (60–80%) |
Criteria | Small-Extensive Scavenging | Extensive Scavenging | Semi-Intensive | Small-Scale Intensive |
---|---|---|---|---|
Production Operation | Mixed, poultry and crops, often landless | Mixed, livestock and crops | Usually poultry only | Poultry only |
Other livestock raised | Rarely | Usually | Sometimes | No |
Flock size | 1–5 adult birds | 5–50 adult birds | 50–200 adult birds | >200 broilers >100 layers |
Poultry breeds | Local | Local or cross-bred | Commercial, cross-bred or local | Commercial |
Source of new chicks | Natural incubation | Natural incubation | Commercial day-old chicks or natural incubation | Commercial day-old chicks or pullets |
Feed source | Scavenging; almost no supplementation | Scavenging; occasional supplementation | Scavenging; regular supplementation | Commercial balanced ration |
Poultry housing | Seldom; usually made from local materials or kept in the house | Sometimes; usually made from local materials | Yes; conventional materials; houses of variable quality | Yes; conventional materials; good-quality houses |
Access to veterinary services and veterinary pharmaceuticals | Rarely | Sometimes | Yes | Yes |
Mortality | Very High; >70% | Very High >70% | Medium to High 20% to >50% | Low to Medium <20% |
Access to reliable electricity supply | No | No | Yes | Yes |
Existence of conventional cold chain | No | Rarely | Yes | Yes |
Access to urban markets | Rarely | No, or indirect | Yes | Yes |
Products | Live birds, meat | Live birds, meat, eggs | Live birds, meat, eggs | Live birds, meat, eggs |
Time devoted each day to poultry management | <30 min | <1 hr | >1 hr | >1 hr |
Contribution Pathway of Small-Scale Poultry | Sustainable Development Goal |
---|---|
Increasing the availability, accessibility, utilization and stability of supply of food and nutrients. | 2: Zero hunger 3: Good health and well-being |
Small-scale poultry are able to be kept by vulnerable groups, giving them access to a source of income. Community-supported models for Newcastle disease prevention can provide employment, including for women, and increased production can promote rural economic growth. | 1: No poverty 8: Decent work and economic growth |
By targeting a livestock species and production system that is largely under the control of women, improvements to the SSP production systems can preferentially benefit women, promoting their empowerment. Income under the control of women is also more likely to be used to support the education of their children. | 5: Gender equality 4: Quality education |
Efficient and sustainable use of natural resources while achieving adequate nutrition globally requires high-income countries to decrease food wastage and consumption of calorie-dense, nutrient-poor foods, while low-and-middle-income countries need to increase their consumption of nutrient-rich foods. Small-scale poultry are nutritious and locally available, typically with a short supply chain, and measures to improve health and welfare will improve production efficiency and ensure sustainability. | 12: Responsible consumption and production |
Production of SSP does not require land clearing, contributes positively to ecosystem health, and can reduce loss of biodiversity by being a rich pool of genetic diversity and by being an alternate protein source to bushmeat. | 15: Life on land |
Country | Setting | AMR Transmission Pathway(s) | Operation Scale | Findings | Ref. |
---|---|---|---|---|---|
India | Urban | Intensive chicken farming | Large | High prevalence of multidrug resistance (94%) and ESBL-producing E. coli (87%). | [148] |
Zimbabwe | Rural Urban Peri-urban | Intensive chicken farming | Small Large | Higher Salmonella spp. AMR levels with farming intensity. 12.1% MDR S. enteritidis isolates, presents public health risk of salmonellosis. | [102] |
Kenya | Rural | Intensive chicken farming | Small Large | Documented drug-resistant thermophilic Campylobacter spp. originating in small-scale family operated poultry systems. | [149] |
Nigeria | Urban | Cross-species AMR transmission | Large | High abundance of AMR and virulent Enterococcus spp. sampled from poultry and cattle manure suggesting spread between livestock species. | [150] |
Ecuador | Rural | Cross-breed AMR transmission Zoonotic AMR transmission | Small | High increase (66.1%) in beta-lactamase CTX-M-producing E. coli of backyard chickens not fed antibiotics after the village-scale introduction of broiler chickens. Sequenced blaCTX-M demonstrated close relatedness of backyard chicken, broiler chicken, and human samples from the villages which could suggest AMR zoonotic transmission. | [139] |
India | Rural | Indirect transmission to backyard poultry | Small | Detected high prevalence of MDR and avian pathogenic E. coli associated virulence genes 75.5% (n = 272) from backyard layer chickens and their environment. Potential AMR contamination from human defecation in nearby ponds and/or commercial broiler chicken flocks. | [151] |
Ecuador | Rural | Indirect transmission to backyard poultry | Small | Reported thermophilic resistant Campylobacter spp. present in free-ranging backyard chickens that were not fed antibiotics. | [152] |
Bangladesh | Urban | Intensive chicken farming Zoonotic | Large Medium | MDR presence in all E. coli isolated from intensive poultry, poultry husbandry environments, and hands of poultry workers. | [153] |
Costa Rica | Rural | Transmission to wild birds | Small | Free-ranging poultry present a risk for transmitting resistant E. coli to neotropical avifauna. | [154] |
Kenya | Rural | Indirect transmission to backyard poultry | Small | E. coli and Salmonella spp. were isolated and detected presence of class 1 integrons beta-lactamase genes from backyard chicken feces. | [155] |
Vietnam | Rural | Intensive chicken farming Occupational exposure | Small Medium | Demonstrated an association with AMR Salmonella spp. in farmers and intensively farmed poultry. | [156] |
E.U. | Zoonotic | N.S. | Human and food-production animals had moderate to high prevalence of E. coli and Salmonella resistant to ampicillin, tetracyclines and sulfonamides. High to extremely high resistance to fluoroquinolones in Salmonella spp., E. coli and Campylobacter recovered from humans, broilers, fattening turkeys and poultry carcasses/meet. Low levels of bacteria resistant to colistin in food-producing animals. MDR Salmonella enterica serotype Infantis recovered from broilers. | [157] | |
U.S.A. | Zoonotic | N.S. | High levels of Campylobacter resistant to ciprofloxacin in humans was associated to consume of raw or undercooked chicken, unpasteurized milk, contaminated food and water, and direct contact with animals. Moderate levels of Salmonella resistant to ciprofloxacin associated to direct and indirect contact with animal feces. MDR Salmonella enterica serotype Infantis recovered from broiler’s meet. Whole-genome sequencing revealed that this strain was identified from sick people returning from South America, and it is rapidly spreading among people and animal populations. | [158] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hedman, H.D.; Vasco, K.A.; Zhang, L. A Review of Antimicrobial Resistance in Poultry Farming within Low-Resource Settings. Animals 2020, 10, 1264. https://doi.org/10.3390/ani10081264
Hedman HD, Vasco KA, Zhang L. A Review of Antimicrobial Resistance in Poultry Farming within Low-Resource Settings. Animals. 2020; 10(8):1264. https://doi.org/10.3390/ani10081264
Chicago/Turabian StyleHedman, Hayden D., Karla A. Vasco, and Lixin Zhang. 2020. "A Review of Antimicrobial Resistance in Poultry Farming within Low-Resource Settings" Animals 10, no. 8: 1264. https://doi.org/10.3390/ani10081264
APA StyleHedman, H. D., Vasco, K. A., & Zhang, L. (2020). A Review of Antimicrobial Resistance in Poultry Farming within Low-Resource Settings. Animals, 10(8), 1264. https://doi.org/10.3390/ani10081264